More Than 90 Percent By Weight Silica Patents (Class 501/54)
  • Patent number: 11555796
    Abstract: The present invention relates to a method for evaluating the thermal expansion properties of a titania-containing glass body. On the basis of measured values, obtained at a certain temperature, for a physical parameter that changes depending on the titania concentration and a physical parameter that changes depending on the fictive temperature, the thermal expansion coefficient of the titania-containing silica glass body and the slope of the thermal expansion coefficient are calculated using a linear relational expression represented by a plurality of physical properties. The thermal expansion properties of the titania-containing silica glass body are evaluated on the basis of the calculated thermal expansion coefficient and thermal expansion coefficient slope.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: January 17, 2023
    Assignee: AGC Inc.
    Inventors: Kazuya Sasaki, Masaaki Takata
  • Patent number: 10851008
    Abstract: A method for producing a component with portions of a rare earth metal-doped quartz glass, an intermediate product containing voids and consisting of a SiO2 raw material doped with rare earth metal is introduced into a sinter mold the interior of which is bordered by a carbonaceous mold wall, and is melted therein into the component by gas pressure sintering at a maximum temperature above 1500° C. A shield is arranged between the mold wall and the intermediate product. In order to indicate a modified gas pressure sintering method that ensures the production of rare earth metal-doped quartz glass with reproducible properties, a bulk material of amorphous SiO2 particles with a layer thickness of at least 2 mm is used as the shield, the softening temperature thereof being at least 20° C.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: December 1, 2020
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Walter Lehmann, Mario Such, Thomas Kayser, Andreas Langner, Gerhard Schötz
  • Patent number: 10732519
    Abstract: A substrate for an EUV mirror which contains a zero crossing temperature profile that departs from the statistical distribution is provided. A method for producing a substrate for an EUV mirror is also provided, in which the zero crossing temperature profile in the substrate is adapted to the operating temperature of the mirror. A lithography method using the substrate is also described.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: August 4, 2020
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Klaus Becker, Stephan Thomas
  • Patent number: 10611676
    Abstract: A synthetic quartz glass substrate is prepared by furnishing a synthetic quartz glass block, coating an arbitrary surface and an opposite surface of the block with a liquid having a transmittance of at least 99.0%/mm at the wavelength of birefringence measurement, measuring the birefringence of the block by letting light enter one coated surface and exit the other coated surface, and sorting the block to an acceptable or unacceptable group, based on the measured birefringence value.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: April 7, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Daijitsu Harada, Kazuo Shirota, Hisashi Yagi, Masaki Takeuchi
  • Patent number: 10570060
    Abstract: Process for treatment by an ion beam of a glass material where: the acceleration voltage of the ions is between 5 kV and 1000 kV; the temperature of the glass material is less than or equal to the glass transition temperature; the dose of nitrogen (N) or oxygen (O) ions per unit of surface area is chosen within a range of between 1012 ions/cm2 and 1018 ions/cm2 so as to reduce the contact angle of a drop of water below 20°; a prior pretreatment is carried out with argon (Ar), krypton (Kr) or xenon (Xe) ions in order to strengthen the durability of the superhydrophilic treatment. Superhydrophilic glass materials of long duration are thus advantageously obtained.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: February 25, 2020
    Assignee: IONICS FRANCE
    Inventors: Denis Busardo, Frédéric Guernalec
  • Patent number: 10464840
    Abstract: Near-infrared shielding includes a glass material. The shielding provides transmittance at wavelengths between 390 to 700 nm, but near infrared absorbing species are distributed throughout the glass material and the shielding blocks light in the near infrared range. Further, the glass material has a near zero or negative coefficient of thermal expansion, allowing the glass material to heat up when the shielding is blocking a near infrared laser, without expanding much.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: November 5, 2019
    Assignee: Corning Incorporated
    Inventors: Sezhian Annamalai, Steven Bruce Dawes, Carlos Alberto Duran, Jesse Kohl
  • Patent number: 10427974
    Abstract: A glass composite for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass composite includes a first silica-titania glass section. The glass composite further includes a second doped silica-titania glass section mechanically bonded to a surface of the first silica-titania glass section, wherein the second doped silica-titania glass section has a thickness of greater than about 1.0 inch.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: October 1, 2019
    Assignee: CORNING INCORPORATED
    Inventor: Sezhian Annamalai
  • Patent number: 10358373
    Abstract: A method for producing a pore-containing opaque quartz glass includes: (a) producing porous SiO2 granulate particles from synthetically produced SiO2, (b) thermally densifying the SiO2 granulate particles to form partly densified SiO2 granulate particles, (c) forming a dispersion from the partly densified SiO2 granulate particles, (d) comminuting the partly densified SiO2 granulate particles to form a slip containing comminuted SiO2 granulate particles, (e) shaping the slip into a shaped body and forming a porous SiO2 green body with a green density rG, and (f) sintering the SiO2 green body into opaque quartz glass. To produce opaque quartz glass that is also suited for the use of spray granulate, during step (b), partly densified SiO2 granulate particles are produced with a specific surface BET-(A) between 0.025 and 2.5 m2/g, and during step (d), comminuted SiO2 granulate particles are produced with a specific surface BET-(B) between 4 and 10 m2/g.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: July 23, 2019
    Assignee: HERAEUS QUARZGLAS GMBH & CO. KG
    Inventors: Christian Schenk, Gerrit Scheich, Nadine Tscholitsch
  • Patent number: 10336645
    Abstract: A method for producing rare earth metal-doped quartz glass includes the steps of (a) providing a blank of the rare earth metal-doped quartz glass, and (b) homogenizing the blank by softening the blank zone by zone in a heating zone and by twisting the softened zone along a rotation axis. Some rare earth metals, however, show a discoloration of the quartz glass, which hints at an unforeseeable and undesired change in the chemical composition or possibly at an inhomogeneous distribution of the dopants. To avoid this drawback and to provide a modified method which ensures the production of rare earth metal-doped quartz glass with reproducible properties, during homogenization according to method step (b), the blank is softened under the action of an oxidizingly acting or a neutral plasma.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: July 2, 2019
    Assignee: Heraeus Quarzglas GmbH & Co., KG
    Inventors: Hardy Baierl, Stephan Grimm, Kay Schuster, Jan Dellith, Andreas Langner, Gerhard Schoetz, Walter Lehmann, Thomas Kayser
  • Patent number: 10032620
    Abstract: A laser-sustained plasma light source includes a plasma lamp configured to contain a volume of gas and receive illumination from a pump laser in order to generate a plasma. The plasma lamp includes one or more transparent portions transparent to illumination from the pump laser and at least a portion of the broadband radiation emitted by the plasma. The one or more transparent portions are formed from a transparent material having elevated hydroxide content above 700 ppm.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: July 24, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Lauren Wilson, Anant Chimmalgi, Matthew Panzer, Ilya Bezel
  • Patent number: 9932261
    Abstract: A doped silica-titania (“DST”) glass article that includes a glass article having a glass composition comprising a silica-titania base glass containing titania at 7 to 14 wt. % and a balance of silica, and a dopant selected from the group consisting of (a) F at 0.7 to 1.5 wt. %, (b) B2O3 at 1.5 to 5 wt. %, (c) OH at 1000 to 3000 ppm, and (d) B2O3 at 0.5 to 2.5 wt. % and OH at 100 to 1400 ppm. The glass article has an expansivity slope of less than about 1.3 ppb/K2 at 20° C. For DST glass articles doped with F or B2O3, the OH level can be held to less than 10 ppm, or less than 100 ppm, respectively. In many aspects, the DST glass articles are substantially free of titania in crystalline form.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 3, 2018
    Assignee: Corning Incorporated
    Inventors: Sezhian Annamalai, Steven Bruce Dawes, Carlos Alberto Duran, Kenneth Edward Hrdina, William Rogers Rosch, Bryan Ray Wheaton
  • Patent number: 9701561
    Abstract: Hollow ingots of transparent synthetic vitreous silica glass of external diameter greater than 400 mm and internal diameter greater than 300 mm are disclosed. The ingots are substantially free from bubbles or inclusions greater than 100 ?m in diameter, have no more than 100 ppB of any individual metallic impurity, and have chlorine concentration less than 5 ppM. Also disclosed are methods for producing such ingots, in which a porous soot body of density greater than 0.4 g/cm3 is deposited on an oxidation resistant mandrel. The soot body is dehydrated on a mandrel comprising graphite, carbon fiber reinforced carbon, silicon carbide, silicon impregnated silicon carbide, silicon carbide-coated graphite or vitreous silica, either under vacuum or in the presence of a reducing gas, and then sintered to transparent pore-free glass under vacuum or in an atmosphere of helium.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: July 11, 2017
    Assignee: Heraeus Quartz UK Ltd.
    Inventors: Richard Benjamin Coapes, Alan Mundy, Ian George Sayce
  • Patent number: 9586850
    Abstract: The Ti3+ ions present in Ti-doped silica glass cause a brown staining of the glass, causing inspection of the lens to become more difficult. Known methods for reducing Ti3+ ions in favor of Ti4+ ions in Ti-doped silica glass include a sufficiently high proportion of OH-groups and carrying out an oxygen treatment prior to vitrification, which both have disadvantages. In order to provide a cost-efficient production method for Ti-doped silica glass, which at a hydroxyl group content of less than 120 ppm shows an internal transmittance (sample thickness 10 mm) of at least 70% in the wavelength range of 400 nm to 1000 nm, the TiO2—SiO2 soot body is subjected to a conditioning treatment with a nitrogen oxide prior to vitrification. The blank produced in this way from Ti-doped silica glass has the ratio Ti3+/Ti4+?5×10?4.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: March 7, 2017
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Stefan Ochs, Klaus Becker, Stephan Thomas
  • Patent number: 9580350
    Abstract: Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: February 28, 2017
    Assignee: Corning Incorporated
    Inventors: Sezhian Annamalai, Carlos Alberto Duran, Kenneth Edward Hrdina
  • Patent number: 9568818
    Abstract: A method for producing a silica glass blank co-doped with titanium and fluorine for use in EUV lithography includes (a) producing a TiO2—SiO2 soot body by flame hydrolysis of silicon- and titanium-containing precursor substances, (b) fluorinating the TiO2—SiO2 soot body to form a fluorine-doped TiO2—SiO2 soot body, (c) treating the fluorine-doped TiO2—SiO2 soot body in a water vapor-containing atmosphere to form a conditioned soot body, and (d) vitrifying the conditioned soot body to form the blank. The blank has an internal transmission of at least 60% in the wavelength range of 400 to 700 nm at a sample thickness of 10 mm, a mean OH content in the range of 10 to 100 wt. ppm and a mean fluorine content in the range of 2,500 to 10,000 wt. ppm. Titanium is present in the blank in the oxidation forms Ti3+ and Ti4+.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: February 14, 2017
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Stefan Ochs, Klaus Becker
  • Patent number: 9505649
    Abstract: Silica-titania glasses with small temperature variations in coefficient of thermal expansion over a wide range of zero-crossover temperatures and methods for making the glasses. The method includes a cooling protocol with controlled anneals over two different temperature regimes. A higher temperature controlled anneal may occur over a temperature interval from 750° C.-950° C. or a sub-interval thereof. A lower temperature controlled anneal may occur over a temperature interval from 650° C.-875° C. or a sub-interval thereof. The controlled anneals permit independent control over CTE slope and Tzc of silica-titania glasses. The independent control provides CTE slope and Tzc values for silica-titania glasses of fixed composition over ranges heretofore possible only through variations in composition.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: November 29, 2016
    Assignee: Corning Incorporated
    Inventor: Carlos Alberto Duran
  • Patent number: 9399000
    Abstract: A high silica glass composition comprising about 92 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 8 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 26, 2016
    Assignee: Momentive Performance Materials, Inc.
    Inventors: Kipyung Ahn, Guangjun Xu, Martin Panchula, Samuel Conzone, Tianjun Rong, Konstantin S. Zuyev, Yen Zhou
  • Patent number: 9067823
    Abstract: It is an object of the invention to provide a synthetic silica glass for a cladding of a core from a fiber laser. The refractive index should be low and there should be no foaming foreign substances. This object is achieved by a synthetic silica glass for an optical element, which contains paramagnetic E? defect centers in an amount that is sufficient to set the absorption coefficient at 215 nm is in the range between 0.001 cm?1 and 2 cm?1; it contains paramagnetic oxygen defect centers in an amount that is sufficient to set the absorption coefficient at 250 nm is in the range between 0.001 cm?1 and 2 cm?1; the OH group concentration is 5 wtppm or less; the viscosity at 1100° C. is in the range between 1×1013.5 poise and 1×1015.5; the total content of metallic elements of Group 3 and Group 13 of the periodic table is 50.000 wtppm or less; and the relative refractive index difference of said synthetic silica glass is in the range between +0.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: June 30, 2015
    Assignees: Heraeus Quarzglas GmbH & Co. KG, Shin-Etsu Quartz Products Co., Ltd
    Inventors: Tatsuhiro Sato, Tomoichi Kumata
  • Patent number: 9056785
    Abstract: Synthetic quartz glass is prepared by subjecting a silicon-providing feedstock to flame hydrolysis in oxyhydrogen flame, depositing silica fine particles on a rotating quartz glass target while concurrently melting and vitrifying them, thereby forming a synthetic quartz glass ingot, shaping, annealing, and effecting dehydrogenation treatment at a temperature of at least 600° C. and a pressure of up to 5 Pa for a holding time of at least 12 hours. The synthetic quartz glass has a high helium gas permeability and is suited for forming nanoimprint molds.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: June 16, 2015
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shigeru Maida, Hisatoshi Otsuka
  • Patent number: 8987155
    Abstract: This disclosure is directed to a silica-titania-niobia glass and to a method for making the glass. The composition of the silica-titania-niobia (SiO2—TiO2—Nb2O5) glass, determined as the oxides, is Nb2O5 in an amount in the range of 0.005 wt. % to 1.2 wt. %, TiO2 in an amount in the range of 5 wt. % to 10 wt. %, and the remainder of glass is SiO2. In the method, the STN glass precursor is consolidated into a glass by heating to a temperature of 1600° C. to 1700° C. in flowing helium for 6 hours to 10 hours. When this temperature is reached, the helium flow can be replaced by argon for the remainder of the time. Subsequently the glass is cooled to approximately 1050° C., and then from 1050° C. to 700° C. followed by turning off the furnace and cooling the glass to room temperature at the natural cooling rate of the furnace.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: March 24, 2015
    Assignee: Corning Incorporated
    Inventors: Sezhian Annamalai, Steven Bruce Dawes, Kenneth Edward Hrdina
  • Publication number: 20150080206
    Abstract: Silica-titania glasses with small temperature variations in coefficient of thermal expansion over a wide range of zero-crossover temperatures and methods for making the glasses. The method includes a cooling protocol with controlled anneals over two different temperature regimes. A higher temperature controlled anneal may occur over a temperature interval from 750° C.-950° C. or a sub-interval thereof. A lower temperature controlled anneal may occur over a temperature interval from 650° C.-875° C. or a sub-interval thereof. The controlled anneals permit independent control over CTE slope and Tzc of silica-titania glasses. The independent control provides CTE slope and Tzc values for silica-titania glasses of fixed composition over ranges heretofore possible only through variations in composition.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 19, 2015
    Inventor: Carlos Alberto Duran
  • Patent number: 8901019
    Abstract: The present disclosure is directed to a doped silica-titania glass, DST glass, consisting essentially of 0.1 wt. % to 5 wt. % halogen, 50 ppm-wt. to 6 wt. % one or more oxides of Al, Ta and Nb, 3 wt. % to 10 wt. % TiO2 and the remainder SiO2. In an embodiment the halogen content can be in the range of 0.2 wt. % to 3 wt. % along with 50 ppm-wt. to 6 wt. % one or more oxides of Al, Ta and Nb, 3 wt. % to 10 wt. % TiO2 and the remainder SiO2. In an embodiment the DST glass has an OH concentration of less than 100 ppm. In another embodiment the OH concentration is less than 50 ppm. The DST glass has a fictive temperature Tf of less than 875° C. In an embodiment Tf is less than 825° C. In another embodiment Tf is less than 775° C.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 2, 2014
    Assignee: Corning Incorporated
    Inventors: Seshian Annamalai, Carlos Alberto Duran, Kenneth Edward Hrdina
  • Patent number: 8877662
    Abstract: The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 4, 2014
    Assignee: Momentive Performance Materials, Inc.
    Inventors: Nathan J. Cassingham, Ben Matthew Gauthier, Martin Panchula, Robert Stephen Pavlik, Yan Zhou, Konstantin S. Zuyev
  • Publication number: 20140155246
    Abstract: The present disclosure is directed to a doped silica-titania glass, DST glass, consisting essentially of 0.1 wt. % to 5 wt. % halogen, 50 ppm-wt. to 6 wt. % one or more oxides of Al, Ta and Nb, 3 wt. % to 10 wt. % TiO2 and the remainder SiO2. In an embodiment the halogen content can be in the range of 0.2 wt. % to 3 wt. % along with 50 ppm-wt. to 6 wt. % one or more oxides of Al, Ta and Nb, 3 wt. % to 10 wt. % TiO2 and the remainder SiO2. In an embodiment the DST glass has an OH concentration of less than 100 ppm. In another embodiment the OH concentration is less than 50 ppm. The DST glass has a fictive temperature Tf of less than 875° C. In an embodiment Tf is less than 825° C. In another embodiment Tf is less than 775° C.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 5, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Sezhian Annamalai, Carlos Alberto Duran, Kenneth Edward Hrdina
  • Patent number: 8735308
    Abstract: The present invention relates to an optical member including a TiO2-containing silica glass having: a TiO2 concentration of from 3 to 10% by mass; a Ti3+ concentration of 100 wt ppm or less; a thermal expansion coefficient at from 0 to 100° C., CTE0-100, of 0±150 ppb/° C.; and an internal transmittance in the wavelength range of 400 to 700 nm per a thickness of 1 mm, T400-700, of 80% or more, in which the optical member has a ratio of variation of Ti3+ concentration to an average value of the Ti3+ concentration, ?Ti3+/Ti3+, on an optical use surface, is 0.2 or less.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 27, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Akio Koike, Chikaya Tamitsuji, Kunio Watanabe, Tomonori Ogawa
  • Patent number: 8713969
    Abstract: The disclosure describes a method by which the Tzc of a silica-titania glass article, for example, a EUVL mirror substrate, can be tuned to within a specification range by means of a selected final anneal that shifts Tzc of the article or substrate to the desired Tzc value. In addition, since different mirrors in a set can be specified at different values of Tzc, this process can be on used glass samples or pieces from a single glass boule to make parts with different Tzc values, thus reducing the number of separate boules required to fill an order.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 6, 2014
    Assignee: Corning Incorporated
    Inventors: Carlos Duran, Kenneth Edward Hrdina
  • Patent number: 8679994
    Abstract: A method of inspecting a synthetic silica glass molded body includes: irradiating the synthetic silica glass molded body with a spectrum line of an Hg lamp having a wavelength of 248 nm; measuring light emitted by the synthetic silica glass molded body; and a procedure which may include screening a portion which satisfies a condition that a ratio of the bright line intensity and the fluorescent light intensity is of a certain value or less, or which may include determining whether a condition that a ratio of a minimum value and a maximum value of a measured fluorescent light intensity is in a certain range is satisfied or not.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: March 25, 2014
    Assignee: Nikon Corporation
    Inventor: Masafumi Mizuguchi
  • Publication number: 20140066286
    Abstract: This disclosure is directed to a silica-titania-niobia glass and to a method for making the glass. The composition of the silica-titania-niobia (SiO2—TiO2—Nb2O5) glass, determined as the oxides, is Nb2O5 in an amount in the range of 0.005 wt. % to 1.2 wt. %, TiO2 in an amount in the range of 5 wt. % to 10 wt. %, and the remainder of glass is SiO2. In the method, the STN glass precursor is consolidated into a glass by heating to a temperature of 1600° C. to 1700° C. in flowing helium for 6 hours to 10 hours. When this temperature is reached, the helium flow can be replaced by argon for the remainder of the time. Subsequently the glass is cooled to approximately 1050° C., and then from 1050° C. to 700° C. followed by turning off the furnace and cooling the glass to room temperature at the natural cooling rate of the furnace.
    Type: Application
    Filed: August 22, 2013
    Publication date: March 6, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Sezhian Annamalai, Steven Bruce Dawes, Kenneth Edward Hrdina
  • Patent number: 8629071
    Abstract: A titania and sulfur co-doped quartz glass member is provided. Due to co-doping of titania and sulfur, the quartz glass member undergoes zero expansion at a certain temperature and low thermal expansion over a wide temperature range, and is thus suited for use in a commercial EUV lithography tool. A manufacturing method and an optical member for EUV lithography are also provided.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: January 14, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shigeru Maida, Hisatoshi Otsuka
  • Patent number: 8596094
    Abstract: A method of making a silica glass having a uniform fictive temperature. The glass article is heated at a target fictive temperature, or heated or cooled at a rate that is less than the rate of change of the fictive temperature, for a time that is sufficient to allow the fictive temperature of the glass to come within 3° C. of the target fictive temperature. The silica glass is then cooled from the target fictive temperature to a temperature below the strain point of the glass at a cooling rate that is greater than the relaxation rate of the glass at the target fictive temperature. The silica glass has a fictive temperature that varies by less than 3° C. after the annealing step. A silica glass made by the method is also described.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: December 3, 2013
    Assignee: Corning Incorporated
    Inventors: Carlos Duran, Kenneth Edward Hrdina, Ulrich Wilhelm Heinz Neukirch
  • Publication number: 20130260980
    Abstract: Methods for forming glass compositions from cullet include providing the cullet to a submerged combustion melter and melting the cullet with the aid of heat generated upon the combustion of a hydrocarbon from landfill gas and, in some cases, a polymeric material, in the presence of an oxidant. The melted cullet is then directed to a fiberization unit to generate a glass composition, such as vitreous fiber. The glass composition can be used to form various structural components, such as glass fiber insulation. Methods and systems provided herein can be used to form low global warming potential products.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Robert D. Touslee, Elam A. Leed
  • Patent number: 8546283
    Abstract: The present invention relates to a substrate for EUV lithography optical member, comprising a silica glass containing TiO2, in which the substrate has two opposite surfaces, and the substrate has temperatures at which a coefficient of linear thermal expansion (CTE) is 0 ppb/° C. (Cross-Over Temperature: COT), and in which the two opposite surfaces have difference in the COTs of 5° C. or more.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: October 1, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Junko Miyasaka, Akio Koike, Tomonori Ogawa
  • Patent number: 8539797
    Abstract: A titania and sulfur co-doped quartz glass member is provided. Due to co-doping of titania and sulfur, the quartz glass member undergoes zero expansion at a certain temperature and low thermal expansion over a wide temperature range, and is thus suited for use in a commercial EUV lithography tool. A manufacturing method and an optical member for EUV lithography are also provided.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: September 24, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shigeru Maida, Hisatoshi Otsuka
  • Patent number: 8539793
    Abstract: A method of molding a synthetic silica glass molded body by accommodating a synthetic silica glass block in a mold provided with a pressing portion, and by pressing the block while heating, the method including: washing the synthetic silica glass block so that a concentration of copper which is present on the surface of the synthetic silica glass block is 2 ng/cm2 or less; heating high purity carbon powders with a content of copper and aluminium; heating the mold at a temperature condition of 1700° C. to 1900° C.; applying the powders before accommodating the block in the mold; and molding the block in a predetermined form by pressing the block while heating within a hold temperature range of 1500° C. to 1700° C., after accommodating the washed block in the mold.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: September 24, 2013
    Assignee: Nikon Corporation
    Inventors: Masafumi Mizuguchi, Tetsuya Abe
  • Patent number: 8541325
    Abstract: In one embodiment the present disclosure is directed to a silica-titania glass with an internal transmission of >90%/cm at wavelengths from 340 nm to 840 nm. In another embodiment the internal transmission is >93%/cm at wavelengths from 340 nm to 840 nm. In a further embodiment the internal transmission is >95%/cm at wavelengths from 340 nm to 840 nm. In another embodiment the disclosure is directed to a silica-titania glass with an overall transmission through an optic made of the glass is >84% at wavelengths from 340 nm to 840 nm. In another embodiment overall transmission through an optic made of the glass is >86% at wavelengths from 340 nm to 840 nm. In a further embodiment the overall transmission through an optic made of the glass is >88% at wavelengths from 330 nm to 840 nm. In a further embodiment the silica-titania glass has a Ti+3 concentration level [Ti3+] less than 3 ppm by weight.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: September 24, 2013
    Assignee: Corning Incorporated
    Inventors: Carlos Duran, Kenneth Edward Hrdina, Michael A Mueller
  • Patent number: 8541326
    Abstract: The present invention relates to an optical member for deep ultraviolet having a wavelength of 250 nm or shorter, containing a synthetic silica glass which does not substantially contain a halogen element, has a maximum OH group content of less than 10 ppm by weight, has contents of ODC (oxygen deficient centers) and E-prime center of each less than 1×1014 cm?3, does not substantially contain SiH and peroxy linkage, and has a fictive temperature of 1,050° C. or lower.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 24, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Ryusuke Morita, Takuya Nakagawa, Kei Iwata, Masaaki Takata
  • Patent number: 8509588
    Abstract: An amplifying optical fiber includes a core containing oxides of elements selected from the group consisting of silicon, germanium, phosphorus, bismuth, aluminum, gallium with a concentration of bismuth oxide of 10-4-5 mol %, a total concentration of silicon and germanium oxides of 70-99.8999 mol %, a total concentration of aluminum and gallium oxides of 0.1-20 mol % wherein both aluminum and gallium oxide are present and a ratio of aluminum oxide to gallium oxide is at least two, and a concentration of phosphorus oxide from 0 to 10 mol %, and provides a maximum optical gain at least 10 times greater than the nonresonant loss factor in the optical fiber. An outside oxide glass cladding comprises fused silica. The core has an absorption band in the 1000 nm region, pumping to which region provides an increased efficiency of power conversion of pump light into luminescence light in the 1000-1700 nm range.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 13, 2013
    Assignee: Fiber Optics Research Center of The Russian Academy of Sciences
    Inventors: Evgeny Mikhailovich Dianov, Vladislav Vladimirovich Dvoirin, Valery Mikhailovich Mashinsky, Alexei Nikolaevich Guryanov, Andrei Alexandrovich Umnikov
  • Patent number: 8470496
    Abstract: A novel ion conductive material is provided. The ion conductive material composed of an amorphous material is employed.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: June 25, 2013
    Assignee: Riken
    Inventors: Toyoki Kunitake, Yoshitaka Aoki, Emi Muto
  • Patent number: 8467123
    Abstract: Disclosed is an optical fiber that includes a central core that is suitable for transmitting and amplifying an optical signal and an inner optical cladding that is suitable for confining the optical signal transmitted within the central core. The central core is formed from a core matrix that contains silica-based nanoparticles doped with at least one rare earth element. The disclosed optical fiber can be used with limited optical losses even in an environment with strong ionizing radiation.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: June 18, 2013
    Assignee: Draka Comteq B.V.
    Inventors: Elise Regnier, Alain Pastouret, Ekaterina Burov
  • Publication number: 20130116108
    Abstract: The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
    Type: Application
    Filed: July 2, 2012
    Publication date: May 9, 2013
    Applicant: MOMENTIVE PERFORMANCE MATERIALS, INC.
    Inventors: Nathan J. Cassingham, Ben Matthew Gauthier, Martin Panchula, Robert Stephen Pavlik, Yan Zhou, Konstantin S. Zuyev
  • Publication number: 20130095261
    Abstract: A high silica glass composition comprising about 92 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 8 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.
    Type: Application
    Filed: May 22, 2012
    Publication date: April 18, 2013
    Applicant: MOMENTIVE PERFORMANCE MATERIALS, INC.
    Inventors: Kipyung Ahn, Guangjun Xu, Martin Panchula, Samuel Conzone, Tianjun Rong, Konstantin S. Zuyev, Yen Zhou
  • Patent number: 8404605
    Abstract: A method of loading at least one fused silica article with hydrogen. At least one fused silica article is first loaded with an amount of hydrogen so that the hydrogen concentration at the center of the article exceeds a minimum concentration upon completion of loading. An amount of hydrogen is the removed from the fused silica article so that the fused silica article has an average hydrogen concentration that is less than the maximum average concentration limit. The surface region of the fused silica article is then reloaded to ensure that the hydrogen concentration throughout the article is within a predetermined pressure range. A fused silica article comprising hydrogen is also described.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: March 26, 2013
    Assignee: Corning Incorporated
    Inventor: William Rogers Rosch
  • Patent number: 8356494
    Abstract: A process for producing a porous quartz glass body containing hydrolyzing a metal dopant precursor and an SiO2 precursor in a flame of a burner to form glass fine particles, and depositing and growing the formed glass fine particles on a base material, in which the burner has at least two nozzles, and in which a mixed gas containing (A) a metal dopant precursor gas, (B) an SiO2 precursor gas, (C) one gas of H2 and O2, and (D) one or more gases selected from the group consisting of a rare gas, N2, CO2, a hydrogen halide and H2O, with a proportion of the gas (D) being from 5 to 70 mol %; and (E) the other gas of H2 and O2 of (C), are fed into different nozzles of the burner from each other.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: January 22, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Takahiro Mitsumori, Yasutomi Iwahashi, Akio Koike
  • Patent number: 8329604
    Abstract: A silica glass containing TiO2, which has a fictive temperature of at most 1,200° C., a F concentration of at least 100 ppm and a coefficient of thermal expansion of 0±200 ppb/° C. from 0 to 100° C. A process for producing a silica glass containing TiO2, which comprises a step of forming a porous glass body on a target quartz glass particles obtained by flame hydrolysis of glass-forming materials, a step of obtaining a fluorine-containing porous glass body, a step of obtaining a fluorine-containing vitrified glass body, a step of obtaining a fluorine-containing formed glass body and a step of carrying out annealing treatment.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: December 11, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yasutomi Iwahashi, Akio Koike
  • Patent number: 8316671
    Abstract: A known method for producing a hollow cylinder of synthetic quartz glass comprises the steps of: (a) providing an inner tube of synthetic quartz glass having an inner bore defined by an inner wall, (b) cladding the inner tube (3?) with an SiO2 soot layer (4?), and (c) sintering the SiO2 soot layer with formation of the hollow cylinder. Starting therefrom, to indicate a method in which on the one hand the sintering process is completed before the hollow cylinder is further processed together with the core rod, and in which on the other hand a complicated machining of the inner bore of the hollow cylinder of quartz glass is not required, the invention suggests that during sintering the surface temperature of the inner wall of the inner tube should be kept below the softening temperature.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: November 27, 2012
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventor: Michael Huenermann
  • Patent number: 8302428
    Abstract: Methods for preparing glass structures include extruding a glass precursor, the glass precursor having a composition in the range of 55%-75% SiO2, 5%-10% Na2O, 20%-35% B2O3 and 0%-5% Al2O3, and heat treating and leaching the glass precursor to yield a glass article comprising at least about 90% SiO2 by weight. Glass articles can be used to manufacture a variety of geometrically complex structures.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: November 6, 2012
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, David John McEnroe, Elizabeth Marie Vileno
  • Patent number: 8293362
    Abstract: A closed-cell foam glass structure comprising a multitude of micron-sized voids enclosed by interconnected glass membranes with sub-micron thickness wherein the voids are from about 30% to about 70% of the volume.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 23, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Alan L Huston, Brian L Justus
  • Publication number: 20120238434
    Abstract: The present invention relates to a TiO2-containing silica glass containing TiO2 in an amount of from 5 to 10 mass % and at least one of B2O3, P2O5 and S in an amount of from 50 ppb by mass to 5 mass % in terms of the total content.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Akio Koike, Takahiro Mitsumori, Tomonori Ogawa
  • Patent number: 8268740
    Abstract: A fused silica glass having a refractive index homogeneity of less or equal to about 5 ppm over an aperture area of at least about 50 cm2. The fused silica glass is also substantially free of halogens and has an adsorption edge of less than about 160 nm. The glass is dried by exposing a silica soot blank to carbon monoxide before consolidation, reducing the combined concentration of hydroxyl (i.e., OH, where H is protium (11H) and deuteroxyl (OD), where D is deuterium (12H)) of less than about 20 ppm by weight in one embodiment, less than about 5 ppm by weight in another embodiment, and less than about 1 ppm by weight in a third embodiment.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 18, 2012
    Assignee: Corning Incorporated
    Inventors: Richard Michael Fiacco, Kenneth Edward Hrdina, Rostislav Radievich Khrapko, Lisa Anne Moore, Charlene Marie Smith
  • Patent number: 8261578
    Abstract: A method of making a fused silica article that is loaded with hydrogen. A fused silica glass near net shape part is provided and is loaded with a molecular hydrogen in a range from about 0.1×1017 molecules/cm3 up to about 1×1019 molecules/cm3. The thinner shape of the near net shape part enables the shape to be loaded more quickly than previous methods. A fused silica article loaded with hydrogen using the method is also described.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: September 11, 2012
    Assignee: Corning Incorporated
    Inventors: Kenneth Edward Hrdina, Michael A Mueller, Susan Schiefelbein