And Adding Heat By Admixing Solid Heat Carrier Patents (Class 502/40)
-
Patent number: 11577237Abstract: Higher temperature regenerated dehydrogenation catalyst is mixed with the lower temperature spent dehydrogenation catalyst from a dehydrogenation reaction to heat the spent catalyst. Air or other oxygen containing gas may be introduced to facilitate mixing. The mixing of hot regenerated catalyst with cooler spent catalyst increases the temperature of the spent catalyst and makes the coke on catalyst and in the supplemental fuel gas instantly ready to combust without the delay necessary to heat up the spent catalyst to combustion temperature. The regenerated dehydrogenation catalyst may be mixed with the spent dehydrogenation catalyst before the mixture of catalyst is contacted with the supplemental fuel gas. Combustion with fuel gas should be conditioned to avoid generation of a flame.Type: GrantFiled: December 13, 2019Date of Patent: February 14, 2023Assignee: UOP LLCInventors: John J. Senetar, Lev Davydov
-
Patent number: 8901025Abstract: The present invention describes a combustion zone for a regenerative catalytic unit for the continuous regeneration of catalyst, said combustion zone having an annular shape and being divided into at least two combustion stages, each stage being divided into a number N of radial sectors, which are substantially equal, the catalyst flowing under gravity from one sector of the first combustion stage to the sector located in vertical alignment with the second combustion stage by means of drop legs, and the movement of the combustion gas being such that the combustion gas passes in succession through all of the sectors of the first combustion stage in any order, then all of the sectors of the second stage in any order.Type: GrantFiled: February 18, 2011Date of Patent: December 2, 2014Assignee: IFP Energies NouvellesInventors: Eric Sanchez, Frederic Bazer-Bachi, Beatrice Fischer
-
Publication number: 20130072376Abstract: The present invention describes a combustion zone for a regenerative catalytic unit for the continuous regeneration of catalyst, said combustion zone having an annular shape and being divided into at least two combustion stages, each stage being divided into a number N of radial sectors, which are substantially equal, the catalyst flowing under gravity from one sector of the first combustion stage to the sector located in vertical alignment with the second combustion stage by means of drop legs, and the movement of the combustion gas being such that the combustion gas passes in succession through all of the sectors of the first combustion stage in any order, then all of the sectors of the second stage in any order.Type: ApplicationFiled: February 18, 2011Publication date: March 21, 2013Applicant: IFP ENERGIES NOUVELLESInventors: Eric Sanchez, Frederic Bazer-Bachi, Beatrice Fischer
-
Patent number: 7915191Abstract: This invention is directed to a method and apparatus for regenerating a catalyst used in an FCC unit, including providing a spent catalyst into an upper portion of a regenerator, maintaining a calcination phase, a gasification phase, and a combustion phase of fluidized catalyst in the regenerator, combusting carbon in the combustion phase and producing a combustion flue gas, reacting carbon in the gasification phase with the combustion flue gas to form a carbon monoxide rich flue gas, and calcining the spent catalyst with the carbon monoxide rich flue gas.Type: GrantFiled: June 23, 2009Date of Patent: March 29, 2011Assignee: UOP LLCInventor: Brian W. Hedrick
-
Patent number: 7745366Abstract: The microwave spent catalyst decoking method is a method for regenerating petrochemical catalysts by removing coke deposited in the catalyst using a 2.45 GHz microwave oven. The spent catalyst is heated in air or pure oxygen in the presence of a susceptor. The susceptor is made of silicon carbide-based composite material that absorbs 2.45 GHz microwave energy fast and efficiently. In one embodiment, the susceptor material is formed into pellets that are preferably four to five millimeters in diameter. The susceptor pellets are mixed with the spent catalyst and loaded into a thermally shielded refractory tube that rotates about its central axis. In a another embodiment, the apparatus is a thermally shielded tower or vertical tube made of refractory material that is transparent to microwave radiation and supports rows of susceptor rods that are aligned horizontally.Type: GrantFiled: November 4, 2008Date of Patent: June 29, 2010Assignee: King Fahd University of Petroleum and MineralsInventor: Saleh I. Al-Quraishi
-
Patent number: 7199069Abstract: A method for oxidizing carbon adsorbable organic compounds in a controlled manner within a bed of activated carbon. The bed of activated carbon is exposed to a source of molecular oxygen, such as air, and is controlled within a temperature range whereby the molecular oxygen is slowly oxidizing the activated carbon. Under this controlled set of conditions, the activated carbon will oxidize organic compounds present within the bed of activated carbon. This technique has widespread versatility for the controlled destruction of organic vapors and liquids by activated carbon and applications for the regeneration of spent activated carbons containing previously adsorbed organic compounds.Type: GrantFiled: July 21, 2005Date of Patent: April 3, 2007Inventor: Hugh Stanley McLaughlin
-
Patent number: 6566539Abstract: A process for the production of tetrahydrofuran, gamma butyrolactone, 1,4-butane diol and the like from a hydrogenatable precursor such as maleic acid, succinic acid, corresponding esters and their mixtures and the like in the presence of hydrogen and a noble metal catalyst, wherein oxidizing agents such as hydrogen peroxide, oxygen or air are used to regenerate spent noble metal catalyst for further use in the process.Type: GrantFiled: July 18, 2002Date of Patent: May 20, 2003Assignee: E.I. du Pont de Nemours and CompanyInventors: Daniel Campos, Richard Edward Ernst, John Byrne Michel
-
Patent number: 6121180Abstract: A method for regenerating a hydrocarbon conversion catalyst wherein at least a portion of a halogen-containing compound is precombusted in a precombustion zone, and the catalyst is regenerated in the presence of the halogen. By precombusting the halogen-containing compound in a precombustion zone rather than in the regeneration zone, this invention decreases the risk of permanent catalyst deactivation and of costly equipment damage in the regeneration zone. This method is adaptable to many processes for the catalyst conversion of hydrocarbons in which deactivated catalyst particles are regenerated in a moving bed.Type: GrantFiled: January 9, 1998Date of Patent: September 19, 2000Assignee: UOP LLCInventor: Thomas John Gevelinger
-
Patent number: 5800697Abstract: An FCC reactor and regenerator arrangement provides substantially independent control of temperature on the reactor side and regenerator side of the process. The arrangement withdraws cooled regenerated catalyst for transfer to a reactor riser and cooled regenerator catalyst for return to the regeneration zone. The process may operate with a single cooler that supplies catalyst to both the reaction side of the process and the regeneration side of the process.Type: GrantFiled: June 19, 1995Date of Patent: September 1, 1998Assignee: UOP LLCInventor: Robert A. Lengemann
-
Patent number: 5256613Abstract: The present invention relates to a process for the regeneration of spent bleaching earth, comprising an oxidative heat treatment in which the amount of oxygen supplied exceeds the stoichiometrical requirement of complete oxidation of all organics present in the spent bleaching earth, wherein the spent bleaching earth and the oxygen are blown through a stationary fluidized bed of inert granulate material. The stationary fluidized bed should be as high as to limit the temperature in the freeboard to less than 1000.degree. C. As a matter of fact, it has been found that, if the fluidized bed is not high enough, the oxygen required to burn off the organics content of the spent bleaching earth would blow out the powdered bleaching earth from the bed at the stage of incomplete oxidation of the organics present on the earth, resulting in an uncontrolled temperature rise in the freeboard and local overheating of the bleaching earth.Type: GrantFiled: August 27, 1992Date of Patent: October 26, 1993Assignee: N.V. Vandemoortele InternationalInventors: Pieter J. A. Maes, Albert J. Dijkstra
-
Patent number: 5160426Abstract: A process and apparatus for achieving hot catalyst stripping of spent FCC catalyst in a stripper mounted over a bubbling bed regenerator. Hot catalyst stripping is achieved by indirect transfer of heat from the regenerator to the stripper. Heat pipes, surface modifications such as fins on the stripper vessel, or use of a stripper in, or connective with, a heat exchange tube bundle may be used to heat spent catalyst with heat from the regenerator dilute phase, without transferring catalyst from the regenerator. The benefits of hotter catalyst stripping are achieved, without increasing catalyst traffic in the regenerator.Type: GrantFiled: April 27, 1990Date of Patent: November 3, 1992Assignee: Mobil Oil CorporationInventor: Amos A. Avidan
-
Patent number: 5158919Abstract: A process and apparatus for fluidized bed catalyst regeneration. A mixture of spent catalyst, recycled hot regenerated catalyst and regeneration gas are charged to a riser having an outlet connective with a coke combustor immersed in a fluidized bed of catalyst. The coke combustor outlet is covered by the dense phase fluidized bed. Additional combustion air may be added to the fluidized bed of catalyst covering the coke combustor outlet for additional catalyst regeneration. Indirect heat exchange may heat spent catalyst in the riser and/or the coke combustor.Type: GrantFiled: April 29, 1991Date of Patent: October 27, 1992Assignee: Mobil Oil CorporationInventors: James H. Haddad, Hartley Owen, Mark S. Ross
-
Patent number: 5143875Abstract: A process and apparatus for fluidized bed catalyst regeneration. The regenerator contains a base fluidized bed, a bubbling dense bed above the base fluidized bed, and a dilute phase region above the bubbling dense bed. The bubbling dense bed has a larger cross sectional area than the base bed. Most, preferably all, the regeneration gas is added to the base fluidized bed. Higher superficial vapor velocities in the base fluidized bed, with conventional vapor velocities in the bubbling dense bed, allow more efficient regeneration in the base bed, without excessive catalyst entrainment into the dilute phase. Regenerated catalyst may be recycled from the bubbling dense bed or the dilute phase to the base fluidized bed, preferably via a cyclone dipleg.Type: GrantFiled: February 6, 1991Date of Patent: September 1, 1992Assignee: Mobil Oil CorporationInventors: Hartley Owen, Paul H. Schipper
-
Patent number: 5130012Abstract: A fluidized catalytic cracking process using a high efficiency regenerator comprising a coke combustor, a dilute phase transport riser, and a second fluidized bed with catalyst recirculation to the coke combustor, is operated to reduce NO.sub.x emissions in the regenerator flue gas. The amount of catalyst recirculation from the second fluidized bed to the coke combustor or combustion air addition or preferably both are adjusted based on continuous or periodic measurement of a process parameter of the FCC regenerator which directly or indirectly measures the NO.sub.x content of regenerator flue gas. Operation with restricted air or catalyst recirculation degrades coke combustor operation, shifts some regeneration to downstream portions of the regenerator, and reduces NO.sub.x emissions.Type: GrantFiled: January 24, 1991Date of Patent: July 14, 1992Assignee: Mobil Oil CorporationInventors: Michael S. Edwards, David A. Land, Catherine L. Markham, Joseph R. Misiewicz, John P. Schields
-
Patent number: 5077251Abstract: A process for controlled, multi-stage regeneration of FCC catalyst is disclosed. A modified high efficiency catalyst regenerator, with a fast fluidized bed coke combustor, dilute phase transport riser, and second fluidized bed regenerates the catalyst in at least two stages. The primary stage of regeneration is in the coke combustor. Second stage catalyst regeneration occurs in the second fluidized bed. The amount of combustion air added to, and conditions in, the coke combustor are controlled to limit CO combustion, while the second stage of regeneration, in the second fluidized bed, achieves complete CO combustion. Controlled multi-stage regeneration reduces steaming or deactivation of catalyst during regeneration, increase coke burning capacity, and reduces NOx emissions.Type: GrantFiled: July 17, 1990Date of Patent: December 31, 1991Assignee: Mobil Oil CorporationInventors: Hartley Owen, Paul H. Schipper
-
Patent number: 5077252Abstract: A process and apparatus for controlled, multi-stage regeneration of FCC catalyst is disclosed. A modified high efficiency catalyst regenerator, with a fast fluidized bed coke combustor, dilute phase transport riser, and second fluidized bed regenerates the catalyst in at least two stages. The primary stage of regeneration is in the coke combustor. Second stage catalyst regeneration occurs in the second fluidized bed. The amount of combustion air added to both regeneration stages is set to maintain partial CO combustion in both stages. Controlled multi-stage regeneration reduces the steaming or deactivation of catalyst during regeneration, maximizes coke burning capacity of the regenerator, and minimizes or eliminates NOx emissions.Type: GrantFiled: July 17, 1990Date of Patent: December 31, 1991Assignee: Mobil Oil CorporationInventors: Hartley Owen, Paul H. Schipper
-
Patent number: 5066627Abstract: A process for simultaneously heating and cooling of spent FCC catalyst during regeneration in a high efficiency FCC regenerator, one using a fast fluidized bed coke combustor. The coke combustor burns coke from spent catalyst in a turbulent or fast fluidized bed, and discharges catalyst and flue gas up into a dilute phase transport riser. Catalyst is separated into flue gas and a bubbling dense bed of catalyst. The coke combustor is heated by recycling hot catalyst from the bubbling dense bed and simultaneously cooled by a backmixed heat exchanger. Catalyst flows from the combustor to the cooler and is displaced back into the combustor by adding air to the catalyst in the cooler. Heating promotes rapid coke combustion, while cooling reduces thermal and hydrothermal deactivation of the spent catalyst.Type: GrantFiled: June 8, 1990Date of Patent: November 19, 1991Assignee: Mobil Oil CorporationInventors: Hartley Owen, Paul H. Schipper
-
Patent number: 5043055Abstract: A process and apparatus for achieving multistage, hot catalyst stripping of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. Hot catalyst stripping is achieved by lifting regenerated catalyst into the conventional stripper or to a secondary catalyst stripper under the primary stripper. Spent catalyst is heated by direct contact heat exchange with hot regenerated catalyst. Three different types of lift gas may be used to transport catalyst from the regenerator to the hot stripper, a light reactive hydrocarbon, an inert, or steam.Type: GrantFiled: April 27, 1990Date of Patent: August 27, 1991Assignee: Mobil Oil CorporationInventors: Hartley Owen, Paul H. Schipper
-
Patent number: 5034115Abstract: A process and apparatus are disclosed for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A coke combustor vessel is immersed in, and in open fluid communication with, the bubbling dense bed of the existing regenerator vessel. Spent catalyst is discharged into the coke combustor, mixes with hot regenerated catalyst which flows into the coke combustor, and regenerated with combustion air in a turbulent or fast fluidized bed. Catalyst and flue gas are discharged up into a dilute phase transport riser, preferably into cyclone which separate hot regenerated catalyst from flue gas. Regenerated catalyst is collected in the bubbling dense bed surrounding the coke combustor, and some is recycled by flowing into the coke combustor for direct contact heat exchange.Type: GrantFiled: April 27, 1990Date of Patent: July 23, 1991Assignee: Mobil Oil CorporationInventor: Amos A. Avidan
-
Patent number: 5032251Abstract: A process and apparatus for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A closed coke combustor vessel is added to the existing regenerator vessel, and spent catalyst is discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor. Catalyst may be recycled from the dense bed to the coke combustor for direct contact heat exchange. Catalyst coolers may be used on catalyst recycle lines to the coke combustor, or on the line returning regenerated catalyst to the cracking reactor.Type: GrantFiled: April 27, 1990Date of Patent: July 16, 1991Assignee: Mobil Oil CorporationInventors: Hartley Owen, Paul H. Schipper
-
Patent number: 5032252Abstract: A process and apparatus for achieving multistage, hot catalyst stripping of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A secondary or hot catalyst stripper is placed under the primary stripper and within the existing regenerator vessel. Spent catalyst from the primary stripper is heated in the secondary stripper by at least one of immersion in the bubbling dense bed of hot regenerated catalyst, addition of hot regenerated catalyst recovered from the discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport riser which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor.Type: GrantFiled: April 27, 1990Date of Patent: July 16, 1991Assignee: Mobil Oil CorporationInventors: Hartley Owen, Paul H. Schipper
-
Patent number: 5013425Abstract: A method of converting a side by side FCC arrangement adds a new reactor vessel and uses the regenerator vessel and reactor vessel to provide a regeneration section having at least three stages of regeneration that is used as part of an enlarged FCC process. In simplest form, the conversion method calls for the use of the regeneration vessel as a first-stage regeneration zone, the use of the reactor vessel as a second-stage regeneration zone, and the use of the spent catalyst stripper as a third stage of regeneration. This arrangement provides a second stage of regeneration that is positioned to facilitate the addition of partially regenerated catalyst to the stripping zone to facilitate the operation of a hot catalyst stripping section.Type: GrantFiled: May 18, 1990Date of Patent: May 7, 1991Assignee: UOPInventor: Ismail B. Cetinkaya
-
Patent number: 5000841Abstract: A fluidized catalytic cracking process operates with a hot stripper to improve stripping of spent catalyst from the FCC process. The catalyst from the hot stripper is cooled by direct contact heat exchange with a source or cooled regenerated catalyst. Cooled catalyst may contact hot, stripped catalyst in the base of the stripper or downstream of the stripper. The cooled, stripped catalyst has reduced hydrogen, sulfur and coke content, improves regeneration efficiency, and reduces hydrothermal degradation of catalyst.Type: GrantFiled: April 10, 1989Date of Patent: March 19, 1991Assignee: Mobil Oil CorporationInventor: Hartley Owen
-
Patent number: 4704497Abstract: A process for dehydrogenating saturated or unsaturated hydrocarbons wherein the flow direction of the oxygen-containing gas, employed for removing coke deposits on the catalyst surface, is opposite to that for the hydrocarbon feed undergoing dehydrogenation.Type: GrantFiled: July 14, 1986Date of Patent: November 3, 1987Assignee: Veba Oel AGInventors: Klaus Gottlieb, Wilfried Graf, Heinz-Kuno Schadlich
-
Patent number: 4666586Abstract: A method and arrangement of apparatus is provided for catalytically cracking liquid hydrocarbons to form gaseous and liquid fuel products and effect regeneration of the used catalyst particles whereby means are provided which improve separation of formed suspensions in a substantially reduced time frame and combustion of substantial hydrocarbonaceous deposits is accomplished under restricted temperature conditions contributing to catalyst life in a two stage catalyst regeneration operation of restricted elevation. The apparatus combination of the present invention is preferably of low vertical profile by restricting the vertical length of the riser contact zone in one embodiment by providing a substantial horizontal section thereof in a downstream portion of the riser.Type: GrantFiled: January 5, 1984Date of Patent: May 19, 1987Inventor: Carl D. Farnsworth
-
Patent number: 4535065Abstract: In a method for regeneration of moist powder adsorption agent, the moist-charged adsorption agent is first fed into the lower area of a fluidized bed which is provided with an aeration and heat-carrying material; the agent then is fed upwardly through the heat-carrying material while being simultaneously dried, and then the agent is withdrawn together with the vortex gas from the fluidized bed. The agent is separated from the vortex gas in a successively switched separator, and is then fed to a further fluidized bed which is provided with a further aeration and heat-carrying material. The agent is fed in that further bed upwardly through the further heat-carrying material and is simultaneously regenerated. The agent is then discharged together with the further vortex gas from the further fluidized bed. The vortex gases which are withdrawn can be reused as mixing gases during the vortex gas generation.Type: GrantFiled: September 20, 1982Date of Patent: August 13, 1985Assignee: Bergwerksverband GmbHInventors: Juergen Klein, Peter Schulz
-
Patent number: 4471063Abstract: The present invention is directed to a method and sequence of processing steps within an apparatus arrangement comprising two separate fluidized relatively dense catalyst beds undergoing regeneration to remove carbonaceous deposits wherein catalyst particles are circulated between catalyst beds to transfer heat from one bed to another and transfer partially regenerated catalyst from one bed to a second heat generating catalyst bed, said catalyst regeneration system arranged to maintain a desired heat balanced temperature restriction less than 787.degree. C. (1450.degree. F.) and the generation of a CO.sub.2 rich flue gas with utilization thereof to achieve reaction with carbon form carbon monoxide under endothermic reaction temperature conditions.Type: GrantFiled: October 21, 1982Date of Patent: September 11, 1984Assignee: Ashland Oil, Inc.Inventor: William P. Hettinger