Generally Transverse (i.e., Lateral) Flow Of Oxygen Containing Gas Relative To Material Patents (Class 502/48)
  • Patent number: 8349753
    Abstract: An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: January 8, 2013
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Chris Santner, Eusebius Gbordzoe, Harvey McQuiston
  • Patent number: 8173567
    Abstract: Disclosed is a catalyst distributor and process for spreading catalyst over a regenerator vessel. Nozzles disposed angular to a header of the distributor spread catalyst throughout a full cross section of the catalyst bed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: May 8, 2012
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Lawrence A. Lacijan, Sujay R. Krishnamurthy, Mohammad-Reza Mostofi-Ashtiani, Paul S. Nishimura, Lisa M. Wolschlag
  • Patent number: 7951739
    Abstract: An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 31, 2011
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Chris Santner, Eusebius Gbordzoe, Harvey McQuiston
  • Patent number: 7906448
    Abstract: A combination of moving bed regeneration technology and CO oxidation technology is used in a novel moving bed regeneration apparatus containing an integral CO oxidation zone to solve the problem of regenerating a coke-containing catalyst that does not contain a CO oxidation promoter without generating an effluent flue gas stream containing hazardous and undesired amounts of CO. The CO oxidation zone is located in the flue gas collection zone within the moving bed regeneration apparatus and functions autogenously to eliminate the CO hazard by oxidizing CO to CO2 with a portion of the unreacted oxygen withdrawn from the coke combustion zone of the moving bed regeneration apparatus.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 15, 2011
    Assignee: UOP LLC
    Inventor: John J. Senetar
  • Patent number: 7745365
    Abstract: An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: June 29, 2010
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Chris Santner, Eusebius Gbordzoe, Harvey McQuiston
  • Patent number: 7291311
    Abstract: Process for controlling the combustion zone of a fluidized bed process comprising a regeneration zone and a reaction zone, the catalyst circulating between these two zones, and the regeneration zone comprising a combustion stage of the coke deposited on the catalyst in the reaction zone, control of the combustion zone being performed on the basis of a characteristic variable of the operation of said combustion zone, said characteristic variable being the object of automatic regulation by acting on the catalyst throughput, characterized in that the value of the catalyst throughput or of any control variable connected unequivocally to the catalyst is determined based on information on the operating values of the combustion zone, at least one of which corresponds to an independent evaluation of the level of coke deposited on the catalyst.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 6, 2007
    Assignee: Institut Francais du Petrole
    Inventor: Eric Sanchez
  • Patent number: 6306793
    Abstract: A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: October 23, 2001
    Assignee: Research Triangle Institute
    Inventors: Brian S. Turk, Raghubir P. Gupta
  • Patent number: 6239055
    Abstract: The invention concerns a process for regenerating a catalyst in a fixed or moving bed, for example a catalyst for reforming or for aromatic compound production, including a step for monitoring and controlling combustion completion which is carried out after the catalyst has undergone all of the combustion steps of the process. The monitoring and control step is carried out by injecting an oxygen-containing gas into the zone where monitoring and control takes place, the monitoring and control step being carried out under conditions which are more severe than those in the combustion steps. The monitoring and control step is carried out with an oxygen consumption of less than 10%. The temperature advantageously remains substantially constant. The vessel for carrying out the invention is also claimed.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: May 29, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Fran├žois-Xavier Brunet, Emmanuelle Bromet, Jean-Marie Deves, Dominique Humeau, Eric Sanchez
  • Patent number: 6133183
    Abstract: The invention concerns a process for regenerating a catalyst for the production of aromatic compounds, in particular for reforming, comprising combustion (A), oxychlorination (B) and calcining (C) steps, in which at least one chlorinating agent (conduit 19), at least one oxygen-containing gas (conduit 18), and water (conduit 20) are introduced into the oxychlorination step such that the H.sub.2 O/HCl molar ratio is 3 to 50, the oxychlorination step being carried out in the presence of an oxychlorination gas containing less than 21% of oxygen and at least 50 ppm by weight of chlorine (based on HCl), and at a temperature of 350-600.degree. C.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: October 17, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Marianne Capelle, Jean-Marie Deves, Frede ricfmann, Michel Thery
  • Patent number: 6114265
    Abstract: Disclosed is a process for controlling combustion in a fluid catalytic cracking regenerator. More specifically, afterburning which occurs during the combustion process is controlled by adjusting oxygen concentration in at least one of two combustion streams which is injected into a fluid catalytic cracking regenerator. Preferably, the combustion streams used in the invention are asymmetrically injected into a dense phase catalyst bed within the regenerator.
    Type: Grant
    Filed: March 15, 1994
    Date of Patent: September 5, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Todd R. Steffens, Paul K. Ladwig
  • Patent number: 5773378
    Abstract: A regenerator in a FCC unit, with the reactor elevated above the regenerator and a side entry spent catalyst introduction to the regenerator, is modified by installing a spent catalyst distribution apparatus along a central vertical axis of the regenerator to radially discharge the spent catalyst and 10-50 percent of the regeneration air into the dense phase of the catalyst. The existing compressor may be used to supply the regeneration air to the spent catalyst distributor. The remaining 50-90 percent of the regeneration air is supplied to the air distribution grid. The retrofit improves spent catalyst distribution and mixing in the regenerator to avoid dilute phase CO combustion or afterburning in the offgas.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: June 30, 1998
    Assignee: The M. W. Kellogg Company
    Inventors: Benjamin Karl Bussey, Philip E. Glasgow, Steven A. Kalota, Phillip K. Niccum
  • Patent number: 5376607
    Abstract: A semi-continuous process for combusting coke from catalyst particles in a fixed bed is improved by rejecting from the combustion process a high moisture content flue gas stream which is produced by the combustion of a relatively large proportion of the hydrogen in the coke that enters the combustion section during an early stage of combustion. By operating the early stage of combustion at conditions to increase the rate of combustion of the hydrogen in the coke relative to that of the carbon in the coke, the overall equilibrium level of water in a flue gas/recycle gas that circulates through the process is lowered. The high moisture content flue gas stream from the early stage of combustion is rejected separately from the process.
    Type: Grant
    Filed: February 11, 1993
    Date of Patent: December 27, 1994
    Assignee: UOP
    Inventor: Paul A. Sechrist
  • Patent number: 5004718
    Abstract: A process for calcining a sulfate-containing denitrating catalyst to reduce the sulfate content therein is provided. A plurality of catalyst units are arranged on a reticulating belt in a calcining furnace. The reticulate belt is continuously moving within the furnace. Fresh hot air is passed through the denitrating catalyst units in a first direction and then in a second direction. By controlling the rate of hot air flow, the content of sulfate group in the denitrating catalyst is reduced to about 4-7% by weight.
    Type: Grant
    Filed: August 21, 1989
    Date of Patent: April 2, 1991
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Nobuyoshi Ishida, Takashi Michimoto, Katsutaro Miyake, Toshio Ichige
  • Patent number: 4980325
    Abstract: A method for continuously or semi-continuously regenerating reforming catalyst by the recirculation of a gas stream advantageously controls the water content by using an oxygen-deficient makeup gas stream to supply the oxygen for combustion of coke. The volume of makeup gas entering the process is increased by reducing its oxygen concentration so that additional waste gases from the combustion of coke on the catalyst can be vented. The venting of additional gas from the circulating gas stream lowers the overall water concentration during the combustion of coke. The oxygen-deficient makeup gas stream can be supplied by oxygen and nitrogen separation from air. Where the production of the oxygen-deficient makeup gas stream also produces an oxygen-enriched stream, the oxygen-enriched stream is advantageously added to a catalyst reconditioning step for an increased dispersion of metals in the catalyst.
    Type: Grant
    Filed: June 12, 1989
    Date of Patent: December 25, 1990
    Assignee: UOP
    Inventor: Paul A. Sechrist
  • Patent number: 4977119
    Abstract: Method and apparatus for effecting treatment needed to regenerate spent hydrocarbon conversion catalyst. The invention may be termed a variable gas flow catalyst bed. Catalyst particles in a vertically-elongated movable bed are contacted with a hot oxygen-containing gas stream in order to remove, by means of combustion, coke which accumulated on the catalyst particles while they were used in a hydrocarbon conversion zone. The catalyst particles are confined in the bed by means of catalyst retention screens. The catalyst retention screens are configured such that gas flow through the bed varies from a maximum at the top of the bed to a minimum at the bottom of the bed. The variation in gas flow is accomplished by varying the size of gas flow apertures in the retention screens from a maximum at the top of the bed to a minimum at the bottom of the bed.
    Type: Grant
    Filed: November 16, 1989
    Date of Patent: December 11, 1990
    Assignee: UOP
    Inventor: William J. Koves
  • Patent number: 4859643
    Abstract: A method for regenerating coke-contaminated catalyst particles achieves better utilization of oxygen and minimizes surface area loss of the catalyst by confining particles in the combustion section of a regeneration zone to a tapered bed configuration. In this method, catalyst particles move through the regeneration zone in continuous or semi-continuous flow and are formed into a vertically elongated bed of particles in the regeneration zone. An oxygen-containing gas is passed through the particle bed in a transverse direction and initiates combustion of the coke deposits along a burn front that extends diagonally through the catalyst bed from the inlet surface of the bed to the outlet surface of the bed.
    Type: Grant
    Filed: May 11, 1988
    Date of Patent: August 22, 1989
    Assignee: UOP
    Inventors: Paul A. Sechrist, WIlliam J. Koves
  • Patent number: 4647549
    Abstract: A vessel for effecting multiple treatment steps needed to regenerate spent hydrocarbon conversion catalyst. Regeneration is accomplished by means of a moving bed of catalyst, where catalyst is passed through several treatment zones in the regeneration vessel. Catalyst is contacted with a hot oxygen-containing gas stream in order to remove coke which accumulates on the catalyst while it is in a hydrocarbon conversion zone. After the coke is burned off in a combustion zone, catalyst is passed into a drying zone for removal of water formed in the combustion zone which has remained on the catalyst instead of being carried off with combustion gases. Water removal is accomplished by passing a hot dry air stream through the catalyst. This air stream is introduced into the bottom of the regeneration vessel and is heated by exchange of heat with catalyst, thereby effecting the required cooling of the catalyst. Before passing into the drying zone, the air is heated further by heating means located in the vessel.
    Type: Grant
    Filed: December 27, 1985
    Date of Patent: March 3, 1987
    Assignee: UPO Inc.
    Inventor: Arthur R. Greenwood
  • Patent number: 4621069
    Abstract: Used catalyst containing carbon and sulfur deposits is continuously regenerated by staged burnoff of the carbon and sulfur using a multiple zone treatment vessel containing thin beds of catalyst. The catalyst is exposed to successively increased temperatures and oxygen concentrations to effectively remove substantially all the carbon and sulfur deposits. The used catalyst can be that removed from hydroconversion processes, such as from H-Oil, H-Coal and fluid catalystic cracking processes, and processed in a multizone treatment vessel in combination with proper auxiliary heating equipment for continuous step-wise regeneration of the catalyst. Operating conditions of catalyst temperature, oxygen concentration of gas, and catalyst residence time in each stage of the catalyst regeneration process are carefully controlled to provide staged burnoff of carbon and sulfur deposits for superior regenerated catalyst results.
    Type: Grant
    Filed: October 3, 1983
    Date of Patent: November 4, 1986
    Assignee: HRI, Inc.
    Inventor: Partha S. Ganguli
  • Patent number: 4578370
    Abstract: A method is disclosed for regenerating particulate catalyst used in a hydrocarbon conversion process such as catalytic reforming. The method is especially applicable to moving bed reactor systems. The catalyst being regenerated slowly moves downward as a dense bed which is contacted with different gas streams at different elevations within the regeneration zone. The invention involves employing a portion of relatively hot combustion gas as a heating gas stream, with the remainder of the combustion gas being cooled and recycled to the combustion zone. This eliminates the need to employ a heater to provide a suitable heating gas stream.
    Type: Grant
    Filed: April 25, 1985
    Date of Patent: March 25, 1986
    Assignee: UOP Inc.
    Inventor: Arthur R. Greenwood
  • Patent number: 4551437
    Abstract: A process and apparatus for the transportation and heating of granulated materials, particularly of solid particles of catalyst used for hydrocarbon conversion which must be activated or regenerated. The process comprises moving a bed of catalyst particles on travelling bands or floor plates passing through an elongate chamber and eventually inclined to the axis. The bands are subjected to vibrations imparting to said bed an unidirectional motion, and said bed on said bands being exposed to heating by means of electromagnetic radiations of a wave length range from 0.38 .mu.m to 50 mm.
    Type: Grant
    Filed: January 3, 1984
    Date of Patent: November 5, 1985
    Assignee: Eurecat-Europeene de Retraitement de Catalyseurs
    Inventor: Georges Berrebi