Miscellaneous Specific Techniques Of General Applicability Patents (Class 502/523)
  • Patent number: 8962508
    Abstract: The present invention provides a process for treating shaped catalyst bodies which has the following steps: a) providing finished shaped catalyst bodies, b) impregnating the finished shaped catalyst bodies with a peptizing auxiliary in an amount of liquid which does not exceed the theoretical water absorption of the shaped catalyst bodies, c) thermal treating the impregnated shaped catalyst bodies at from 50° C. to 250° C. and d) calcinating the thermally treated shaped catalyst bodies at from 250° C. to 600° C. A shaped catalyst body which has increased mechanical strength and can be produced by the process of the invention is also provided. The present invention relates to the use of the shaped catalyst bodies of the invention for preparing amines and also in fixed-bed reactors or fluidized-bed reactors and to a chemical synthesis process in the presence of shaped catalyst bodies according to the present invention.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 24, 2015
    Assignee: BASF SE
    Inventors: Thomas Heidemann, Claudia Özkozanoglu
  • Patent number: 8622224
    Abstract: Water filtration media having a charged material affixed directly to binder material used in the fabrication of the filter media. A microbiological interception enhancing agent is added to the binder directly. The media having a charged material and a microbiological interception enhancing agent both affixed directly on a binder material is then combined with core filter media and prepared as a filtration media. A filter is prepared from the treated filter media.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: January 7, 2014
    Assignee: KX Technologies, LLC
    Inventors: Jinwen Wang, Meedia A. Kareem, Richard D. Kendrick, Andrew W. Lombardo, Frank A. Brigano
  • Patent number: 8501665
    Abstract: The present invention provides a method for manufacturing a film catalyst, including forming a catalyst layer on one side or each side of a base material to obtain a film catalyst, bending the film catalyst, and optionally cutting the film catalyst, wherein the bending step is conducted by bending the film catalyst with a bending tool composed of two gears that are oppositely arranged as meshing each other while a protective material having a compressibility of 40 to 95% is inserted between the catalyst layer of the film catalyst and the two gears.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: August 6, 2013
    Assignee: Kao Corporation
    Inventors: Kunio Matsui, Masayasu Sato, Yoshimi Yamashita
  • Patent number: 8435920
    Abstract: Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) CexByB?zB?O?, wherein B=Ba, Sr, Ca, or Zr; B?=Mn, Co, and/or Fe; B?=Cu; 0.01<x<0.99; 0<y<0.6; 0<z<0.5; (b) Ce1-x-yNixByO2-*, wherein B=Zr, Ba, Ca, La, or K; 0.02<x<0.1; 0<y<0.1; and 0.02<*<0.15; and 1<?<2.2 and (c) coal ash either as a catalyst material itself or as a support for said unary or binary metal oxides.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: May 7, 2013
    Assignee: Eltron Research & Development, Inc.
    Inventors: James H. White, Erick J. Schutte, Sara L. Rolfe
  • Patent number: 7780946
    Abstract: The present invention relates to a supported catalyst system. The supported catalyst of the present invention comprises an inorganic support having attached to at least one surface thereof non-acidic, hydrophillic, hydroxyl-containing organic R10 groups having no or substantially no surface charge in solution, and at least one linker capable of binding a catalytic species, e.g. an enzyme or an organometallic molecule, wherein the linker is attached to a catalytic species. The R10 groups preferably are selected from the group consisting of —CH2OH, —CH(OH)2, —CH(OH)CH3, —CH2CH2OH, —CH(OH)2CH3, —CH2CH(OH)2, —CH(OH)CH2(OH) and mixtures thereof. The presence of the R10 groups on the support surface prevents or reduces non-specific binding of the catalytic species with the support surface by minimizing hydrophobic interactions and providing no or substantially no surface charge in the region of the support having catalytic species attached thereto.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: August 24, 2010
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Richard Franklin Wormsbecher
  • Patent number: 7122501
    Abstract: A description follows of a bimetallic catalyst, obtained by dispersing in sequence and alternating the precursors of the single metal components of the catalyst on a carrier, and a process for the synthesis of hydrogen peroxide by the direct reaction of hydrogen with oxygen, in a solvent medium containing a halogenated promoter and an acid promoter, in the presence of said catalyst.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: October 17, 2006
    Assignees: Eni S.p.A., Enichem S.p.A.
    Inventors: Giuseppe Paparatto, Rino D'Aloisio, Giordano De Alberti, Roberto Buzzoni
  • Patent number: 7002010
    Abstract: The instant invention discloses a process for the preparation of compounds of the formula I: wherein the general symbols are as defined in claim 1, which process comprises reacting a compound of formula II: wherein the general symbols are as defined in claim 1, with a compound of the formula III: wherein R5 is as defined in claim 1. The compounds of the formula II are new and useful as stabilizers for protecting organic materials, in particular synthetic polymers, reprographic materials or coating materials against oxidative, thermal or light-induced degradation.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: February 21, 2006
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Dario Lazzari, Mirko Rossi, Giuseppe Veronesi, Nazzareno Ruggeri, Katharina Fritzsche, Adalbert Braig
  • Patent number: 6790806
    Abstract: The core/jacket catalyst molding with a core made from an inorganic support material and with a jacket made from a catalytically active material can be prepared by coextruding an aqueous molding composition which comprises the support material or a precursor thereof, with an aqueous molding composition which comprises the catalytically active material or a precursor thereof, then drying the coextrudate, and then calcining the dried coextrudate.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: September 14, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Hesse, Rainer Anderlik, Hans-Gerhard Fritz, Jochen Hammer
  • Patent number: 6521564
    Abstract: A process for the modification of a hydrogenation catalyst of the Raney nickel, Raney cobalt, nickel-on-carrier or cobalt-on-carrier type, which process includes treating the hydrogenation catalyst at temperatures of about 0° C. to about 120° C. with carbon monoxide, carbon dioxide, formaldehyde, a lower aliphatic aldehyde, an aromatic aldehyde, an aliphatic ketone, an aromatic ketone, a mixed aliphatic/aromatic ketone, glyoxal, pyruvaldehyde or glyoxylic acid as the modification agent in a liquid dispersion medium consisting of water or an organic solvent for a duration of about 15 minutes to about 24 hours. When the thus-modified catalyst is used in the hydrogenation of a nitrile to the corresponding amine, the selectivity is increased, and significantly favors the amount of the primary amine vis-à-vis the undesired secondary amine in the hydrogenation product as compared to when the corresponding unmodified catalyst is employed.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: February 18, 2003
    Assignee: Roche Vitamins, Inc.
    Inventors: Oliver Gerald Degischer, Felix Roessler
  • Patent number: 6455465
    Abstract: A photocatalyst coated product having excellent photocatalytic functions including a decomposing function and a hydrophilic function achieved by forming on the surface of a product to be treated a titania layer as a photocatalyst having high hardness and high adhesion with the product to be treated, using an easy blasting treatment. The photocatalyst coated product has a decomposing function including deodorizing, antibacterial and soil-resisting actions, and also a hydrophilic function, which is provided by having a titania layer formed on the surface of a product to be treated by injecting a titanium or titanium alloy-containing powder against the surface of the product to be treated which is a metal product, a ceramic or a mixture of them.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: September 24, 2002
    Assignee: Fuji Kihan Co., Ltd.
    Inventor: Yoshio Miyasaka
  • Patent number: 6387248
    Abstract: A catalyst characterized by its ability to hydrotreat a charge hydrocarbon feed containing components boiling above 1000° F., and sediment-formers, sulfur, metals, asphaltenes, carbon residue, and nitrogen is prepared by mulling a porous alumina support with a salt of a Group VIII metal oxide and with a salt of a Group VI-B metal oxide in the presence of an acid to provide a mixture, by extruding the mixture to form an extrudate, by drying the extrudate and by subjecting the dried extrudate to hydrothermal calcination to provide the catalyst.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: May 14, 2002
    Assignee: Texaco Inc.
    Inventors: David Edward Sherwood, Jr., Pei-Shing Eugene Dai
  • Publication number: 20020000397
    Abstract: A catalyst characterized by its ability to hydrotreat a charge hydrocarbon feed containing components boiling above 1000° F., and sediment-formers, sulfur, metals, asphaltenes, carbon residue, and nitrogen is prepared by mulling a porous alumina support with a salt of a Group VIII metal oxide and with a salt of a Group VI-B metal oxide in the presence of an acid to provide a mixture, by extruding the mixture to form an extrudate, by drying the extrudate and by subjecting the dried extrudate to hydrothermal calcination to provide the catalyst.
    Type: Application
    Filed: November 6, 1997
    Publication date: January 3, 2002
    Inventors: DAVID EDWARD SHERWOOD JR., PEI-SHING EUGENE DAI
  • Publication number: 20010049332
    Abstract: A catalyst composition and process for preparing such catalyst composition which can be useful in contacting a hydrocarbon-containing fluid which contains a highly unsaturated hydrocarbon such as 1,3-butadiene, in the presence of hydrogen, with such catalyst composition in a hydrogenation zone under a hydrogenation condition effective to hydrogenate such highly unsaturated hydrocarbon to a less unsaturated hydrocarbon such as n-butene is disclosed. Such process for preparing a catalyst composition includes (1) combining a zeolite, a Group VIB metal, and an inorganic support to form a modified zeolite; (2) calcining such modified zeolite under a calcining condition to produce a calcined, modified zeolite; and (3) contacting such calcined, modified zeolite with a carburizing agent under a carburizing condition to provide such catalyst composition.
    Type: Application
    Filed: December 5, 2000
    Publication date: December 6, 2001
    Applicant: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6325919
    Abstract: A catalyst carrier composed of a refractory inorganic oxide has a rotationally symmetrical shape having a hollow portion, such as a doughnut shape. An outer peripheral surface and the inner peripheral surface separating the hollow portion are linked by curved surfaces, and the height h of the carrier along the rotational symmetry axis is less than the outer diameter Do of the carrier. Using a catalyst having this carrier shape for a fixed bed makes it possible to prevent granular substances from causing catalyst plugging, and catalyst life can be extended because the catalyst-induced differential pressure increase is low even when granular substances accumulate on the catalyst. It is also possible to prevent the reaction fluid from undergoing channeling. Also provided is a hydrogenation reactor whose fixed bed is packed with the catalyst.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: December 4, 2001
    Assignee: Japan Energy Corportion
    Inventors: Hiroki Koyama, Kenji Nakamura, Masayuki Kawaguchi, Yasuyuki Mashimo
  • Patent number: 6169214
    Abstract: A coated catalyst which consists of a hollow cylindrical carrier and a catalytically active oxide material applied to the outer surface of the carrier, the applied catalytically active oxide material being applied in a coat thickness of from 10 to 1000 &mgr;m, and having a specific catalytic surface area of from 20 to 30 m2/g and an abrasion of <10, preferably <5, particularly preferably <0.5, % by weight in the turntable abrasion test.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: January 2, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Peter Weidlich, Gerd Linden
  • Patent number: 6124229
    Abstract: Disclosed is a process for preparing a supported metallocene catalyst by introducing, in a first stage, a gas stream comprising an organoaluminum compound, an inert support material and water, into a first gas phase reactor; allowing the mixture to react under conditions effective to form an aluminoxane supported on said inert support material; metering a second gas stream comprising a metallocene into said gas phase reactor; allowing said mixture to react under conditions effective to form a supported metallocene catalyst; and drying, in a second stage, said supported metallocene catalyst, wherein said drying is carried out in a gas phase reactor.
    Type: Grant
    Filed: August 22, 1996
    Date of Patent: September 26, 2000
    Assignee: Witco GmbH
    Inventors: Ralf-Jurgen Becker, Rainer Rieger
  • Patent number: 6046343
    Abstract: Improved methods and apparatus for manufacture of maleic anhydride by catalytic oxidation of n-butane or other hydrocarbon having four carbon atoms in a straight chain over a fixed catalyst bed comprising a phosphorus vanadium oxide catalyst. Movement of catalyst bodies with respect to each other and with respect to the walls of the reaction chamber is restrained so as to prevent the catalyst bodies from abrading against each other or the reactor chamber walls in a manner that would cause formation of catalyst fines. Methods and apparatus are also provided for removal of fines from a fixed catalyst bed. The methods of the invention are effective to prevent loss of catalyst from a tubular reactor, and to control degradation of solvent absorbent in a process in which maleic anhydride is separated from the reaction gas by absorption into such a solvent.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: April 4, 2000
    Assignee: Huntsman Petrochemical Corporation
    Inventors: Michael J. Mummey, Robert A. Keppel, A. Lamar Reeves
  • Patent number: 5922818
    Abstract: The present invention relates to a process for introducing a solid catalyst into a gas-phase olefin polymerization reactor. It comprises in particular storing the catalyst in the form of a dry powder in a hopper, withdrawing from the hopper a measured amount of the said catalyst, introducing the said amount of the catalyst and a liquid hydrocarbon into a mixing chamber, mixing the said catalyst with the said liquid hydrocarbon so as to form in the said chamber a suspension of the entrained catalyst with the said liquid hydrocarbon, and introducing the said suspension into the said reactor. In a preferred form, the liquid hydrocarbon is continuously introduced into the chamber and forms a continuous stream to which is added the measured amount of the catalyst and which flows into the reactor.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: July 13, 1999
    Assignee: BP Chemicals Limited
    Inventor: Frederic Robert Marie Michel Morterol
  • Patent number: 5910608
    Abstract: A coated catalyst which consists of a hollow cylindrical carrier and a catalytically active oxide material applied to the outer surface of the carrier, the applied catalytically active oxide material being applied in a coat thickness of from 10 to 1000 .mu.m, and having a specific catalytic surface area of from 20 to 30 m.sup.2 /g and an abrasion of <10, preferably <5, particularly preferably <0,5, % by weight in the turntable abrasion test. The catalyst is useful in the preparation of acrylic acid by the gas phase oxidation of acroleins.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: June 8, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Peter Weidlich, Gerd Linden
  • Patent number: 5879715
    Abstract: A process and system for the production of inorganic nanoparticles by precipitating the inorganic nanoparticles by a precipitating agent from a microemulsion with a continuous and a non-continuous phase; and concentrating the precipitated nanoparticles employing an ultrafiltration membrane.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: March 9, 1999
    Assignee: CeraMem Corporation
    Inventors: Richard J. Higgins, Robert L. Goldsmith
  • Patent number: 5872074
    Abstract: Leached nanocrystalline materials having a high specific surface are particularly useful for storing hydrogen or as catalysts or electrocatalysts in the manufacture electrodes, especially for fuel cells. Such materials can be manufactured by preparing a nanocrystalline material consisting of a metastable composite or alloy of at least two different chemical elements. To be nanocrystalline, this material must have a crystalline structure with the grain size lower than 100 nm. Then, the so prepared nanocrystalline material can be subjected to a leaching treatment in order to eliminate partially or totally one of the elements of the composite or alloy. This leaching results in nanocrystalline materials having a porous structure and, thereby, the requested high specific surface.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: February 16, 1999
    Assignee: Hydro-Quebec
    Inventors: Robert Schulz, Guy Lalande, Jacques Huot, Marie-Chantal Denis, Guoxian Liang, Andre Van Neste, Daniel Guay, Jean-Pol Dodelet
  • Patent number: 5840260
    Abstract: Dangers of catalyst removal are decreased while the efficiency of the process is increased by provision of a new nozzle. The nozzle is two concentric pipes connected at one end, with the inner pipe extending slightly beyond the outer pipe at the other end. The outer pipe has orifices provided at the connected end which communicate with the exterior of the outer pipe and the space between the inner and outer pipes. A vacuum is pulled on the inner pipe which, in turn, causes gas to enter the space between the inner and outer pipes via the orifices. As the gas sweeps around the end of the inner pipe, it entrains catalyst particles and carries the particles into the inner pipe. The inner pipe extends beyond the reaches of the outer pipe to a distance such that the angle formed between the ends of the inner and outer pipes is approximately equal to the angle of repose of the catalyst.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: November 24, 1998
    Assignee: Shell Oil Company
    Inventors: Thomas Peyton Easterly, William Ogle Jones
  • Patent number: 5753585
    Abstract: Provided are a catalyst packing method and a catalyst packing apparatus with which a desired packed density can be easily and surely obtained by use of a suspended type catalyst ejector, wherein correlated data giving a scattering height from which a desired packed density can be obtained has been determined and stored beforehand in a memory part 74, and by setting a desired packed density, prior to the scattering of catalyst, a selecting part 75 selects a scattering height corresponding to the desired packed density from the correlated data in the memory part 74 and delivers the same to an adjusting part 76 which controls the catalyst ejector 30 so as to obtain this scattering height, thereby the catalyst bed 11 in a reaction tower 10 can be packed at the desired packed density.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: May 19, 1998
    Assignee: Idemitsu Engineering Co., Ltd.
    Inventor: Yoshitaka Minami
  • Patent number: 5690836
    Abstract: A method of removing a catalyst, particularly Raney nickel, from a catalytic reaction product, particularly a hydrogenation reaction product, by passing the catalytic reaction product containing the solid catalyst through a hollow tubular filter medium which comprises a nonwoven web of fibers, has a tapered pore distribution such that the pore size of the filter medium decreases in the direction of normal fluid flow, and is backwashable.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: November 25, 1997
    Assignee: Pall Corporation
    Inventors: Matthew Raskin, James R. Gallagher
  • Patent number: 5677261
    Abstract: A catalyst which consists of a carrier and a catalytically active oxide material applied to the surface of the carrier is prepared by a process in which the carrier is first moistened with, as an adhesive liquid, an aqueous solution of an organic substance boiling at above 100.degree. C. at atmospheric pressure and a layer of active oxide material is then bonded to the surface of the moistened carrier by bringing it into contact with dry, finely divided active oxide material and the adhesive liquid is then removed from the moistened carrier coated with active oxide material.
    Type: Grant
    Filed: November 24, 1995
    Date of Patent: October 14, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Peter Weidlich, Gerd Linden
  • Patent number: 5607893
    Abstract: A method for the uniform loading of catalyst tubes with catalyst particles, which tubes are mounted at tube inlet side in a tube sheet, the method comprises introducing a feedstream of catalyst particles on the tubesheet in a number of substreams with a substantial equal particle flow and velocity by dividing the feedstream and each resulting substream into at least two streams in two or more dividing steps.
    Type: Grant
    Filed: December 2, 1994
    Date of Patent: March 4, 1997
    Assignee: Haldor Tops.o slashed.e A/S
    Inventor: Ebbe J. Diekmann
  • Patent number: 5466646
    Abstract: A process for the preparation of solid state materials such as catalysts, electrolytes, piezo electric materials and superconductors is disclosed. The process produces materials with high phase purity. Novel solid state materials having high phase purity are also disclosed.
    Type: Grant
    Filed: August 18, 1992
    Date of Patent: November 14, 1995
    Assignee: Worcester Polytechnic Institute
    Inventor: William R. Moser
  • Patent number: 5378672
    Abstract: A system for combining the components of a multi-component catalyst system comprising at least four chambers with flow passageway means connecting the chambers in series. The catalyst components can include a transition metal, an electron donor and a co-catalyst, which are sequentially mixed together in the course of formulating a Ziegler-type system to be charged to an olefin polymerization reactor. The passages between the second and third chambers have valves. Each of the second and fourth chambers is provided with an inlet opening separate from the interconnecting flow passages and a vent opening separate from the inlet openings and the interconnecting flow passages. The chamber also has an outlet opening. This system also has flushing inlet passages for each of the four chambers which are connected to a manifold adapted to be connected to a source of nitrogen.
    Type: Grant
    Filed: March 4, 1992
    Date of Patent: January 3, 1995
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Patent number: 5012027
    Abstract: A novel catalytic composite and a process for its use is disclosed. The catalyst composite comprises a first component selected from Group IA and Group IIA elements of the Periodic Table of the Elements, a second component selected from iridium, and osmium, or mixtures thereof, a third component selected from the elements of Group IVA of the Periodic Table of the Elements, platinum, and a support having a nominal dimension (d) of from 50 to 10,000 microns. The catalytic composite is characterized in that both the second component and platinum are surface-impregnated upon the support, with the concentration gradient of the second component being steeper than that of platinum. The second component is eggshell surface-impregnated.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: April 30, 1991
    Assignee: UOP
    Inventors: Hayim Abrevaya, Tamotsu Imai
  • Patent number: 4880764
    Abstract: A novel catalytic composite and a process of its use is disclosed. The catalyst comprises a platinum group metal component, a first modifier component selected from Group IA and IIA elements of the Periodic Table, a second modifier components selected from the group of elements consisting of palladium, iridum, and osmium, and a third modifier component selected from the elements of Group IVA of the Peridoic Table of the Elements. All of the catalytic components are located on a refractory oxide support having a nominal diameter (d) of from 50 to 1000 microns. The catalytic composite is characterized in that the second modifier component is surface-impregnated upon the support in such a manner that the average concentration of the surface-impregnated second modifier component on the outside 0.2d micron catalyst layer is at least 2 times the average concentration of the second modifier component in 0.
    Type: Grant
    Filed: December 23, 1988
    Date of Patent: November 14, 1989
    Assignee: UOP
    Inventors: Tamotsu Imai, Hayim Abrevaya
  • Patent number: 4804796
    Abstract: Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
    Type: Grant
    Filed: April 8, 1987
    Date of Patent: February 14, 1989
    Assignee: California Institute of Technology
    Inventors: Taylor G. Wang, Daniel D. Elleman, Mark C. Lee, James M. Kendall, Jr.
  • Patent number: 4786625
    Abstract: A novel catalytic composite comprising a platinum group metal component; a modifier metal component selected from the group consisting of a tin component, germanium component, rhenium component and mixtures thereof; an optional alkali or alkaline earth metal component or mixtures thereof, an optional halogen component, and an optional catalytic modifier component on a refractory oxide support having a nominal diameter of at least about 850 microns. The distribution of the platinum group metal component is such that the platinum group component is surface-impregnated where substantially all of the platinum group metal component is located at most within a 400 micron exterior layer of the support. The effective amount of the modifier metal component is uniformly dispersed throughout the refractory oxide support.
    Type: Grant
    Filed: December 11, 1987
    Date of Patent: November 22, 1988
    Assignee: UOP Inc.
    Inventors: Tamotsu Imai, Hayim Abrevaya, Jeffery C. Bricker, Deng-Yang Jan
  • Patent number: 4716143
    Abstract: A novel catalytic composite comprising a platinum group metal component; a modifier metal component selected from the group consisting of a tin component, germanium component, rhenium component and mixtures thereof; an alkali or alkaline earth metal component or mixtures thereof, an optional halogen component, and an optional catalytic modifier component on a refractory oxide support having a nominal diameter of at least about 850 microns. The distribution of the platinum group metal component is such that the platinum group component is surface-impregnated where substantially all of the platinum group metal component is located at most within a 400 micron exterior layer of the support. The effective amount of the modifier metal component may be uniformly impregnated throughout the refractory oxide support, surface-impregnated, or located in any other appropriate fashion.
    Type: Grant
    Filed: February 25, 1987
    Date of Patent: December 29, 1987
    Assignee: UOP Inc.
    Inventor: Tamotsu Imai
  • Patent number: 4714692
    Abstract: A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.
    Type: Grant
    Filed: April 3, 1986
    Date of Patent: December 22, 1987
    Assignee: UOP Inc.
    Inventors: Hayim Abrevaya, William M. Targos
  • Patent number: 4650778
    Abstract: Metal halide particles useful, among other things, as olefin polymerization catalyst precursors and catalyst supports are prepared by vaporizing the metal halide and then condensing it in the presence of a diluent.
    Type: Grant
    Filed: January 18, 1985
    Date of Patent: March 17, 1987
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Ulrich Klabunde, Rolf Mulhaupt
  • Patent number: 4483940
    Abstract: A method for the manufacture of a honeycomb carrier of enhanced resistance to thermal shocks, which method comprises applying a coat of water-soluble high-molecular organic compound to the surface of a ceramic honeycomb carrier of monolithic construction and subsequently depositing a catalyst component on the resultant coated carrier.
    Type: Grant
    Filed: December 20, 1982
    Date of Patent: November 20, 1984
    Assignee: Nippon Shokubai Kagaku Kogyo Co., Ltd.
    Inventors: Tetsuji Ono, Shoichi Ichihara, Tomohisa Ohata, Sadao Terui
  • Patent number: 4452911
    Abstract: Activated bauxite particulate material having usual nominal particle size range of 20-50 mesh (U.S. Sieve Series) is treated by fluidization in an upflowing gas so as to attrite the particles and stabilize the particle shape and size, thereby making the catalyst more uniform in shape and resistent to attrition in subsequent ebullated bed reactor operations. The treated activated bauxite catalyst material is then rescreened to provide a narrower differential size range having a particle equivalent diameter ratio range for large to small particles of about 1.4-2.0, and a preferred 20-30 mesh (U.S. Sieve Series) particle size range. The selected pretreated catalyst is then introduced into the ebullated bed reactor of a hydrodemetallization process for hydrocarbon feedstocks containing high metals concentration.
    Type: Grant
    Filed: August 10, 1983
    Date of Patent: June 5, 1984
    Assignee: HRI, Inc.
    Inventors: Richard M. Eccles, Allen S. U. Li, Shyy-Jong D. Lin, Virginia A. Malik, Michael C. Chervenak