Magnetic Field Sensing System Or Device (e.g., Squid, Etc.) Patents (Class 505/162)
  • Patent number: 5420100
    Abstract: A planar SQUID magnetometer for detection and measurement of an applied magnetic flux is disclosed wherein a planar microwave-resonant element overlaps a Josephson device incorporated in a high-T.sub.c superconducting, thin-film SQUID device, thereby providing inductive coupling between the planar microwave-resonant element and the SQUID device. When the microwave-resonant element is excited by incident high-frequency microwave radiation, the intensity of reflected microwave radiation varies in response to a magnetic flux applied to the SQUID device in accordance with non-linear oscillatory behavior of the microwave-resonant element due to inductive loading by the SQUID device. The microwave-resonant element and the SQUID device are preferably fabricated photolithographically on a single substrate.
    Type: Grant
    Filed: April 5, 1991
    Date of Patent: May 30, 1995
    Assignee: Northeastern University
    Inventors: Carmine Vittoria, Allan Widom, Yizhou Huang, Hoton How
  • Patent number: 5418512
    Abstract: This invention provides a superconducting magnetic shield and a magnetic shielding apparatus including the same, thereby accurately measuring an extremely weak magnetic field such an magnetoencephalographic waves by reducing the influence of magnetic field of the earth or magnetic noises.
    Type: Grant
    Filed: December 9, 1992
    Date of Patent: May 23, 1995
    Assignees: Mitsui Kinzoku Kogyo Kabushiki Shisha, Rikagaku Kenkyusho
    Inventors: Hiroshi Ohta, Masakazu Aono, Kazuhiko Kato, Kazutomo Hoshino, Hidefusa Takahara, Tomonobu Nakayama, Eiichi Sudoh
  • Patent number: 5347143
    Abstract: A superconducting tunnel element, having a plurality of super conductors separated by barriers, the superconductors each comprising two physically separate but electrically connected superconducting layers and one insulated control layer. As a result, summation of the detection capacity or of the transmitting intensity becomes possible. Also, the simultaneous detection or transmission is permitted on arbitrary different frequencies or a summation of the signal intensity is possible in the case of SQUID-systems.
    Type: Grant
    Filed: August 9, 1993
    Date of Patent: September 13, 1994
    Assignee: Dornier Luftfahrt GmbH
    Inventor: Hehrwart Schroder
  • Patent number: 5326986
    Abstract: A physical configuration for a parallel multi-junction superconducting quantum interference device that can be used for a variety of applications involving the detection of magnetic flux, including applications where it is desired to measure the absolute magnitude of the flux. The device of this invention features a novel geometry for a multi-junction interference device which significantly enhances the flux-to-voltage transfer function, thereby yielding a significant improvement in the device sensitivity in its use in a magnetometer, gradiometer, or other applications.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: July 5, 1994
    Assignee: University of Houston - University Park
    Inventors: John H. Miller, Jr., Terry D. Golding, Jaiming Huang
  • Patent number: 5313074
    Abstract: In a Josephson device which can be employed as a sensor including superconductor for measuring an extremely weak magnetic field, a Josephson junction consisting of superconducting material is formed, and a covering layer consisting of ordinary conducting metal or semiconductor is formed on the Josephson junction. This enables the Josephson junction to be isolated from the oxidized atmosphere. Further, the covering layer is not to present any deterioration such as cracks even upon being subjected to a thermal hysteresis from very low temperature to ordinary temperature.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: May 17, 1994
    Assignee: Osaka Gas Company Limited
    Inventors: Itsuro Tamura, Satoshi Fujita, Masao Wada