Electric Discharge Tube Patents (Class 505/200)
  • Patent number: 11953570
    Abstract: An NMR measuring arrangement (20) includes a cryostat (1), a superconducting magnet coil system (2) and an NMR probe (3). The cryostat has an evacuated vacuum container (5) and forms a bore (10). A wall (12) of the bore delimits the vacuum container. The cryostat forms only one evacuated gap (13) in a space (18) between the magnet coil system and the wall of the bore. At least a segment of the wall of the bore is thermally coupled to a heat sink of the cryostat. As a result, the NMR measurement arrangement provides more precise NMR measurements (in particular with a higher spectral resolution and/or a higher signal-to-noise ratio) on measurement samples.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: April 9, 2024
    Assignee: BRUKER SWITZERLAND AG
    Inventor: Patrick Wikus
  • Patent number: 10015917
    Abstract: A magnetic field shielding system includes a first stage superconducting coil and a second stage superconducting coil. The first stage superconducting coil and the second stage superconducting coil are coaxial, coplanar and electrically connected in series to form a closed loop; the first stage superconducting coil has a first radius R1, the second stage superconducting coil has a second radius R2, and R1>R2; a radius ratio ? between the first radius R1 and the second radius R2 is: ?=R1/R2; the first stage superconducting coil has N1 turns; the second stage superconducting coil has N2 turns; a turns ratio ? between N1 and N2 is: ?=N1/N2; and the radius ratio ? satisfies: ??2; the turns ratio ? satisfies: 0.01???20.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: July 3, 2018
    Assignee: Tsinghua University
    Inventors: Chen Gu, Si-Wei Chen, Ti-Ming Qu, Zheng-He Han
  • Patent number: 8951936
    Abstract: Provided is a method of manufacturing a superconducting accelerator cavity in which a plurality of half cells having opening portions (equator portions and iris portions) at both ends thereof in an axial direction are placed one after another in the axial direction, contact portions where the corresponding opening portions come into contact with each other are joined by welding, and thus, a superconducting accelerator cavity is manufactured, the half cells to be joined are arranged so that the axial direction thereof extends in a vertical direction; and concave portions that are concave towards an outer side are also formed at inner circumferential surfaces located below the contact portions of the half cells positioned at a bottom; and the contact portions are joined from outside by penetration welding.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: February 10, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsuya Sennyu, Hiroshi Hara, Takehisa Okuda
  • Publication number: 20140371076
    Abstract: The invention relates to a magnet structure for a superconducting isochronous cyclotron for use in particle therapy. The cyclotron according to the invention is using two sets of three or more superconducting sector coil elements for generating an azimuthally varying magnetic field across the acceleration region. In this way, high-field (e.g. above 4 T) isochronous cyclotrons are provided which do not suffer the problem of a low flutter amplitude.
    Type: Application
    Filed: February 1, 2013
    Publication date: December 18, 2014
    Inventor: Yves Jongen
  • Patent number: 8903464
    Abstract: An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.
    Type: Grant
    Filed: October 23, 2010
    Date of Patent: December 2, 2014
    Assignee: Jefferson Science Associates, LLC
    Inventors: Ganapati Rao Myneni, John P. Wallace
  • Patent number: 8883690
    Abstract: A superconducting accelerating cavity production method with which a high-quality superconducting accelerating cavity can be produced with a compact device configuration and at low cost. The method of producing a superconducting accelerating cavity (1) includes arranging, in an axial direction (L), a plurality of half-cells (5) having openings at both ends in the axial direction and joining the openings to one another by welding. The half-cells (5) are joined by welding with a laser beam from the inside of the superconducting accelerating cavity (1) in which a vacuum atmosphere is created.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Katsuya Sennyu
  • Publication number: 20140087953
    Abstract: A cyclotron for ion acceleration is magnetically shielded during ion acceleration by passing electrical current in the same direction through both the first and second superconducting primary coils. A first magnetic-field-shielding coil is on the same side of the mid plane as the first superconducting primary coil, while a second magnetic-field-shielding coil is on the same side of the midplane as the second superconducting primary coil and beyond the outer radius of the second superconducting primary coil. Electrical current is also passed through the magnetic-field-shielding coils in a direction opposite to the direction in which electrical current is passed through the superconducting primary coils and generates a canceling magnetic field that reduces the magnetic field generated at radii from the central axis beyond the magnetic-field-shielding coils.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 27, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Peisi Le, Alexey L. Radovinsky, Phillip C. Michael, Timothy A. Antaya
  • Patent number: 8630689
    Abstract: Provided is a superconducting accelerator cavity and a method thereof with which product reliability can be enhanced and manufacturing costs can be reduced. A method of manufacturing a superconducting accelerator cavity includes a beam-pipe forming stage of forming a beam pipe by processing a superconducting material into a tube shape; an end-plate joining stage of joining, by welding, an inner circumferential surface of an end plate formed in a shape of a ring that forms an end of a jacket, which accommodates coolant, to an outer circumferential portion of an end in the beam pipe formed in the beam-pipe forming stage; and an end-cell joining stage of joining, by welding, an iris portion of an end cell, which is formed of a superconducting material in a shape of a ring so as to form a cavity portion, to an inner circumferential portion of the end of the beam pipe.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: January 14, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsuya Sennyu, Hiroshi Hara
  • Publication number: 20130012394
    Abstract: Provided is a superconducting accelerator cavity and a method thereof with which product reliability can be enhanced and manufacturing costs can be reduced. A method of manufacturing a superconducting accelerator cavity includes a beam-pipe forming stage of forming a beam pipe by processing a superconducting material into a tube shape; an end-plate joining stage of joining, by welding, an inner circumferential surface of an end plate formed in a shape of a ring that forms an end of a jacket, which accommodates coolant, to an outer circumferential portion of an end in the beam pipe formed in the beam-pipe forming stage; and an end-cell joining stage of joining, by welding, an iris portion of an end cell, which is formed of a superconducting material in a shape of a ring so as to form a cavity portion, to an inner circumferential portion of the end of the beam pipe.
    Type: Application
    Filed: May 10, 2011
    Publication date: January 10, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsuya Sennyu, Hiroshi Hara
  • Publication number: 20100087323
    Abstract: The present invention is a method of enhancing efficacy of electrical apparatuses by using the augmented velocity electrons.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 8, 2010
    Inventor: Alexander Yabrov
  • Patent number: 6936771
    Abstract: Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 30, 2005
    Assignee: Southwire Company
    Inventors: Uday K. Sinha, Jerry Tolbert
  • Patent number: 5532210
    Abstract: Periodic and pseudo-periodic slow wave structures comprising a plurality of adjacent sections, each section comprising a dielectric ring in contact with a disk coated with high temperature superconducting thin film, having coupling between the sections and tunable phase velocity for use in particle accelerators and traveling wave tubes are disclosed.
    Type: Grant
    Filed: June 8, 1994
    Date of Patent: July 2, 1996
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Zhi-Yuan Shen
  • Patent number: 5348934
    Abstract: A cathode for a secondary emission structure comprised of a superconductive material is described. In one embodiment the cathode comprises a layer of a superconductive material such as yttrium barium cupric oxide, or rare earth substituted neodymium cupric oxides. The layer may be bonded to a metal electrode or preferably the cathode consist of a superconductive or conductive oxide. The use of a superconductive material provides a cathode having suitable secondary emission characteristics and, furthermore, which being conductive at room temperatures, as well as, temperatures of operation of the cathode, obviating the need for a use of a very thin film of a secondary emission material.
    Type: Grant
    Filed: September 9, 1991
    Date of Patent: September 20, 1994
    Assignee: Raytheon Company
    Inventor: Beverley A. Shaw