Noncoiled Hollow Magnetic Arrangement Patents (Class 505/213)
  • Patent number: 8916834
    Abstract: A closed plasma channel (“CPC”) superconductor which, in a first embodiment, is comprised of an elongated, close-ended vacuum conduit comprising a cylindrical wall having a longitudinal axis and defining a transmission space for containing an ionized gas of vapor plasma (hereinafter “plasma components”), the plasma components being substantially separated into regionalized channels parallel to the longitudinal axis in response to a static magnetic field produced within the transmission space. Each channel is established along the entire length of the transmission space. At least one channel is established comprised primarily of free-electrons which provide a path of least resistance for the transmission of energy therethrough. Ionization is established and maintained by the photoelectric effect of a light source of suitable wavelength to produce the most conductive electrical transmission medium.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 23, 2014
    Assignee: Glenn Lane Family Limited Liability Limited Partnership
    Inventor: Glenn E. Lane
  • Patent number: 8754383
    Abstract: A closed plasma channel (“CPC”) superconductor which, in a first embodiment, is comprised of an elongated, close-ended vacuum conduit comprising a cylindrical wall having a longitudinal axis and defining a transmission space for containing an ionized gas of vapor plasma (hereinafter “plasma components”), the plasma components being substantially separated into regionalized channels parallel to the longitudinal axis in response to a static magnetic field produced within the transmission space. Each channel is established along the entire length of the transmission space. At least one channel is established comprised primarily of free-electrons which provide a path of least resistance for the transmission of energy therethrough. Ionization is established and maintained by the photoelectric effect of a light source of suitable wavelength to produce the most conductive electrical transmission medium.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 17, 2014
    Assignee: Glenn Lane Family Limited Liability Limited Partnership
    Inventor: Glenn E. Lane
  • Patent number: 8368033
    Abstract: A closed plasma channel (“CPC”) superconductor which, in a first embodiment, is comprised of an elongated, close-ended vacuum conduit comprising a cylindrical wall having a longitudinal axis and defining a transmission space for containing an ionized gas of vapor plasma (hereinafter “plasma components”), the plasma components being substantially separated into regionalized channels parallel to the longitudinal axis in response to a static magnetic field produced within the transmission space. Each channel is established along the entire length of the transmission space. At least one channel is established comprised primarily of free-electrons which provide a path of least resistance for the transmission of energy therethrough. Ionization is established and maintained by the photoelectric effect of a light source of suitable wavelength to produce the most conductive electrical transmission medium.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: February 5, 2013
    Inventor: Glenn Lane
  • Patent number: 7900343
    Abstract: A group of magnetic strands are configured into a minimal number of solid magnetized toroidal rings with a conical magnetization direction and then aligned, stacked and assembled into a magic sphere magnetic structure. Each magnetized toroidal ring has predetermined dimensions to form the inner and outer surfaces of a spherical shell. The present invention also encompasses a magic sphere magnetic device with unsegmented solid magnetized toroidal rings and methods for assembling a magic sphere by stacking magnetized toroidal rings with a conical magnetic direction.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: March 8, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Herbert A. Leupold
  • Patent number: 6897749
    Abstract: A superconducting magnetic energy storage (SMES) device including a first coil made of superconducting material, a cooling mechanism for cooling the first coil to superconducting temperatures, a second coil inductively coupled to the first coil for inputting emergy to, and/or outputting energy from, the first coil, and a switch for switching the first coil between a superconducting condition and a non-superconducting condition. The first coil is arranged as a closed loop electric circuit having no connecting device mechanically connected to it for inputting or outputting energy. The switch includes a third coil for the application or removal of a magnetic field for switching the first coil between its non-superconducting and superconducting conditions. A method inputs energy to and/or outputs energy from the first coil and a power supply system utilizes the device and method.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: May 24, 2005
    Assignee: ABB AB
    Inventors: Tomas Jonsson, Karin Thorburn, Udo Fromm, Peter Hessling, Arne Gustafsson, Christian Sasse, Pan Min, Mikael Dahlgren
  • Patent number: 6809910
    Abstract: A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: October 26, 2004
    Assignee: SuperPower, Inc.
    Inventors: Xing Yuan, Drew Willard Hazelton, Michael Stephen Walker
  • Patent number: 5612291
    Abstract: A superconductive device for helping shield magnetic field comprises at least two members; a layer containing superconductive oxide over each of said members; means for connecting said members to form a substrate; and means for connecting said layers containing superconductive oxide along a joint in which said members are connected.
    Type: Grant
    Filed: April 20, 1994
    Date of Patent: March 18, 1997
    Assignee: NGK Insulators, Ltd.
    Inventors: Shoji Seike, Hideki Shimizu, Makoto Tani
  • Patent number: 5541563
    Abstract: A trapped flux, iron structure, which prevents bunching of interior flux es during an application of a field force, is provided. This iron structure includes a plurality of elongate identical subassemblies, each subassembly having a rod composed of a soft ferromagnetic material and each rod having a superconductive sheath.
    Type: Grant
    Filed: January 11, 1995
    Date of Patent: July 30, 1996
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Herbert A. Leupold
  • Patent number: 5525583
    Abstract: A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.
    Type: Grant
    Filed: February 7, 1994
    Date of Patent: June 11, 1996
    Assignee: American Superconductor Corporation
    Inventors: Dawood Aized, Robert E. Schwall
  • Patent number: 5379020
    Abstract: In the case of high-temperature superconductors (6) which are used as inductive current limiters, unless any special precautionary measure is taken, there is a risk that short-circuit currents can lead to local stress centers and hot spots, and to local destruction of the high-temperature superconductor. In order to avoid this, a hollow cylinder (SL) of the high-temperature superconductor (6) is coated with a 1 .mu.m thick conductive-silver layer (E1). A second 10 .mu.m thick metal layer of foil made of silver or aluminum can be deposited thereon. In order to reduce or to avoid tensile stresses in the ceramic of the hollow cylinder (SL) made of a high-temperature superconductor, and in order to reduce the electrical contact resistance of the metal layers, this hollow cylinder (SL) has a mechanical reinforcing element (7), made of an elastic steel wire, wound around it, at room temperature, under tensile stress.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: January 3, 1995
    Assignee: ABB Research Ltd.
    Inventors: Jurg Meier, Willi Paul
  • Patent number: 5359149
    Abstract: A superconductive device for helping shield magnetic field comprises at least two members; a layer containing superconductive oxide over each of the members; connecting component for connecting the members to form a substrate; and connecting element for connecting the layers containing superconductive oxide along a joint in which the members are connected.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: October 25, 1994
    Assignee: NGK Insulators, Ltd.
    Inventors: Shoji Seike, Hideki Shimizu, Makoto Tani
  • Patent number: 5310705
    Abstract: High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.
    Type: Grant
    Filed: January 4, 1993
    Date of Patent: May 10, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Fred Mitlitsky, Ronald W. Hoard
  • Patent number: 5306701
    Abstract: A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.
    Type: Grant
    Filed: February 28, 1991
    Date of Patent: April 26, 1994
    Assignee: California Institute of Technology
    Inventors: Ulf E. Israelsson, Donald M. Strayer