Having Plural Superconducting Wire Or Superconducting Fiber Component (e.g., Multifilament Wire, Etc.) Patents (Class 505/231)
  • Patent number: 9859046
    Abstract: A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: January 2, 2018
    Assignee: Fermi Research Alliance, LLC
    Inventor: Tengming Shen
  • Patent number: 9741472
    Abstract: Provided are a method for manufacturing MgB2 superconductor by pressure molding a mixture of Mg powder or MgH2 powder and B powder and heat-treating the mixture, the method including (I) a step of adding a polycyclic aromatic hydrocarbon to the B powder, while heating the mixture to a temperature higher to or equal to the melting point of the polycyclic aromatic hydrocarbon at the time of this addition, and thereby covering the surface of the B powder with the polycyclic aromatic hydrocarbon; and (II) a step of mixing the B powder having the surface covered with the polycyclic aromatic hydrocarbon, with the Mg powder or the MgH2 powder, or a step of combining the B powder having the surface covered with the polycyclic aromatic hydrocarbon, with an Mg rod; and an MgB2 superconducting wire which has high critical current density (Jc) characteristics and less fluctuation in the critical current density (Jc).
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: August 22, 2017
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hiroaki Kumakura, Akiyoshi Matsumoto, Shujun Ye
  • Patent number: 9564258
    Abstract: A coated conductor comprises a substrate supporting a ReBCO superconductor adapted to carry current in a superconducting state. The superconductor is characterized in having peaks in critical current (Jc) of at least 0.2 MA/cm2 in a magnetic field of about 1 Tesla when the field is applied normal to the surface of the superconductor and when the field is applied parallel to the surface of the superconductor, and further characterized in that the superconductor includes horizontal defects and columnar defects in a size and an amount sufficient to result in the said critical current response. The conductor is characterized in that the ratio of the height of the peaks in the Jc is in the range from 3:1 with the ratio of the field perpendicular (0 degrees) to the field parallel (+/?90 degrees) to the range from 3:1 with the ratio of the field parallel to the field perpendicular.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: February 7, 2017
    Assignee: Superconductor Technologies, Inc.
    Inventor: Jeong-Uk Huh
  • Patent number: 9042951
    Abstract: In an intermediate connecting unit 50 of superconducting cables, by forming the connecting superconducting wires 101 in a trapezoid shape tapered in the direction of the electric insulating layer 113 (the superconducting shield layers 114) sides from the large radius section 213a side of the reinforcement insulating layer 213, the inclined surface sections 213b can be covered without spaces and without the plurality of connecting superconducting wires overlapping. The plurality of connecting superconducting wires 101 cover the inclined surface sections 213b of the reinforcement insulating layer 213 formed thicker than the radius of the cable cores 11 of the superconducting cables 10. The connecting superconducting wires 101 further connects the superconducting wires 10 arranged on the outer periphery of the large radius section 213a of the reinforcement insulating layer 213 and the superconducting wires 100 constituting the superconducting shield layers 114.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: May 26, 2015
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Tomoya Nomura, Masashi Yagi, Takaharu Mitsuhashi, Jun Teng
  • Patent number: 9037203
    Abstract: A composite barrier-type Nb3Al superconducting multifilament wire material comprises Nb barrier filaments, Ta barrier filaments, Nb bulk dummy filaments, and a Nb or Ta covering. In the composite barrier-type Nb3Al superconducting multifilament wire material, the Nb barrier filaments and Ta barrier filaments are disposed in the wire material so that the Nb barrier filaments are concentrated in a filament region near a core formed from the Nb bulk dummy filaments and only the Ta barrier filaments are disposed or the Nb barrier filaments are dispersed in the Ta barrier filaments in an outer layer portion formed from a region outside the Nb barrier filaments, excluding the Nb or Ta covering.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: May 19, 2015
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Nobuya Banno, Takao Takeuchi
  • Publication number: 20150111756
    Abstract: Superconducting cables employ one or more superconducting tapes wound around a former. A compact superconducting cable is configured using a former having a small diameter, e.g., less than 10 millimeters. A flexible superconducting cable is configured with a former made of a flexible material. Superconducting tape conductors are wound around the former, with the superconducting layer in compression on the inside of the wind turns of the wind, to prevent irreversible damage to the superconductor. A layer of solder is on the superconducting tape(s) or solder sheaths are wound between tape conductors in each layer. The one or more solder layers or sheaths are melted to cause the solder to flow within the structure, to bond some or all of the superconducting tape conductors together and form a mechanically strong cable with an enhanced level of electrical connectivity between tapes in the cable.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventor: Daniel Cornelis van der Laan
  • Patent number: 9006576
    Abstract: A superconductive cable which has a cryostat with two concentric metal pipes where the cryostat has at least a first axial section with a first axial spring constant, and at least a second axial section which has a second axial spring constant which at most is 20%, more preferred at most 10%, of the axial spring constant of the first section.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 14, 2015
    Assignee: Nexans
    Inventors: Mark Stemmle, Rainer Soika
  • Publication number: 20150080225
    Abstract: In an intermediate connecting unit 50 of superconducting cables, by forming the connecting superconducting wires 101 in a trapezoid shape tapered in the direction of the electric insulating layer 113 (the superconducting shield layers 114) sides from the large radius section 213a side of the reinforcement insulating layer 213, the inclined surface sections 213b can be covered without spaces and without the plurality of connecting superconducting wires overlapping. The plurality of connecting superconducting wires 101 cover the inclined surface sections 213b of the reinforcement insulating layer 213 formed thicker than the radius of the cable cores 11 of the superconducting cables 10. The connecting superconducting wires 101 further connects the superconducting wires 10 arranged on the outer periphery of the large radius section 213a of the reinforcement insulating layer 213 and the superconducting wires 100 constituting the superconducting shield layers 114.
    Type: Application
    Filed: February 6, 2013
    Publication date: March 19, 2015
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Tomoya Nomura, Masashi Yagi, Takaharu Mitsuhashi, Jun Teng
  • Patent number: 8938278
    Abstract: Superconducting cables employ one or more superconducting tapes wound around a former. A compact superconducting cable is configured using a former having a small diameter, e.g., less than 10 millimeters. A flexible superconducting cable is configured with a former made of a flexible material. Superconducting tape conductors are wound around the former, with the superconducting layer in compression on the inside of the wind turns of the wind, to prevent irreversible damage to the superconductor. A layer of solder is on the superconducting tape(s) or solder sheaths are wound between tape conductors in each layer. The one or more solder layers or sheaths are melted to cause the solder to flow within the structure, to bond some or all of the superconducting tape conductors together and form a mechanically strong cable with an enhanced level of electrical connectivity between tapes in the cable.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: January 20, 2015
    Assignee: The Regents of the University of Colorado
    Inventor: Daniel Cornelis van der Laan
  • Patent number: 8914087
    Abstract: In a method or joint for joining first and second semiconductor wires, each comprising a number of filaments which each comprise a superconductive core within a respective sheath, the filaments being embedded within a matrix and wherein the superconductive cores comprise magnesium diboride and the sheaths comprise niobium, over a certain length a matrix is removed to expose the filaments. The exposed filaments are immersed in molten tin such that the nobium of the sheaths is converted to niobium-tin throughout a thickness of the sheaths. A superconductive path is provided between the superconductive cores of filaments of the first wire through the niobium-tin sheaths of the filaments to the superconductive cores of the second wire.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: December 16, 2014
    Assignee: Siemens PLC
    Inventor: Simon James Calvert
  • Patent number: 8880135
    Abstract: The present invention is configured such that, in a low AC loss oxide superconductor constituted by providing an oxide superconducting layer 6 on a substrate 1, said oxide superconducting layer 6 is separated into a plurality of filament conductors 2 in parallel to the lengthwise direction of said substrate 1 by dividing grooves 3 plurally formed in the widthwise direction of said substrate, and a high-resistance oxide 8 is formed in said dividing grooves 3. Because of the invention, it is possible to increase the insulation properties of individually divided mated filament conductors, and to obtain an oxide superconductor that has low AC loss.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: November 4, 2014
    Assignees: Railway Technical Research Institute, International Superconductivity Technology Center, the Juridical Foundation, Kyushu University, National University Corporation
    Inventors: Kenji Suzuki, Saburo Hoshi, Junko Matsuda, Teruo Izumi, Yuh Shiohara, Masataka Iwakuma
  • Publication number: 20140302997
    Abstract: A superconducting cable for power lead and transmission applications is disclosed. The high performance power cable comprises two type of different superconducting cable structures arranged co-axially, and the magnetic fields of their transport currents mutually enhance their performances. A further object is a power distribution cable that minimizes the cryogenic losses by a design of the compact cable cross-sections.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 9, 2014
    Inventor: Makoto Takayasu
  • Publication number: 20140296077
    Abstract: A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 2, 2014
    Inventor: Tengming Shen
  • Publication number: 20140274726
    Abstract: A method for producing a composite superconductor includes: a structure forming process of forming a structure including a metal covering member (20) including at least one to-be-joined portion, a superconductor (30) arranged inside the metal covering member, and a reinforcing member (40) arranged between the superconductor (30) and the at least one to-be-joined portion; and a joining process of joining thereafter the at least one to-be-joined portion.
    Type: Application
    Filed: September 4, 2012
    Publication date: September 18, 2014
    Applicants: INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION NATIONAL INSTITUTES OF NATURAL SCIENCES, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masahiro Sugimoto, Hirokazu Tsubouchi, Hitoshi Shimizu, Toshiya Okada, Toshirou Sakai, Kazuya Takahata, Hitoshi Tamura, Toshiyuki Mito
  • Patent number: 8838194
    Abstract: In a method or joint for joining first and second semiconductor wires, each comprising a number of filaments which each comprise a superconductive core within a respective sheath, the filaments being embedded within a matrix and wherein the superconductive cores comprise magnesium diboride and the sheaths comprise niobium, over a certain length a matrix is removed to expose the filaments. The exposed filaments are immersed in molten tin such that the nobium of the sheaths is converted to niobium-tin throughout a thickness of the sheaths. A superconductive path is provided between the superconductive cores of filaments of the first wire through the niobium-tin sheaths of the filaments to the superconductive cores of the second wire.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: September 16, 2014
    Assignee: Siemens PLC
    Inventor: Simon James Calvert
  • Patent number: 8805462
    Abstract: A process applies a polymer to at least one individual conductor of a high-temperature superconductor (HTS) composite in the manner of a Roebel conductor. The at least one individual conductor includes a substrate and a superconducting layer. Particles are applied to the individual conductor. Then, a thermal treatment is performed which results in partial or complete melting of the particles and, after cooling, in a polymer layer on the individual conductor.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: August 12, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Tabea Arndt
  • Publication number: 20140221215
    Abstract: A precursor for a Nb3Sn superconductor wire to be manufactured by the internal diffusion method, includes a plurality of Nb-based single core wires, each of which includes a Nb-based core coated with a Cu-based coating including a Cu-based matrix, a plurality of Sn-based single core wires, each of which includes a Sn-based core coated with a Cu-based coating including a Cu-based matrix; and a cylindrical diffusion barrier including Ta or Nb, in which the plurality of Nb-based single core wires and the plurality of Sn-based single core wires are regularly disposed, wherein the plurality of Nb-based single core wires include Nb-based single core wires having a Cu/Nb ratio of 0.4 or more, wherein the Cu/Nb ratio is a cross sectional area ratio of the Cu-based coating to the Nb-based core.
    Type: Application
    Filed: September 9, 2013
    Publication date: August 7, 2014
    Applicant: SH Copper Products Co., Ltd.
    Inventors: Yoshihide Wadayama, Katsumi Ohata, Kazuhiko Nakagawa, Morio Kimura
  • Patent number: 8798697
    Abstract: An arrangement with a superconductive electrical direct current cable system is specified which includes at least one direct current transmission element (4) composed of two phase conductors which are insulated relative to each other, and a cryostat suitable for conducting a cooling agent, in which the direct current cable system is arranged. The cryostat is composed of at least one metal pipe which is surrounded by a circumferentially closed layer with thermally insulating properties. Each of the two phase conductors (5,6) is composed of several superconductive elements (9) which are combined into a unit. Between the two phase conductors (5,6) is mounted a separating layer (7) of insulating material, and the two phase conductors (5,6), including the separating layer (7) are surrounded by a sheath (8) of insulating material for forming a direct current transmission element (4).
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: August 5, 2014
    Assignee: Nexans
    Inventors: Mark Stemmle, Erik Marzahn
  • Publication number: 20140100118
    Abstract: A device and method for continuously forming superconducting wire, and products made therefrom. The method may include providing at least one continuous metal sheathing strip and at least one metal form, continuously forming the at least one continuous metal sheathing strip to form a partially open configuration, continuously filling the partially open configuration with magnesium diboride precursor comprising boron, and a metal form, and closing the partially open configuration thereby enclosing the magnesium diboride precursor comprising boron, and a metal form, to form a closed configuration. Subsequent reduction in diameter and elongation in length of the closed configuration, followed by heat treatment, catalyzes the transformation of the magnesium diboride precursor comprising boron, and the metal form, to magnesium diboride to form the superconducting wire.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 10, 2014
    Applicant: HYPER TECH RESEARCH, INC.
    Inventors: David D. Doll, Michael J. Tomsic, Matthew Rindfleisch, Chee June Thong, Hoong Pak Jinji Yue, Trent Wieber, Justin Wells
  • Publication number: 20140100117
    Abstract: A method for producing a superconducting wire (10), wherein an internal wire (1), which contains superconducting filaments (4), is provided with a normally conducting stabilizing structure (9), is characterized in that, in a continuous or quasi-continuous process, one or more sheath elements (2; 2a, 2b) are shaped and/or placed around the internal wire (9), so that the entire circumference of the internal wire (1) is enclosed by one or more sheath elements (2; 2a, 2b), and all seams (6; 6a, 6b; 16; 16a, 16b) of sheath element ends (5a-5d; 15a-15d) facing each other are soldered and/or welded. A method for producing a superconducting wire is thereby provided, which restricts the cross section of the superconducting wire to a lesser extent and which permits the use of lead-free solder.
    Type: Application
    Filed: September 19, 2013
    Publication date: April 10, 2014
    Inventors: Burkhard Prause, Manfred Thoener, Andreas Szulczyk
  • Patent number: 8688182
    Abstract: A superconductive electric cable is provided in which a cable core is arranged in a cryostat, where the cable core is composed of three phase conductors arranged concentrically around an inner cooling duct, with an electric insulation arranged between the phase conductors, and where the cryostat is surrounded by an electric insulation, which is surrounded by a neutral conductor of normally conductive materials. In this cable, a neutral conductor or a screening is arranged only outside of the cryostat, and is formed by normally conductive material which surrounds the cryostat as a common neutral conductor, where an insulating material is arranged between this neutral conductor and the cryostat.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: April 1, 2014
    Assignee: Nexans
    Inventors: Rainer Soika, Mark Stemmle
  • Patent number: 8682406
    Abstract: A high temperature superconductor structure including: a substrate on which at least one buffer layer is deposited, a superconductor layer on the buffer layer, the superconducting layer composed of superconductor material that forms at least two substantially parallel superconductor filaments that continuously extend along the length of the substrate wherein at least two superconductor filaments are separated from each other by at least one insulating strip wherein the insulating strip continuously extends along the length of the substrate and is composed of insulating material with a resistivity greater than about 1 m?cm. Also disclosed are methods of producing high temperature superconductors.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 25, 2014
    Assignees: University of Houston System, Superpower, Inc.
    Inventors: Venkat Selvamanickam, Senthil Sambandam
  • Patent number: 8670809
    Abstract: Adaptations and improvements to tubular metal powder filters include employing cross sectional geometries of any suitable shape, aligning the inner conductor off-axis, replacing the inner conductive wire with a conductive trace or a superconductive trace carried by a printed circuit board, combining multiple filters within a single common outer conductive housing, and employing meandering and other non-parallel signal paths. The various adaptations and improvements are designed to accommodate single-ended and differential signaling, as well as superconducting and non-superconducting applications.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 11, 2014
    Assignee: D-Wave Systems Inc.
    Inventors: Murray C. Thom, Sergey Uchaykin, Thomas Mahon, David Pires, Peter Spear, Jacob Craig Petroff
  • Patent number: 8655424
    Abstract: A superconductive electric cable is provided at least one superconductive conductor having strips or wires, which are wound in at least one layer around a carrier constructed as a pipe. The pipe is elastically deformable in a radial direction with changeable diameters and has a gap extending in a straight line along a circumferential line of the pipe over its entire length.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: February 18, 2014
    Assignee: Nexans
    Inventors: Rainer Soika, Frank Schmidt
  • Publication number: 20140038828
    Abstract: In a method or joint for joining first and second semiconductor wires, each comprising a number of filaments which each comprise a superconductive core within a respective sheath, the filaments being embedded within a matrix and wherein the superconductive cores comprise magnesium diboride and the sheaths comprise niobium, over a certain length a matrix is removed to expose the filaments. The exposed filaments are immersed in molten tin such that the nobium of the sheaths is converted to niobium-tin throughout a thickness of the sheaths. A superconductive path is provided between the superconductive cores of filaments of the first wire through the niobium-tin sheaths of the filaments to the superconductive cores of the second wire.
    Type: Application
    Filed: December 9, 2011
    Publication date: February 6, 2014
    Applicant: SIEMENS PLC
    Inventor: Simon James Calvert
  • Patent number: 8600465
    Abstract: There is provided a superconductive cable wherein an efficiency of an electric power transmission is increased to a maximum and the superconductive cable is miniaturized by strengthening a longitudinal magnetic field in a superconductive material.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: December 3, 2013
    Assignee: Kyushu Institute of Technology
    Inventor: Teruo Matsushita
  • Publication number: 20130316909
    Abstract: A composite barrier-type Nb3Al superconducting multifilament wire material comprises Nb barrier filaments, Ta barrier filaments, Nb bulk dummy filaments, and a Nb or Ta covering. In the composite barrier-type Nb3Al superconducting multifilament wire material, the Nb barrier filaments and Ta barrier filaments are disposed in the wire material so that the Nb barrier filaments are concentrated in a filament region near a core formed from the Nb bulk dummy filaments and only the Ta barrier filaments are disposed or the Nb barrier filaments are dispersed in the Ta barrier filaments in an outer layer portion formed from a region outside the Nb barrier filaments, excluding the Nb or Ta covering.
    Type: Application
    Filed: January 13, 2012
    Publication date: November 28, 2013
    Inventors: Nobuya Banno, Takao Takeuchi
  • Patent number: 8532725
    Abstract: A method of controlling fault currents within a utility power grid is provided. The method may include coupling a superconducting electrical path between a first and a second node within the utility power grid and coupling a non-superconducting electrical path between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path may be electrically connected in parallel. The superconducting electrical path may have a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path may have a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: September 10, 2013
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 8521242
    Abstract: A superconductive cable with a central superconductive conductor (1), a surrounding dielectric (3) and a surrounding superconductive return conductor (4). The central conductor (1) is formed from a single ribbon carrying superconductive material into a tube with a longitudinal extending slot (2) with the two edges of the ribbon abutting to each other. A ribbon (14) made of semiconductive material is wound around the central conductor (1) with at least one layer.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: August 27, 2013
    Assignee: NEXANS
    Inventor: Frank Schmidt
  • Patent number: 8437819
    Abstract: Superconductor cable having a plurality of flat, tape-shaped ribbon superconductor wires assembled to form a stack having a rectangular cross section, the stack having a twist about a longitudinal axis of the stack. Multiple superconductor cables including twisted stacked-cables of the flat-tape-shaped superconductor wires, and power cable comprising the twisted flat-tape stacked cables are disclosed. Superconducting power cable disposed within and separated from an electrical insulator with a space passing cryo-coolant between the superconducting cable and insulator is also disclosed.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 7, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Makoto Takayasu, Joseph V. Minervini, Leslie Bromberg
  • Patent number: 8433381
    Abstract: The arrangement method of superconducting wires of a superconducting cable, includes: in a case where a refrigerator is installed at one of terminal structures provided on both sides of a superconducting cable, and a cooling fluid is passed through the superconducting cable by a pump for cooling, setting the numbers of superconducting wires of sections of the superconducting cable installed between the terminal structures on both the sides to be different depending to temperatures of the sections, wherein the numbers of superconducting wires are increased from the section of the superconducting cable having the lowest temperature to the section thereof having the highest temperature while maintaining a current-carrying capability.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 30, 2013
    Assignee: LS Cable Ltd.
    Inventors: Chang Youl Choi, Su Kil Lee, Choon Dong Kim, Hyun Man Jang, Keun Tae Lee, Seok Hern Jang, Yang Hoon Kim
  • Publication number: 20130090245
    Abstract: A superconducting joint that electrically joins superconducting wires has a block of thermally and electrically conductive material that is coated with an electrically isolated coating that covers at least a part of a surface of the block. Molded semiconducting joint material is provided in contact with the electrically isolating coating. Superconducting filaments of the superconducting wires are embedded within the molded superconducting joint material.
    Type: Application
    Filed: June 13, 2011
    Publication date: April 11, 2013
    Applicant: Siemens PLC
    Inventor: Michael Simpkins
  • Publication number: 20130053250
    Abstract: An Nb3Sn superconductor wire is manufactured by heating a precursor for an Nb3Sn superconductor wire. The precursor includes a Cu tube made of Cu or Cu-alloy, assemblies, each of which includes Nb filaments disposed in the Cu tube, and each of the Nb filaments includes an Nb core made of Nb or Nb-alloy. Each of the assemblies also includes Sn filaments disposed in the Cu tube, and each of the Sn filaments includes a Sn core made of Sn or Sn-alloy. The precursor also includes reinforcing filaments disposed in the Cu tube for dividing the assemblies such that the assemblies are not adjacent to each other. By heating the precursor, Sn in the Sn core is diffused into the Nb core to produce Nb3Sn.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: HITACHI CABLE, LTD.
    Inventors: Katsumi OHATA, Yoshihide WADAYAMA, Kazuhiko NAKAGAWA, Morio KIMURA
  • Patent number: 8385994
    Abstract: There is provided a superconducting joint for electrically connecting a first multifilamentary superconducting wire including a plurality of first superconducting filaments embedded in a first stabilizer matrix and a second multifilamentary superconducting wire including a plurality of second superconducting filaments embedded in a second stabilizer matrix.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 26, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Motomune Kodama, Tsuyoshi Wakuda
  • Patent number: 8369912
    Abstract: A superconducting cable (1; 10; 30) has a channel (4, 38) for a cooling liquid, a tubular support structure (5, 37), at least two layers (2, 3; 11-15; 31, 32, 35, 36) comprising high Tc conductors (2a, 3a) which comprise a high Tc material, and an insulation (7, 17), in particular a tubular insulation (7). The conductors (3a) of the outer layer (3; 13-15; 33, 36) comprise a first high Tc material that is different from a second high Tc material of the conductors (2a) of the inner layer (2; 11-12; 32, 35), wherein the first high Tc material exhibits lower AC losses as compared the second high Tc material, and that the high Tc conductors (3a) of the outer layer (3; 13-15; 33, 36) comprise normal-conducting interruptions (41, 42, 43). The superconducting cable exhibits reduced AC losses.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: February 5, 2013
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 8340737
    Abstract: A current lead (1) for connecting a superconducting load system (5), in particular, a magnet coil, to a current feed point (3a) that is at a higher temperature than the load system (5) comprises a flat, elongated carrier (6) and a plurality of mechanical and electrical parallel high-temperature superconductors (HTSC) (10), wherein the HTSCs (10) are disposed side by side on the carrier (6). The carrier (6) is made of stainless steel, and a plurality of HTSCs (10) are each disposed side by side on two opposite carrier (6) sides of the carrier. The carrier (6) is constituted in the shape of a plate with cut-outs (15; 15a-15d). The current lead has a high current capacity and low thermal conductivity and provides improved emergency conduction properties in case of failure of the superconductivity in the HTSC.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 25, 2012
    Assignee: Bruker HTS GmbH
    Inventors: Tabea Arndt, Martin Munz, André Aubele, Bernd Sailer
  • Patent number: 8332005
    Abstract: A superconducting electrical cable is specified, which is surrounded by a cryostat (3), which comprises two concentric metallic tubes (4, 5) which enclose thermal insulation between them and is used to carry a cooling medium. The cable has at least one superconductor (1), which is composed of superconducting material, as well as a normal electrical conductor (7), which is composed of normally conductive material and is electrically conductively connected to the superconductor. The normal conductor (7) is arranged outside of but resting on the cryostat (3).
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 11, 2012
    Assignee: Nexans
    Inventors: Frank Schmidt, Rainer Solka
  • Patent number: 8309495
    Abstract: A method is specified for production of a superconducting electrical conductor which has a ceramic material as the superconducting material. A metal ribbon is formed around a multiplicity of flat strips of a mount which is coated with the superconducting ceramic material, running longitudinally to form a tube having a slot which runs in the longitudinal direction, and whose edges which rest on one another on the slot are welded to one another The tube which is closed by the welding process is then reduced to a diameter which corresponds approximately to the envelopes of all the strips which are located in the tube.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 13, 2012
    Assignee: Nexans
    Inventors: Rainer Soika, Dipl.˜Ing Frank Schmidt
  • Patent number: 8290555
    Abstract: A superconducting wire having at least a superconducting thin film and a stabilizing film formed one on top of another in order on a substrate having a predetermined width and a predetermined length, the superconducting wire having at least one cut made along a direction of the length of the superconducting wire, the superconducting wire being bendable at the cut in a width direction.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 16, 2012
    Assignees: The Furukawa Electric Co., Ltd., International Superconductivity Technology Center, the Juridical Foundation, National University Corporation Yokohama National University
    Inventors: Masashi Yagi, Shinichi Mukoyama, Yuh Shiohara, Teruo Izumi, Naoyuki Amemiya
  • Publication number: 20120245034
    Abstract: A low AC-loss multi-filament superconducting wire material of the invention includes an elongated base material, an intermediate layer formed on the base material; a superconducting layer formed on the intermediate layer, and a metal stabilizing layer formed on the superconducting layer, wherein a plurality of grooves extending along a long direction of the base material is formed in parallel in a width direction of the base material, and reach the intermediate layer from the metal stabilizing layer via the superconducting layer to expose the intermediate layer; and a difference ?d (=d1?d2) between a width d1 of the grooves at a lower part of the superconducting layer and a width d2 of the grooves at a lower part of the metal stabilizing layer is not more than 10 ?m.
    Type: Application
    Filed: April 26, 2012
    Publication date: September 27, 2012
    Applicants: FUJIKURA LTD., INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER
    Inventors: Takato MACHI, Hiroshi TOBITA, Yasuo TAKAHASHI, Keiichi TANABE, Teruo IZUMI
  • Patent number: 8265722
    Abstract: Disclosed is a superconducting wire and a method for manufacturing the same, in which spacer are inserted into each space formed between modules, the spacers being different kinds according to a shape of each space when a restacking billet is manufactured in an internal diffusion method for manufacturing a Nb3Sn superconducting wire. One of a copper spacer and a low tin/copper spacer having a sectional area rate of copper/tin more than 6.0 is arranged between three modules as well as between two modules and a diffusion preventing tube, and a high tin/copper spacer having a sectional area rate of copper/tin less than 0.01˜1.5 or a middle tin/copper spacer having a sectional area rate of copper/tin less than 1.5˜6.0 is arranged between four modules.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: September 11, 2012
    Assignee: K.A.T. Co., Ltd.
    Inventors: Pyeong-Yeol Park, Kyeong-Ho Jang
  • Patent number: 8263531
    Abstract: Under one aspect, a laminated, spliced superconductor wire includes a superconductor joint, which includes (i) first and second superconductor wires, each wire including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer; and (ii) a conductive bridge, the conductive bridge including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer, wherein the cap layer of the conductive bridge is in electrically conductive contact with a portion of the cap layer of each of the first and second superconductor wires through an electrically conductive bonding material. The spliced wire also includes (b) a stabilizer structure surrounding at least a portion of the superconductor joint, wherein the superconductor joint is in electrical contact with the stabilizer structure; and (c) a substantially nonporous electrically conductive filler, wherein the filler substantially surrounds the superconductor joint.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 11, 2012
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Eric R. Podtburg
  • Patent number: 8260387
    Abstract: A superconducting article is provided which includes a superconducting tape assembly. The superconducting tape assembly includes a superconducting tape layer, having one or more superconducting tapes, and a high-permeability magnetic material layer coupled to the superconducting tape layer. The high-permeability magnetic material layer includes a high-permeability magnetic material which remains magnetically soft at a critical temperature Tc of the superconducting tape, and with presence of an ac magnetic field acting on the superconducting tape assembly, re-magnetizes to divert at least a portion of a normal component of the ac magnetic field therethrough, which reduces ac loss in the superconducting tape layer by modifying the ac magnetic field distribution within the superconducting tape of the superconducting tape layer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: September 4, 2012
    Assignee: Superpower, Inc.
    Inventor: Maxim Martchevskii
  • Publication number: 20120220465
    Abstract: The invention provides a MgB2 superconductive wire which is long and has a high critical current density. The invention provides a manufacturing method of a superconductive wire in which a magnesium or a magnesium alloy is reacted with a magnesium boride expressed by MgBx (x=4, 7, 12) by carrying out a heat treatment. A superconductive wire is characterized by the magnesium boride expressed by the MgBx (x=4, 7, 12) is included in a part.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 30, 2012
    Inventors: Kazuhide TANAKA, Yasuo Kondo, Tsuyoshi Wakuda
  • Patent number: 8253024
    Abstract: In a method and apparatus for joining a number of superconductive cables to establish electrical connection therebetween, a cup-like member having a base, a sidewall, and an opening to receive electrically conductive ends of said cables is provided. The base of the cup-like member is attached to a holder device. The holder device is attached to a cryogenically cooled surface. The ends of the superconductive cables are connected together within the cup-like member.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: August 28, 2012
    Assignee: Siemens PLC
    Inventors: Neil John Belton, Simon James Calvert, Raymond Hornsby, Marcel Jan Márie Kruip
  • Patent number: 8244323
    Abstract: A method of manufacturing a superconducting tape wire, wherein a reduction in critical current in the superconducting tape wire and the effective AC loss are suppressed. To manufacture the superconducting tape wire, the filaments filled with superconducting material powder and having a flat elliptic or rectangular cross section are disposed in a pipe having a shape whose sides in a pressing direction have a smaller length than adjacent sides, and then the pipe is compressed in the short-side direction to form the pipe in a tape shape.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: August 14, 2012
    Assignee: Chubu University Educational Foundation
    Inventor: Sataro Yamaguchi
  • Patent number: 8238991
    Abstract: A precursor wire of an oxide superconducting wire includes a first sheath made of silver or silver alloy, a center portion in the first sheath, and a plurality of peripheral segments placed close to one another at the inside of the first sheath so as to surround the center portion. Each of the peripheral segments is formed as a monofilamentary segment that has an arch-shaped cross section and that includes a ribbon-shaped filament made of a precursor of an oxide superconductor and covered with a second sheath made of silver or silver alloy. The multiple peripheral segments are placed in a multilayer state in the form of concentric circles such that wide-width surfaces of the peripheral segments surround the center portion.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: August 7, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Naoki Ayai
  • Patent number: 8238990
    Abstract: A superconducting joint that structurally binds a first superconducting segment to a second superconducting segment. The first and second superconducting segment each include corresponding areas containing a granular superconducting substance formed by a first element and a second element. The superconducting joint includes a solid non-superconducting binding formed from a source of the first element and a source of the second element combined to produce the granular superconducting substance around the solid non-superconducting binding to permit for the flow of superconducting current through the first superconducting segment and the second superconducting segment.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 7, 2012
    Assignee: ASG Superconductors, S.p.A.
    Inventor: Davide Nardelli
  • Patent number: 8227089
    Abstract: A method of producing a Nb3Sn superconducting wire rod includes forming a wire rod comprising Nb, Sn and Cu, and having a mole ratio of the Sn expressed as ax+b(1?x), where 0.25?x?0.8, 0.3?a?0.4 and 0.02?b?0.1, and x and 1?x are prescribed as a mole ratio of the Nb and a mole ratio of the Cu, respectively, to a total of a mole number of the Nb and a mole number of the Cu, and heating the wire rod to produce Nb3Sn from the Sn and the Nb. By the heating of the wire rod, a Cu—Sn alloy is produced from the Sn and the Cu, concurrently with the Nb3Sn produced from the Sn and the Nb.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 24, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Katsumi Ohata, Masahiro Seido, Morio Kimura
  • Publication number: 20120149579
    Abstract: A precursor for a Nb3Sn superconductor wire to be manufactured by the internal diffusion method. The precursor includes Nb-based single core wires, Sn-based single core wires, and a cylindrical diffusion barrier made of Ta or Nb. Each Nb-based single core wire includes a Nb-based core coated with a Cu-based coating made of a Cu-based matrix. Each Sn-based single core wire includes a Sn-based core coated with a Cu-based coating made of a Cu-based matrix. The Nb-based single core wires and the Sn-based single core wires are regularly disposed in the diffusion barrier. The Nb-based single core wires includes at least two kinds of Nb-based single core wires having different Cu/Nb ratios and the Cu/Nb ratio is a cross sectional area ratio of the Cu-based coating to the Nb-based core.
    Type: Application
    Filed: September 23, 2011
    Publication date: June 14, 2012
    Applicant: HITACHI CABLE, LTD.
    Inventors: Yoshihide Wadayama, Katsumi Ohata, Kazuhiko Nakagawa, Morio Kimura