Superconducting Layer And Organic Or Free Carbon Layer (i.e., Adjacent Or Nonadjacent To Superconductor) Patents (Class 505/233)
  • Publication number: 20110287316
    Abstract: The invention relates generally to carbon nano-tube composites and particularly to carbon nano-tube compositions for electrochemical energy storage devices and a method for making the same.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 24, 2011
    Inventors: Wen Lu, Joshua Buettner-Garrett, Michael Krysiak
  • Patent number: 7928182
    Abstract: An organic composition including a) a glycerol polycarbonate of the formula: in which m is equal to at least 2, and has a value from 2 to 100; b) a glycerol of formula: in which n and p are each equal to at least 2, each having a value from 2 to 150; and c) a [(?-hydroxymethyl) oxyethylene (?-hydroxymethyl) ethylene carbonate)] copolymer of the formula: in which x is equal to at least 2 and has a value between 2 and 100, y is equal to at least 2 and has a value between 2 and 100 and q is equal to at least 2 and has a value between 2 and 100.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: April 19, 2011
    Assignees: Condat S.A., INRA (Institut National de Recherche Agronomique), INPT (Institut National Polytechnique de Toulouse)
    Inventors: Nguyen T. Dinh, Z├ęphirin Mouloungui, Philippe Marechal
  • Patent number: 6911665
    Abstract: A superconducting integrated circuit includes a substrate, a multilayer structure formed on the substrate and composed of a lower superconducting electrode, a tunnel barrier and an upper superconducting electrode sequentially joined together upward in the order mentioned, and an insulating layer perforated to form via holes to get electrical contacts with the lower and upper electrodes. The insulating layer is formed of a high-resolution, photosensitive, solvent-soluble, organic insulating material. The superconducting integrated circuit is produced by a method that includes the steps of depositing the multiplayer on the substrate, applying the insulating material to the front surface of the substrate inclusive of the multiplayer, forming the via holes in the insulating material by the lithographic technique at the prospective positions to get electrical contacts with the upper and lower electrodes, and laying wirings for connecting the upper and lower electrodes through the via holes.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: June 28, 2005
    Assignees: National Institute of Advanced Industrial Science and Technology, PI R&D Co., Ltd.
    Inventors: Masahiro Aoyagi, Hiroshi Nakagawa, Kazuhiko Tokoro, Katsuya Kikuchi, Hiroshi Itatani, Sigemasa Segawa
  • Patent number: 6355599
    Abstract: This invention provides a radiation curable coating composition for superconducting wires. The coating composition comprises at least one (meth)acrylate terminated urethane oligomer, at least one adhesion promoter, at least one (meth)acrylate functionalized diluent and at least one free radical photoinitiator.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: March 12, 2002
    Assignee: DSM Desotech, Inc.
    Inventors: Edward P. Zahora, Steven C. Lapin, David M. Szum, Steven R. Schmid
  • Patent number: 6297199
    Abstract: There are disclosed an oxide superconductor which is made of an oxide superconductive bulk body (e.g. a rare earth element base copper-oxide superconductive bulk body) which has a resin impregnated layer (e.g. epoxy base resin impregnated layer), and, optionally, a proper amount of silver or a silver oxide; and a process for producing the above oxide superconductor which comprises impregnating a resin into an oxide superconductive bulk body by bringing the resin in liquid form into contact with the bulk body which is preserved in an atmosphere of reduced pressure. The above superconductor is capable of assuring a high trapped magnetic field and maintaining its performance for a long period of time without being affected by internal or external forces such as electromagnetic forces or thermal strains or by corrosive environments.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: October 2, 2001
    Assignees: International Superconductvity Technology Center, Railway Technical Research Institute
    Inventors: Masaru Tomita, Masato Murakami
  • Patent number: 6238774
    Abstract: A high temperature oxide superconductor is efficiently protected from the affects of water and acids by forming a passivation layer of a fluoride. The fluoride layer comprises a fluoride composed of one or more elements composing the oxide superconductor and/or one or more elements that can compose an oxide superconductor by replacing at least in part one or more elements composing the oxide superconductor.
    Type: Grant
    Filed: June 14, 1994
    Date of Patent: May 29, 2001
    Assignee: Fujitsu Limited
    Inventors: Kyung-ho Park, Nagisa Ohsako
  • Patent number: 6187718
    Abstract: Superconducting composites comprising a high thermal conductivity carbon substrate and a layer of ceramic-type superconductor. Particularly attractive for use as a superconducting flexible conductor are composites comprising a high thermal conductivity, low resistivity carbon fiber disposed within a non-adherent sleeve layer formed of the superconducting ceramic material.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: February 13, 2001
    Assignee: BP Amoco Corporation
    Inventor: David A. Schulz
  • Patent number: 6021338
    Abstract: A radiation curable coating composition for superconducting wires including at least one (meth)acrylate terminated urethane oligomer, at least one adhesion promoter, at least one (meth)acrylate functionalized diluent and at least one free radical photoinitiator. The coating composition is able to withstand repeated thermal cycling from the ambient temperature to the critical temperature of the superconducting wire and, because the composition is radiation cured, the superconducting wire is not heated, thus avoiding degrading the superconducting wire.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: February 1, 2000
    Assignee: DSM Desotech Inc.
    Inventors: Edward P. Zahora, Steven C. Lapin, David M. Szum, Steven R. Schmid
  • Patent number: 5985446
    Abstract: A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: November 16, 1999
    Inventor: Richard J. Lagow
  • Patent number: 5866252
    Abstract: This invention permits superconducting ceramics, as well as other ceramic materials, to be spray deposited onto indefinitely large sheets of metallic substrate from a carboxylic acid salt solution. Elemental metal precursors of the superconductor are introduced into the solution as carboxylic acid salts. The deposit formed on the malleable metallic substrate is then thermomechanically calcined to form c-axis textured metal-superconductor composite sheet structures. These composite sheet structures can be formed by pressing together two ceramic-substrate structures, ceramic face-to-face, to form a metal-ceramic-metal sheet structure, or by overlaying a metal sheet over the deposited structure. Once the structure has been thermomechanically calcined, the c-axis of the superconductor is oriented parallel to the vector defining the plane of the metal sheet, i.e., perpendicular to the surface of the plane.
    Type: Grant
    Filed: October 18, 1996
    Date of Patent: February 2, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: L. Pierre de Rochemont, Michael J. Suscavage, Daniel F. Ryder, Jr., Mikhail Klugerman
  • Patent number: 5846909
    Abstract: Use of monolayer films for the direct modification of high-T.sub.c superconductor structures and devices. Methods for the formation of superconductor localized monolayer films have been discovered based on the spontaneous adsorption of molecules containing ligating functionalities, such as alkylamine, arylamine, and alkylthiol moieties. Molecules containing these types of functionalities are found to bind tenaciously to the metal ions which form the high-T.sub.c superconductor surface. The derivatized superconductor structures can be prepared simply by soaking the high-T.sub.c, superconductor structure or device in a dry organic solvent system which contains the derivatizing agent. Large changes in the superconductor interfacial properties can be achieved with such procedures allowing for the atomic level control of the surface properties of the superconductor.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: December 8, 1998
    Assignees: University of Texas System, Northwestern University
    Inventors: John T. McDevitt, Chad A. Mirkin
  • Patent number: 5831279
    Abstract: A device with weak links (Josephson junctions) in a superconducting film has two single crystals connected through an interconnecting arrangement that may have one or more sublayers. At least two grain boundaries or at least one barrier are/is formed in the substrate.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: November 3, 1998
    Assignee: Telefonktiebolaget LM Ericsson
    Inventors: Erland Wikborg, Evgeni Stepantsov, Zdravko Ivanov, Tord Claeson
  • Patent number: 5759960
    Abstract: A superconductive device (e.g., magnet) having a superconductive lead assembly and cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end thermally connected to the first stage and a second end thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in surrounding compressive contact with the first ceramic superconductive lead, and a rigid, nonporous support tube surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connected to the second stage.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: June 2, 1998
    Assignee: General Electric Company
    Inventors: Robert Adolph Ackermann, Kenneth Gordon Herd, Evangelos Trifon Laskaris, Richard Andrew Ranze
  • Patent number: 5759625
    Abstract: Processes for patterning amorphous fluoropolymer Teflon.RTM.AF, passivating high temperature superconductor films, and improved electronic devices with amorphous fluoropolymer Teflon.RTM.AF films are disclosed.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: June 2, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Daniel Bruce Laubacher, Philip Shek Wah Pang
  • Patent number: 5424281
    Abstract: An oxide-superconducting device comprises first and second electrodes of oxide-superconductor which are connected through a tunnel barrier layer. The oxide-superconductor is formed on a substrate having a recess, and it includes grain boundaries along the recess. The tunnel barrier layer is formed along the grain boundaries, and it is made of any material of an element F, Cl, Br, I, C, O, S, P or N, a mixture consisting of such elements, and a compound containing such an element, the material being introduced into the grain boundaries and/or lattice interstices near the grain boundaries.
    Type: Grant
    Filed: January 26, 1993
    Date of Patent: June 13, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Yoshinobu Tarutani, Ushio Kawabe
  • Patent number: 5302580
    Abstract: An oxide superconductor lamination member has a base, precious metal plates and an oxide superconductor layer. The precious metal plates and the oxide superconductor layer are successively laminated on the base, and the precious metal plates overlap each other at their ends. Another oxide superconductor lamination member has precious metal bases, and an oxide superconductor layer lamination on the precious metal bases. The precious metal bases overlap each other at their ends. End portions of the precious metal plates (bases) are connected by an adhesive so as to form a lap joint. The lap joint of the precious metal plates (bases) are covered with a precious metal foil.
    Type: Grant
    Filed: March 13, 1991
    Date of Patent: April 12, 1994
    Assignee: NGK Insulators, Ltd.
    Inventors: Hideki Shimizu, Takeyoshi Togashi, Hitoshi Higuchi, Toshio Oda, Hitoshi Yoshida