Superconductor Next To Superconductor Patents (Class 505/234)
  • Publication number: 20040077504
    Abstract: A Josephson junction having a barrier layer sandwiched by two superconductors wherein the superconductors include one or more elements selected from the group of Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, one or more elements selected from the group of Ba, Sr and Ca, and Cu and oxygen, wherein the two superconductors each include at least five elements with compositions different from each other, or the barrier layer (5) includes one or more elements selected from the group of La, Nd, Sm and Eu, and one or more elements selected from the group of Y, Gd, Dy, Ho, Er, Tm, Yb and Lu.
    Type: Application
    Filed: July 10, 2003
    Publication date: April 22, 2004
    Inventors: Seiji Adachi, Hironori Wakana, Keiichi Tanabe
  • Patent number: 6719924
    Abstract: There is provided a superconducting device including a substrate, a first superconductor layer supported by the substrate and containing Ln, AE, M and O, and a second superconductor layer containing a material represented by a formula of (Yb1−yLn′y)AE′2M′3Oz, the first and second superconductor layers forming a junction, and atomic planes each including M and O in the first superconductor layer and atomic planes each including M′ and O in the second superconductor layer being discontinuous to each other in a position of the junction, wherein each of Ln and Ln′ represents at least one metal of Y and lanthanoids, each of AE and AE′ represents at least one of alkaline earth metals, each of M and M′ represents a metal which contains 80 atomic % or more of Cu, y represents a value between 0 and 0.9, and z represents a value between 6.0 and 8.0.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: April 13, 2004
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Toshihiko Nagano, Jiro Yoshida
  • Patent number: 6682621
    Abstract: A method of forming a novel high temperature superconducting Josephson junction which is capable of achieving a formation of a Josephson junction having high characteristic conveniently and quickly without necessitating costly micromachining facilities. Two high temperature superconducting whisker crystals are crossed with each other on a substrate and subjected to thermal treatment to form a Josephson junction between the two high temperature superconducting whisker crystals.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: January 27, 2004
    Assignee: National Institute for Materials Science
    Inventors: Yoshihiko Takano, Takeshi Hatano, Akira Ishii, Syunichi Arisawa, Kazumasa Togano
  • Patent number: 6627582
    Abstract: A large superconductor intermediate of REBa2Cu3Ox system (where RE is one kind or a combination of rare earth elements including Y), characterized by a structure that oxide superconductors having non-superconductive phases finely dispersed in REBa2Cu3Ox phases (123 phases) of different peritectic temperatures (Tp) are laminated three-dimensionally in the order of Tp's, seed crystals mounted on the oxide superconductor layer having a highest Tp, and excluded phases included in at least the oxide superconductor having the high Tp.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: September 30, 2003
    Assignee: Nippon Steel Corporation
    Inventors: Mitsuru Sawamura, Mitsuru Morita
  • Patent number: 6624122
    Abstract: Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: September 23, 2003
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, Quanxi Jia, Stephen R. Foltyn
  • Patent number: 6613463
    Abstract: A superconducting laminated oxide substrate, which comprises a laminate a layer of a superconducting oxide crystal substrate made of a superconducting oxide single crystal or a superconducting oxide polycrystal and a layer of a reinforcing crystal substrate, prevents cracks from occurring in the superconducting oxide crystal substrate due to the heat treatment conducted for the purpose of forming an insulation film or a conductor film, and provides easy connectivity between electrodes and wiring formed on substrates located at upper and lower positions.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: September 2, 2003
    Assignee: International Superconductivity Technology Center
    Inventors: Teruo Izumi, Satoshi Koyama, Yuh Shiohara, Shoji Tanaka, Masahiro Egami, Youichi Enomoto, Hideo Suzuki, Michitomo Iiyama
  • Patent number: 6600939
    Abstract: A composite superconducting tape which includes at least one constituent superconducting tape that may be a multiplicity of stacked and bonded tapes including a pair of exposed opposite major faces, and at least one outer layer of metal tape overlying and bonded to one of the exposed major faces. In the case where two outer layer metal tapes are included, the strength thereof differ.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: July 29, 2003
    Assignee: Metal Manufactures Limited
    Inventor: Rupeng Zhao
  • Patent number: 6541136
    Abstract: A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: April 1, 2003
    Assignee: The Regents of the University of California
    Inventors: Chuhee Kwon, Quanxi Jia, Stephen R. Foltyn
  • Patent number: 6479139
    Abstract: A superconducting substrate structure with a high temperature superconducting (HTS) ground plane, for epitaxial growth of multilayers thereon is provided. The substrate structure includes a composite substrate structure with a first and a second substrate layer each covered by an HTS film, which HTS films are bonded together through annealing to form a buried superconducting layer wherein one of the substrate layers is polished to form a smooth insulating layer adjacent to an HTS layer. A method of producing a superconducting substrate structure is provided including the steps of arranging two substrate layers on which HTS films are provided such that the HTS films come in close contact to one another, applying a high pressure in an oxygen atmosphere and at an elevated temperature such that the HTS films are annealed and bonded together, and subsequently polishing one of the substrate layers to form a smooth insulator.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: November 12, 2002
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Tord Claeson, Zdravko Ivanov, Erland Wikborg
  • Patent number: 6466805
    Abstract: A composite superconductor having an interior component of multiple filaments of superconducting Bi-2223 sheathed in a Ag or Ag alloy material, and a RE, TI or Hg based superconductor surrounding the interior component.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: October 15, 2002
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Milan Lelovic, Nicholas G. Eror
  • Patent number: 6429174
    Abstract: A process which relies on a joining technique between two individual strongly linked superconductors is disclosed. Specifically, this invention relates to fabrication of single domains of YBa2Cu3Ox or YBa2Cu3Ox with the addition of Y2BaCuO5 and/or other secondary phases such as Pt/PtO2, CeO2, SnO2, Ag, Y2O3 and other rare earth oxides, by using a top-seeded, melt processing technique. Beginning with a single crystal seed such as Nd1+xBa2−xCu3Ox or SmBa2Cu3Ox crystals, a melt-textured YBCO domain with crystallographic orientation nearly similar to that of the seed crystal can be fabricated. The samples are next machined to desired geometrical shapes. A bonding material is then applied to the ac plane. Low solidification or recrystalization point, similar crystal structure to that of YBa2Cu3Ox, and capability of growing epitaxially on YBCO domains are critical parameters of the bonding material.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: August 6, 2002
    Assignee: Superconductive Components, Inc.
    Inventor: Suvankar Sengupta
  • Patent number: 6348699
    Abstract: A superconductive device is disclosed, which has specific characteristics of a generator and/or detector of sub-millimeter wave length radiation, comprising a two-dimensional lateral array of mesas (column-shaped elements) each containing vertically stacked Josephson junctions on top of one another. This device is capable of covering the entire frequency range between the microwave and far infrared spectral regions, in plurality of applications, where radiation emission and detection is involved. According to its various embodiments, thin columns (stacks) of Josephson junctions are monolithically built between superconducting electrical top and bottom contact layers. Mutually isolated segments cut out of the contact layers allow for optimization of circuit parameters such as impedance matching to load and maximizing the output power. External electronic control allows modulation of the radiation field and other operation modes of the device.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: February 19, 2002
    Assignee: Oxxel Oxide Electronics Technology GmbH
    Inventor: Alfred Zehe
  • Patent number: 6313408
    Abstract: Provided is an insulated oxide superconducting cable conductor having a high critical current and a high critical current density. The insulated oxide superconducting cable conductor comprises an elongated former, a plurality of tape-shaped multifilamentary oxide superconducting wires which are wound on the former at a bending strain factor of not more than 0.5%, and a spirally wound tape-shaped insulating material covering the tape-shaped multifilamentary oxide superconducting wires. The tape-shaped multifilamentary superconducting wires are superposed on the former in layers, whereby stabilizing materials of the superposed superconducting wires are in contact with each other. The tape-shaped insulating material consists essentially of a material which is contracted at a thermal contraction rate of at least three times that of the tape-shaped multifilamentary wires by cooling from a temperature of 298 K to that of 77 K.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: November 6, 2001
    Assignees: Sumitomo Electric Indusstries, Inc, The Tokyo Electric Power Company, Incorporated
    Inventors: Jun Fujikami, Kenichi Sato, Tsukushi Hara, Hideo Ishii
  • Patent number: 6253096
    Abstract: A composite superconductor having an interior component of multiple filaments of superconducting Bi-2223 sheathed in a Ag or Ag alloy material, and a RE, TI or Hg based superconductor surrounding the interior component.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: June 26, 2001
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Milan Lelovic, Nicholas G. Eror
  • Patent number: 6251530
    Abstract: A thin-film of a high temperature superconducting compound having the formula M1-xCuO2-y, where M is Ca, Sr, or Ba, or combinations thereof, x is 0.05 to 0.3, and x>y. The thin film has a Tc (zero resistivity) of about 40 K. Also disclosed is a method of producing the superconducting thin film.
    Type: Grant
    Filed: August 18, 1992
    Date of Patent: June 26, 2001
    Assignee: Varian, Inc.
    Inventors: Ivan Bozovic, James N. Eckstein
  • Patent number: 6221812
    Abstract: To improve the chemical stability, as well as the critical current density (JC) of a superconductive material in an external magnetic field, copper-oxide coating materials have been developed. In some embodiments, these coating materials include a composition with the formula R1−xCaxBa2−yLayCu3−zMzO7−&dgr;, where R is a rare-earth element (e.g., La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, or Y), M is a transition metal (e.g., Mn, Re, Fe, Os, Co, Rh, Ir, Ni, Pd, Pt, Ag, Au, Zn, Cd, or Hg), 0≦x≦0.4, 0≦y≦0.4, and 0≦z≦1.0.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: April 24, 2001
    Assignee: Board of Regents, The University of Texas System
    Inventors: JiPing Zhou, John T. McDevitt, John B. Goodenough
  • Patent number: 6205345
    Abstract: In order to obtain a superconducting wire containing an oxide superconductor, whose critical current density is not much reduced upon application of bending, a plurality of strands 3, comprising oxide superconductors 1 covered with first metal sheaths 2, are filled into a second metal sheath 4, and deformation processing is performed to sectionally apply a compressive load to the second metal sheath, so that the thickness of the oxide superconductor 1 contained in each strand 3 is not more than 5% of the overall thickness of the superconducting wire 6.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: March 20, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Sato, Hidehito Mukai, Nobuhiro Shibuta
  • Patent number: 6159905
    Abstract: A method for joining high temperature superconducting components while minimizing critical current degradation is provided. The articles formed have critical currents that are at least 80 % of the critical current of the high temperature superconducting components. The invention further provides splicing geometries that facilitate wrapping joined components around a mandrel, tube or the like with minimal critical current degradation and without kinking or flexion of the joined components.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: December 12, 2000
    Inventors: David M. Buzcek, John D. Scudiere, Richard E. Harnois, Sergio Spreafico, Laura Gherardi
  • Patent number: 6121205
    Abstract: A bulk superconductor including a plurality of units each composed of a substrate and a superconductive layer of R--Ba--Cu--O, where R is selected from La, Nd, Sm, Eu, Gd, Y, Dy, Ho, Er, Tm, Yb and mixtures thereof, formed on the substrate. The units are arranged in a row or in a matrix such that the superconductive layers of respective units are superconductively joined with each other.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: September 19, 2000
    Assignees: International Superconductivity Technology Center, Railway Technical Research Institute
    Inventors: Masato Murakami, Kazuhiko Sawada, Naomichi Sakai, Takamitsu Higuchi
  • Patent number: 6027826
    Abstract: The invention provides methods to manufacture dense, complex c-axis oriented ceramic oxide layers with thickness greater than 2.5 microns (.mu.m) on a metallic substrate (composites) without the use of an interfacial barrier, buffer, or surface layer using a metalorganic deposition process and thermomechanical reaction treatments is disclosed. A porous amorphous metal oxide ceramic deposit is formed directly on the substrate by spray pyrolyzing a mixed metalorganic precursor solution onto the metallic substrate. The metallic substrate has been previously heated to temperatures greater than the boiling point of the organic solvent and are high enough to initiate in situ decomposition of the metalorganic precursor salts. The process does not apply the precursor solution to the substrate as a liquid coating that is pyrolyzed in subsequent processing steps.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: February 22, 2000
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Pierre L. deRochemont, Daniel E. Ryder, Michael J. Suscavage, Mikhail Klugerman
  • Patent number: 6010983
    Abstract: A high temperature superconductor composite material, which is suitable for production of filaments, wires, coils and other shaped products, has a ceramic powder of a material selected from the group consisting of, for example, YBa.sub.2 Cu.sub.3 O.sub.7-x and Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10 ; a solution of a material selected from the group consisting of rubber silicone or lacquer silicone in a substance selected from the group consisting of toluene or acetone; and an ultra-fine silver powder dope, and is produced by using an emulsion mixture of the three major components with ultrasonic homogenization of the mixture, primer cladding of a glue-exterior layer on a silver core filament, high temperature superconductor coating of the silver core by chemical adhesion, and polymerization of the coating applied by low temperature heating, whereafter the composition is treated by magnetic treatment, gamma irradiation, and microwave supported fast heating.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: January 4, 2000
    Inventors: M. I. Topchiashvili, A. E. Rokhvarger
  • Patent number: 5998050
    Abstract: A composite material is disclosed which includes a substrate, an oriented film provided on a surface of the substrate and formed of a crystal of a Y123 metal oxide of the formula LnBa.sub.2 Cu.sub.3 O.sub.y wherein Ln stands for Y or an element belonging to the lanthanoid and y is a number of 6-7, and a layer of a Y123 metal oxide of the formula LnBa.sub.2 Cu.sub.3 O.sub.y wherein Ln stands for Y or an element belonging to the lanthanoid and y is a number of 6-7 formed on the oriented film.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: December 7, 1999
    Assignees: International Superconductivity Technology Center, Hitachi Cable Ltd., Hokkaido Electric Power Co., Inc., Kyushu Electric Power Co., Inc., The Kansai Electric Power Co., Inc.,, Fujikura, Ltd.
    Inventors: Yasuji Yamada, Masaru Nakamura, Noriyuki Tatsumi, Jiro Tsujino, Kanshi Ohtsu, Yasuo Kanamori, Minoru Tagami, Atsushi Kume, Yuh Shiohara, Shoji Tanaka
  • Patent number: 5885939
    Abstract: A process for forming a laminate of 123-type copper oxide superconductor thin films having dissimilar crystal axis orientations, a laminate of 123-type thin copper oxide superconductor layers exhibiting excellent superconducting property, and wiring for Josephson junction. A c-axis oriented single crystalline thin film of an oxide superconductor having a Y:Ba:Cu atomic ratio of substantially 1:2:3 and a lattice constant of 11.60 angstroms.ltoreq.c.ltoreq.11.70 angstroms at a temperature of 20.degree. C. under an oxygen partial pressure of 160 Torr is formed on a single crystalline substrate, and an a-axis oriented single crystalline thin film of said oxide superconductor is formed on the above laminated film relying upon a sputter deposition method.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: March 23, 1999
    Assignees: Kyocera Corporation, International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd., Mitsubishi Materials Corporation
    Inventors: Yoshinori Matsunaga, Shuichi Fujino, Akihiro Odagawa, Youichi Enomoto
  • Patent number: 5883051
    Abstract: A superconducting Josephson junction element including a first, a-axis oriented, superconductive metal oxide crystal grain having a first area of a {001} plane, and a second, c-axis oriented, superconductive metal oxide crystal grain having a second area of a {110} plane, wherein the first and second crystal grains are in contact with each other at the first and second areas to form a grain boundary therebetween.
    Type: Grant
    Filed: October 22, 1996
    Date of Patent: March 16, 1999
    Assignee: International Superconductivity Technology Center
    Inventors: Yoshihiro Ishimaru, Jian-Guo Wen, Kunihiko Hayashi, Youichi Enomoto, Naoki Koshizuka, Shoji Tanaka
  • Patent number: 5877124
    Abstract: A superconducting oxide ceramic pattern is described. The pattern is comprised of a high Tc superconducting region and a low Tc superconducting region which exhibits a resistivity at the liquid nitrogen temperature while the high Tc region is superconducitive at that temperature. The low Tc region is doped with impurity such as Si and then subjected to thermal treatment to oxidizing the impurity.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: March 2, 1999
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shumpei Yamazaki
  • Patent number: 5869431
    Abstract: A method of fabricating bulk superconducting material such as RBa.sub.2 Cu.sub.3 O.sub.7-.delta. where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate. The powder oxides of RBa.sub.2 Cu.sub.3 O.sub.7-.delta. or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta., where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 .ANG. and 2000 .ANG.. A construction prepared by the method is also disclosed.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: February 9, 1999
    Assignee: The University of Chicago
    Inventors: Boyd W. Veal, Arvydas Paulikas, Uthamalingam Balachandran, Wei Zhong
  • Patent number: 5866252
    Abstract: This invention permits superconducting ceramics, as well as other ceramic materials, to be spray deposited onto indefinitely large sheets of metallic substrate from a carboxylic acid salt solution. Elemental metal precursors of the superconductor are introduced into the solution as carboxylic acid salts. The deposit formed on the malleable metallic substrate is then thermomechanically calcined to form c-axis textured metal-superconductor composite sheet structures. These composite sheet structures can be formed by pressing together two ceramic-substrate structures, ceramic face-to-face, to form a metal-ceramic-metal sheet structure, or by overlaying a metal sheet over the deposited structure. Once the structure has been thermomechanically calcined, the c-axis of the superconductor is oriented parallel to the vector defining the plane of the metal sheet, i.e., perpendicular to the surface of the plane.
    Type: Grant
    Filed: October 18, 1996
    Date of Patent: February 2, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: L. Pierre de Rochemont, Michael J. Suscavage, Daniel F. Ryder, Jr., Mikhail Klugerman
  • Patent number: 5863868
    Abstract: A SQUID 10 was multiple junctions, each junction allowing a critical current to flow therethrough. The SQUID 10 comprises a laminar structure including: (a) a substantially planar substrate 12; (b) a first high temperature superconductive layer 14 of substantially uniform thickness deposited on the substrates; (c) a dielectric layer 16 deposited on the first superconductive layer 14, the dielectric layer 16 comprising a planar level segment 18 having two ramp segments defining SQUID junctions at opposing ends 20 and defining SQUID hole; and (d) a second high temperature superconductive layer 24 of substantially uniform thickness deposited on the dielectric layer 16, the second high temperature superconductive layer 24 covering all three segments of the dielectric layer 16.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: January 26, 1999
    Assignee: TRW Inc.
    Inventors: Hugo Wai-Kung Chan, Kenneth P. Daly, James M. Murduck
  • Patent number: 5861361
    Abstract: A FET type superconducting device comprises a thin superconducting channel, a superconducting source region and a superconducting drain region formed of an oxide superconductor over a principal surface of the substrate, and a gate electrode on a gate insulator disposed on the superconducting channel for controlling the superconducting current flowing through the superconducting channel by a signal voltage applied to the gate electrode. The superconducting channel is formed of(Pr.sub.w Y.sub.1-w)Ba.sub.2 Cu.sub.3 O.sub.7-z (0<w<1, 0<z<1) oxide superconductororY.sub.1 Ba.sub.2 Cu.sub.3-v CO.sub.V O.sub.7-u (0<v<3, 0<u<1) oxide superconductor.These oxide superconductors have smaller carrier densities than the conventional oxide superconductor so that the superconducting channel has a larger thickness than the one funned of the conventional oxide superconductor.
    Type: Grant
    Filed: April 17, 1996
    Date of Patent: January 19, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Nakamura, Michitomo Iiyama
  • Patent number: 5856275
    Abstract: Patterned superconducting wiring lines each having a portion of a thin film of an oxide superconductor deposited on a flat substrate, the portion having a predetermined crystal orientation (a-axis or c-axis orientation) with respect to a flat surface of the substrate, remaining portions of the thin film of the oxide superconductor having a different crystal orientation (c-axis or a-axis orientation) from the portion and/or having an insulation zones. Both of the portion and the remaining portions have a substantially identical thickness so that the thin film has a substantially flat planar surface.
    Type: Grant
    Filed: November 1, 1991
    Date of Patent: January 5, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hiroshi Inada, Takao Nakamura, Michitomo Iiyama
  • Patent number: 5831279
    Abstract: A device with weak links (Josephson junctions) in a superconducting film has two single crystals connected through an interconnecting arrangement that may have one or more sublayers. At least two grain boundaries or at least one barrier are/is formed in the substrate.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: November 3, 1998
    Assignee: Telefonktiebolaget LM Ericsson
    Inventors: Erland Wikborg, Evgeni Stepantsov, Zdravko Ivanov, Tord Claeson
  • Patent number: 5821556
    Abstract: A superconductive junction (10) comprises a first track (22) of YBa.sub.2 Cu.sub.3 O.sub.7 surmounted by a second track (28) also of YBa.sub.2 Cu.sub.3 O.sub.7. An interconnect (26) in the form of a superconductive mesa electrically connects the first track to the second track and acts as a microbridge. When cooled below a critical temperature, the junction (10) shows Josephson-like behaviour. A non-superconductive layer (24) of PrBa.sub.2 Cu.sub.3 O.sub.7 separates the first track and the second track, with the interconnect extending through the PrBa.sub.2 Cu.sub.3 O.sub.7 layer in the form of an island. The junction (10) is fabricated by electron beam evaporation, optical lithography, and ion beam milling.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: October 13, 1998
    Assignee: The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: Nigel Gordon Chew, Simon Wray Goodyear, Richard George Humphreys, Julian Simon Satchell
  • Patent number: 5798312
    Abstract: An elongate superconductor wiring element having, as seen in section, oxide superconductor material regions in each of which the c-axes of the oxide superconductor crystals are aligned with each other and are transverse to the longitudinal axis of the element. To reduce the dependence of critical current density on angular position of the element relative to a magnetic field, there are a plurality of said regions whose alignment directions of the c-axes are different as between different ones of said regions, so that the wiring element comprises a plurality of said regions having respectively different c-axis alignment directions.
    Type: Grant
    Filed: June 21, 1994
    Date of Patent: August 25, 1998
    Assignee: Hitachi, Ltd.
    Inventors: Michiya Okada, Kazuhide Tanaka, Toyotaka Yuasa, Toshimi Matsumoto, Katsuzo Aihara, Shinpei Matsuda
  • Patent number: 5795849
    Abstract: A method for producing a superconductor assembly includes preparing a first bulk ceramic superconductor having a first essentially random pattern of superconductor domains of a copper-oxide ceramic superconductor and non-superconductor domains at a critical temperature, and preparing a second bulk ceramic superconductor having a second essentially random pattern of superconductor domains of a copper-oxide ceramic superconductor and non-superconductor domains at the critical temperature. The method further includes juxtaposing a first surface of the first bulk ceramic superconductor proximate with a first surface of the second bulk ceramic superconductor to form a superconductor assembly where superconductor domains of the first bulk ceramic superconductor and superconductor domains of the second bulk ceramic superconductor are only randomly aligned due to the different first essentially random pattern and second essentially random pattern.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 18, 1998
    Inventor: Paul L. Hickman
  • Patent number: 5786304
    Abstract: A joining product of oxide superconducting materials having a high current density and process for producing the same. A joining product comprising a plurality of oxide superconducting materials having an identical crystal orientation joined with each other through a superconducting phase of the same type as described above which has the same crystal orientation as the oxide superconducting materials and a lower peritectic temperature than the oxide superconducting materials.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: July 28, 1998
    Assignee: Nippon Steel Corporation
    Inventors: Keiichi Kimura, Katuyoshi Miyamoto, Misao Hashimoto
  • Patent number: 5742073
    Abstract: The present invention provides a superconducting switch which has a substrate base and a control line patterned thereon. A buffer layer is deposited on top of these and then a superconducting material is deposited and then patterned wherein the superconducting material forms a strip having multiple intersections with the control line. At each intersection between the control line and the superconducting strip is formed a superconducting gate due to the double step edge junction. The control line underneath provides (1) a means for constructing step edge weak link junctions; (2) a means for heating the weak link junctions; and (3) generating an electromagnetic field near the weak link junctions. In combination, a very small magnetic field can be used to decrease the critical current to a very low level.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: April 21, 1998
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Hua Jiang, Alvin J. Drehman
  • Patent number: 5736488
    Abstract: This invention relates to multilayered superconductive composites, particularly to composites based on thallium-containing superconducting oxides, and their process of manufacture.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: April 7, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Dean Willett Face, Kirsten Elizabeth Myers
  • Patent number: 5721196
    Abstract: A Josephson junction device comprises a single crystalline substrate including a principal surface, an oxide layer formed on the principal surface of the substrate having a step on its surface and an oxide superconductor thin film formed on the surface of the oxide layer. The oxide superconductor thin film includes a first and a second portions respectively positioned above and below the step of the oxide layer, which are constituted of single crystals of the oxide superconductor, and a step-edge junction made up of a grain boundary on the step of the oxide layer, which constitutes a weak link of the Josephson junction.
    Type: Grant
    Filed: August 16, 1996
    Date of Patent: February 24, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Nakamura, Michitomo Iiyama
  • Patent number: 5719105
    Abstract: A superconducting element is disclosed which includes a substrate and a superconducting layer provided on the substrate and formed of an oxide having the following chemical formula:RBa.sub.2 (Cu.sub.1-x M.sub.x).sub.3 O.sub.7wherein R represents at least one element selected from the group consisting of Y, La, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, M represents at least one element selected from the group consisting of Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zn and Ga, and x represents a number of less than 1 but greater than 0.
    Type: Grant
    Filed: October 24, 1994
    Date of Patent: February 17, 1998
    Assignees: International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd., Sanyo Electric Co., Ltd.
    Inventors: Akihiro Odagawa, Youichi Enomoto, Shuuichi Yoshikawa
  • Patent number: 5717222
    Abstract: A superconducting device includes a substrate, a projecting insulating region formed in a principal surface of the substrate, and a first thin film portion of an oxide superconductor formed on the projecting insulating region. Second and third thin film portions of an oxide superconductor are positioned at opposite sides of the projecting insulating region to be continuous to the first thin film portion, respectively, so that a superconducting current can flow through the first thin film portion between the second thin film portion and the third thin film portion. The second thin film portion and the third thin film portion has a thickness larger than that of the first thin film portion. The projecting insulating region is formed of an oxide which is composed of the same constituent elements of the oxide superconductor but which has the oxygen content smaller than that of said oxide superconductor.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: February 10, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Nakamura, Hiroshi Inada, Michitomo Iiyama
  • Patent number: 5712227
    Abstract: A substrate having a superconducting thin film of compound oxide thereon. An intermediate layer consists of at least one layer of copper-containing oxide is interposed between the substrate and the superconducting thin film.
    Type: Grant
    Filed: January 25, 1995
    Date of Patent: January 27, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenjiro Higaki, Keizo Harada, Takashi Matsuura, Hitoshi Oyama, Hideo Itozaki, Shuji Yazu
  • Patent number: 5672569
    Abstract: A superconducting circuit having patterned superconducting wiring lines. Each wiring line consists of at least one portion (2') of the thin film (2) of an oxide superconductor deposited on a substrate (1). The portion (2') has a predetermined crystal orientation and the remaining portions (2") have a different crystal orientation or changed to non-superconductor. The superconducting circuit has a planar surface.In variations, two different wiring lines (21, 22) each having a different crystal orientation are produced at different portions of a thin film of oxide superconductor, so that superconducting current flow separately through two different portions in a common thin film.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: September 30, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Nakamura, Hiroshi Inada, Michitomo Iiyama
  • Patent number: 5656575
    Abstract: The present invention provides a superconducting device having a weak link junction with an angle at the grain boundary between the two superconductor crystals being variable. The angle at the junction is substantially equivalent to a vicinal angle for the substrate. Accordingly, the magnitude of the angle at the junction can be varied by varying the vicinal angle of the substrate. This result can be realized by using buffer layers of different compositions underlying the superconducting materials on either side of the weak link junction. Weak link junctions and reproducible properties are essential for a variety of electronic and magnetic sensing devices.
    Type: Grant
    Filed: February 13, 1995
    Date of Patent: August 12, 1997
    Assignee: Superconducting Core Technologies, Inc.
    Inventor: Carl H. Mueller
  • Patent number: 5646096
    Abstract: Patterned superconducting wiring lines each consisting of a portion of a thin film of an oxide superconductor deposited on a flat substrate, the portion having a predetermined crystal orientation (a-axis or c-axis orientation) with respect to a flat surface of the substrate, remaining portions of the thin film of the oxide superconductor having a different crystal orientation (c-axis or a-axis orientation) from the portion and/or consisting of an insulation zones. Both of the portion and the remaining portions have a substantially identical thickness so that the thin film has a substantially flat planar surface.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 8, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hiroshi Inada, Takao Nakamura, Mitchimoto Iiyama
  • Patent number: 5637555
    Abstract: A method for manufacturing a three-terminal superconducting device is disclosed. A superconducting channel constituted in an oxide superconductor thin film is deposited on a deposition surface of a substrate. A gate electrode for the device is formed through a gate insulator layer on the superconducting channel of the device. The steps of forming the gate electrode include forming a thin film that stands upright with respect to the insulator layer for the gate.
    Type: Grant
    Filed: August 23, 1995
    Date of Patent: June 10, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Nakamura, Hiroshi Inada, Michitomo Iiyama
  • Patent number: 5624885
    Abstract: A Josephson junction device includes a substrate, an oxide thin film formed on a portion of the principal surface of the substrate, which is constituted of a single crystal of which lattices shift at angle of 45.degree. to that of the principal surface of the substrate. One of the two portions of the oxide superconductor thin film is formed on the oxide thin film and the other portion of the superconductor thin film is formed on the principal surface of the substrate directly so that the lattices of the two portions of the oxide superconductor thin film are respectively linear up to those of the oxide thin film and the principal surface of the substrate and the grain boundary. The grain boundary which constitutes a weak link of the Josephson junction is formed just on the step portion formed of the oxide thin film.
    Type: Grant
    Filed: September 11, 1995
    Date of Patent: April 29, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Saburo Tanaka, Takashi Matsuura, Hideo Itozaki
  • Patent number: 5612290
    Abstract: A Josephson junction device is disclosed that includes a single crystalline substrate having a NaCl type crystal structure. The device includes a principal surface having two horizontal planes and a slope inclined at an angle of 5.degree. to 30.degree. between the two horizontal planes. An oxide superconductor thin film is formed on the principal surface of the substrate, which includes first and a second superconducting portions of a first single crystalline oxide superconductor and a second single crystalline oxide superconductor respectively positioned on the two horizontal planes of the substrate. A junction portion of a single crystalline oxide superconductor has a different crystal orientation from the first and the second superconducting portions, and is positioned on the slope of the substrate. Two grain boundaries between each of the first and the second superconducting portions and the junction portion constitute one weak link of the Josephson junction.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: March 18, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Saburo Tanaka, Takashi Matsuura, Hideo Itozaki
  • Patent number: 5612292
    Abstract: A multilayered structure comprising copper oxide perovskite material having altered superconductive properties is provided by epitaxially depositing on a substrate a layer of a first copper oxide material and then epitaxially depositing on the first layer a layer of a second, different copper oxide perovskite material. Further alternate epitaxially layers of the two copper oxide perovskite materials are then deposited one on the other. The first and second copper oxide perovskite materials in unstressed bulk states have nondistorted crystallographic lattice structures with unit cell dimensions that differ in at least one dimension. In the epitaxial layers, the crystallographic lattice structures of the two copper oxide materials are distorted relative to their nondistorted crystallographic lattice structures.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 18, 1997
    Assignee: International Business Machines Corporation
    Inventor: Arunava Gupta
  • Patent number: 5596206
    Abstract: A new type of superconducting device is disclosed. The device embodies a superconducting ceramic film as an active part. A control electrode is provided on the superconducting film in which a passing current is controlled by applying a voltage on an intermediate portion of the film.
    Type: Grant
    Filed: April 4, 1995
    Date of Patent: January 21, 1997
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 5593950
    Abstract: A lattice matching device includes a substrate having thereon monocrystal regions having different lattice mismatches with respect to a LnBa.sub.2 Cu.sub.3 O.sub.x superconductor. A superconducting thin film is formed on the substrate, which film consists essentially of a superconductor of LnBa.sub.2 Cu.sub.3 O.sub.x wherein Ln represents yttrium or a lanthanide, and 6<x<7. The first and second superconducting thin film portions have different axes of orientation perpendicular to a main surface of the substrate, and arranged in contact with each other or at a distance which allows transmission of electron pairs from one to another.
    Type: Grant
    Filed: July 27, 1993
    Date of Patent: January 14, 1997
    Assignee: Nippon Telegraph & Telephone Corporation
    Inventors: Masashi Mukaida, Shintaro Miyazawa, Junya Kobayashi