Superconductor Layer Next To Free Metal Containing Layer Patents (Class 505/236)
  • Patent number: 7507916
    Abstract: A chamber for manipulating a work product is formed in layers as a series of nested shells. The shells have an outer structural casing and an electromagnetic shield that surrounds a superconducting shell. The superconducting shell is immersed in a cryogenic coolant contained in a reservoir. The work product is further manipulated using kinetic energy and electromagnetic energy.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: March 24, 2009
    Inventor: Stephen Burns Kessler
  • Patent number: 7496390
    Abstract: An article having low ac loss includes an elongated substrate having a length and a width; and a plurality of filaments comprising an oxide superconductor extending substantially along the length of the elongated substrate and spaced apart from one other filaments across the width of the elongated substrate, wherein at least one filament crosses over at least one other filament such that the at least one filament occupies a first position across the width of the elongated substrate before the crossover and a second position across the width of the elongated substrate after crossover.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: February 24, 2009
    Assignee: American Superconductor Corporation
    Inventors: Cornelis Leo Hans Thieme, Martin W. Rupich, John D. Scudiere, Oleg A. Chevtchenko
  • Patent number: 7465886
    Abstract: A chamber or series of chambers for manipulating a work product is formed in layers as a series of nested shells. The shells have an outer structural casing and an electromagnetic shield that surrounds a superconducting shell. The superconducting shell is either room temperature or immersed in a cryogenic coolant contained in a reservoir. The work product is further manipulated using kinetic energy to move it through electromagnetic field amplifiers to facilitate energy release for power generation or motive propulsion.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: December 16, 2008
    Inventor: Stephen Burns Kessler
  • Patent number: 7463915
    Abstract: An elongated article comprising a first layer of oxide superconductor filaments extending substantially along the length of the elongated article and spaced apart from one another across the width of the elongated substrate; a second layer of oxide superconductor filaments extending substantially along the length of the elongated article and spaced apart from one another across the width of the elongated article, wherein the first filament layer is positioned above the second filament layer; and a barrier layer positioned between the first and second filament layers, wherein the filaments of the first and second filament layers are positioned such that at least one filament of the first layer crosses at least one filament of the second layer.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: December 9, 2008
    Assignee: American Superconductor Corporation
    Inventors: Cornelis Leo Hans Thieme, Martin W. Rupich
  • Patent number: 7273569
    Abstract: The present invention relates to a metal-ceramic high temperature super-conductor composite having improved mechanical stability and cooling performance as well as to an improved method for bonding a ceramic high temperature superconductor to a metal surface wherein a bonding is provided, avoiding damage during the cooling of the composite below the critical temperature of the superconductor.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: September 25, 2007
    Assignee: Nexans
    Inventors: Heribert Walter, Dirk Isfort
  • Patent number: 7268099
    Abstract: In the present invention, a superconducting (sc) ceramic filament is enclosed in a silver sheath which is sealed therearound by applying silver powder between the surfaces of said sheath, pressing the surfaces and powder into contact and then applying sufficient heat to fuse them together, which heat is below the melting point of the surfaces and powder and then sintering the so enclosed ceramic filament, which upon cooling, forms a superconductor.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: September 11, 2007
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: L. Pierre de Rochemont
  • Patent number: 7226893
    Abstract: A superconductive article is disclosed, having a substrate a buffer layer overlying the substrate, and a superconductive layer overlying the buffer layer. According to embodiments, the article may have low density characteristics, associated with the article as a whole and/or individual layers of the article. The article may be embodied in the form of long length conductors, coiled long length conductors, and machines incorporating such coils, for example.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: June 5, 2007
    Assignee: Superpower, Inc.
    Inventors: Venkat Selvamanickam, Drew W. Hazelton, Yunfei Qiao
  • Patent number: 7071148
    Abstract: A superconducting article includes a first superconductive segment having a nominal thickness tn1, a second superconductive segment having a nominal thickness tn2, and a joint region comprising a splice connecting the first and second superconductive segments together. The splice overlies portions of both the first and second superconductive segments along the joint region, the joint region having a thickness tjr, wherein tjr is not greater than at least one of 1.8 tn1 and 1.8 tn2.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: July 4, 2006
    Assignee: Superpower, Inc.
    Inventors: Venkat Selvamanickam, Yi-Yuan Xie, Allan Robert Knoll
  • Patent number: 6906265
    Abstract: A cabled conductor comprises a plurality of transposed strands each comprising one or more preferably twisted filaments preferably surrounded or supported by a matrix material and comprising textured anisotropic superconducting compounds which have crystallographic grain alignment that is substantially unidirectional and independent of the rotational orientation of the strands and filaments in the cabled conductors. The cabled conductor is made by forming a plurality of suitable composite strands, forming a cabled intermediate from the strands by transposing them about the longitudinal axis of the conductor at a preselected strand lay pitch, and, texturing the strands in one or more steps including at least one step involving application of a texturing process with a primary component directed orthogonal to the widest longitudinal cross-section of the cabled intermediate, at least one such orthogonal texturing step occurring subsequent to said strand transposition step.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: June 14, 2005
    Assignee: American Superconductor Corporation
    Inventors: Gregory L. Snitchler, Jeffrey M. Seuntjens, William L. Barnes, Gilbert N. Riley, Jr.
  • Patent number: 6902600
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: June 7, 2005
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goval, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6890369
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: May 10, 2005
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6846344
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: January 25, 2005
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20040250651
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: August 30, 2002
    Publication date: December 16, 2004
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6765151
    Abstract: This invention relates to a practical superconducting conductor based upon biaxially textured high temperature superconducting coatings. In particular, methods for producing flexible and bend strain-resistant articles and articles produced in accordance therewith are described which provide improved current sharing, lower hysteretic losses under alternating current conditions, enhanced electrical and thermal stability and improved mechanical properties between otherwise isolated films in a coated high temperature superconducting (HTS) wire. Multilayered materials including operational material which is sensitive to bend strain can be constructed, in which the bend strain in the region in which such operational material is located is minimized. The invention also provides a means for splicing coated tape segments and for termination of coated tape stack ups or conductor elements.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: July 20, 2004
    Assignee: American Superconductor Corporation
    Inventors: Leslie G. Fritzemeier, Cornelis Leo Hans Thieme, Steven Fleshler, John D. Scudiere, Gregory L. Snitchler, Bruce B. Gamble, Robert E. Schwall, Dingan Yu, Alexander Otto, Elliott D. Thompson, Gilbert N. Riley, Jr.
  • Patent number: 6730410
    Abstract: Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 4, 2004
    Assignees: Electronic Power Research Institute, Incorporated, The Regents of the University of California
    Inventors: Leslie G. Fritzemeier, Qi Li, Martin W. Rupich, Elliott D. Thompson, Edward J. Siegal, Cornelis Leo Hans Thieme, Suresh Annavarapu, Paul N. Arendt, Stephen R. Foltyn
  • Patent number: 6657533
    Abstract: A superconducting conductor and its method of manufacture includes an electrical conductor having a thermal conductor attached to and along a length of superconductor member and separated from the superconductor member by an electrically-insulative material. The member may include a length of superconductor composite having superconducting material and a non-superconducting, electrically conductive matrix material. The electrical conductor is configured to control the manner in which the superconductor transitions from its superconducting state to its non-superconducting (i.e., normal) state due to, for example, a fault current condition. The electrically-insulative material has a thickness for allowing heat from the superconductor to be conveyed to the thermal conductor. The superconducting conductor may be used in conjunction with a superconducting current-limiting device.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: December 2, 2003
    Assignees: American Semiconductor Corporation, ABB Transmission & Distribution Technologies, Ltd.
    Inventors: Gregory L. Snitchler, Dietrich Bonmann, Martin Lakner, Willi Paul
  • Patent number: 6649280
    Abstract: A high performance superconducting ceramic article for use in a liquid cryogen bath is provided. It includes a superconducting ceramic tape having at least one surface vulnerable to cryogenic infiltration is sealed on each vulnerable surface to a non-porous metallic laminate, which also provides the desired support structure, in substantially impervious relation by a non-porous metallic bonding agent. This results in greater protection of the superconducting ceramic tape from cryogen infiltration, and permits greater thermal cycling of the superconductor during use without causing degradation of the tape's critical current carrying capacity.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: November 18, 2003
    Assignee: American Superconductor Corporation
    Inventors: John D. Scudiere, David M. Buczek
  • Patent number: 6607839
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: August 19, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6586370
    Abstract: The invention provides a superconductor comprising particles made of a metallic boride superconductive material, and a conductive material. The conductive material is selected to be driven to a superconductive state when in proximity to the superconductive material. An unbroken length of the conductive material is located sufficiently close to a plurality of the particles to be driven to a superconductive state by the superconductive material.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: July 1, 2003
    Assignee: Nove' Technologies, Inc.
    Inventor: Matthew J. Holcomb
  • Patent number: 6583362
    Abstract: A multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grain Nb3Sn. The superconducting wire is formed by wire-drawing a preform comprising a metallic matrix and at least one niobium alloy rod having zirconium and oxygen in solid solution and heat treating the drawn wire in the presence of tin to yield at least one continuous filament comprising ultra-fine grain Nb3Sn having semi-coherent ZrO2 precipitates disposed therein. The ZrO2 precipitates serve to stabilize the ultra-fine grain microstructure of the Nb3Sn at temperatures up to 1100° C. and allows Nb3Sn to maintain the ultra-fine grain microstructure when heat treated at temperatures that are greater than those previously used. By using higher temperatures to form Nb3Sn, the time required for heat treatment can be significantly reduced.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: June 24, 2003
    Assignee: General Electric Company
    Inventors: Mark Gilbert Benz, Theodore McCall Evenden, Judson Sloan Marte, Thomas Robert Raber
  • Patent number: 6584333
    Abstract: The invention relates to a high-temperature superconductor component with a particular cross-sectional area, which has a current-carrying section, the current-carrying section being in contact with a safety conductor in such a way that the critical current flowing on transition of the superconductor to normal conduction can be taken up without damage by the safety conductor in at least 1 second and rerouted, as well as a process for its production.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: June 24, 2003
    Assignee: Nexans Superconductors GmbH
    Inventors: Stephan Gauss, Joachim Bock, Johannes Holzem, Guenter Brommer, Markus Grom, Werner Horst
  • Publication number: 20030099870
    Abstract: Superconducting cables and magnetic devices are disclosed.
    Type: Application
    Filed: November 28, 2001
    Publication date: May 29, 2003
    Inventors: David M. Buczek, John D. Scudiere, Leslie G. Fritzemeier
  • Publication number: 20030091869
    Abstract: A superconducting article having a high bulk sheath resistivity, and methods of manufacture of such an article. High-temperature superconductor filaments are disposed in a ductile matrix comprising a high silver content. The matrix is then coated with a solute and heated to a temperature high enough to allow the solute to diffuse into the matrix, but not high enough to allow substantive degradation or poisoning of the superconductor. After diffusion and cooling, the matrix comprises a silver alloy having a higher bulk resistivity than the pure silver.
    Type: Application
    Filed: April 3, 2002
    Publication date: May 15, 2003
    Inventors: Alexander Otto, Ralph L. Mason, Craig J. Christopherson, Peter R. Roberts
  • Patent number: 6542760
    Abstract: The invention relates a powder in tube type method of making an HTc superconductive multifilament strand having a silver-based matrix, in which: a first envelope is filled with powder reagents for an HTc superconductor; the resulting billet is drawn down into a monofilament strand; said monofilament strand is cut up into lengths and a secondary envelope is filled with the resulting lengths, thereby making a multifilament billet which is drawn down into a multifilament strand; said multifilament strand is cut up into lengths and a new envelope is filled with the resulting lengths, thereby making a new multifilament billet which is drawn down into a new multifilament strand; and it is shaped and subjected to heat treatment; according to the invention, at least one face of the monofilament strand is electrically insulated; and during the first multifilament step the secondary envelope is filled with the resulting insulated lengths.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: April 1, 2003
    Assignee: Nexans
    Inventors: Albert Leriche, Erick Beghin, Gérard Duperray, Denis Legat, Peter Friedrich Herrmann
  • Patent number: 6507746
    Abstract: The present invention provides an oxide superconducting wire including a component provided in the form of a tape and a metal tape. The component in the form of a tape has an oxide superconducting member and a metal coating member formed mainly of silver and coating a surface of the oxide superconducting member. The metal tape, bonded in a heat treatment (e.g., fusion- or diffusion-bonded) to a surface of the component in the form of a tape, does not contain any superconducting material and it is formed mainly of silver and it also contains at least one component other than silver.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: January 14, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tetsuyuki Kaneko
  • Publication number: 20020198112
    Abstract: An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
    Type: Application
    Filed: June 22, 2001
    Publication date: December 26, 2002
    Inventors: M. Parans Paranthaman, Tolga Aytug, David K. Christen
  • Patent number: 6469253
    Abstract: The present invention relates to an oxide superconducting wire. The wire has a filament made essentially of an oxide superconductor, and a stabilizing metal covering the oxide superconductor. The stabilizing metal includes a silver alloy having at least either higher mechanical strength or higher specific electrical resistance than that of silver. In one embodiment, the stabilizing metal further includes a first portion directly covering the oxide superconductor and a second portion covering the first portion. The first portion is adapted to prevent the component of the second portion from diffusing into and reacting with the oxide superconductor. The first and second portions have different materials, and the first portion is made essentially of an Ag—Sb alloy. In another embodiment, the stabilizing metal further has a first portion directly covering the oxide superconductor, a second portion covering the first portion and a third portion covering the second portion.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: October 22, 2002
    Assignees: Sumitomo Electric Industries, Ltd, Japan Science and Technology Corporation
    Inventors: Nobuhiro Saga, Kazuhiko Hayashi, Kenichi Sato
  • Patent number: 6466805
    Abstract: A composite superconductor having an interior component of multiple filaments of superconducting Bi-2223 sheathed in a Ag or Ag alloy material, and a RE, TI or Hg based superconductor surrounding the interior component.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: October 15, 2002
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Milan Lelovic, Nicholas G. Eror
  • Publication number: 20020142918
    Abstract: A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.
    Type: Application
    Filed: February 26, 2002
    Publication date: October 3, 2002
    Applicant: American Superconductor Corporation
    Inventors: Gilbert N. Riley, Qi Li, Peter R. Roberts, Peter D. Antaya, Jeffrey M. Seuntjens, Steven Hancock, Kenneth L. DeMoranville, Craig J. Christopherson, Jennifer H. Garrant, Christopher A. Craven
  • Patent number: 6455166
    Abstract: A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8° limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375° C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400° C. A method of forming the metal and laminate articles is also disclosed.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: September 24, 2002
    Assignee: The University of Chicago
    Inventors: Thomas G. Truchan, Dean J. Miller, Kenneth C. Goretta, Uthamalingam Balachandran, Robert Foley
  • Patent number: 6440904
    Abstract: Ceramic high-temperature superconductors (1) which are intended to be used as current limiters in alternating-current lines should have a bypass layer (2) whose electrical resistivity is increased by more than 10 times with respect to that of a pure noble-metal bypass layer. In order to achieve this, the noble-metal bypass layer (2) of the high-temperature superconductor (1), preferably of silver, is alloyed with a base metal, preferably Pb or Bi or Ga, by a thermal treatment. The ratio of the bypass layer thickness (d2) of the noble-metal bypass layer (2) to the superconductor layer thickness (d1) is adjusted to <1/5. A base-metal bypass layer (3) of steel whose electrical resistivity is in the range between 10 &mgr;&OHgr;×cm and 100 &mgr;&OHgr;×cm at 77 K is soldered on or applied under isostatic pressure over the noble-metal-containing bypass layer (2).
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: August 27, 2002
    Assignee: ABB Research Ltd
    Inventors: Makan Chen, Martin Lakner, Willi Paul
  • Patent number: 6428635
    Abstract: An alloy capable of forming a (100) [001] cube-texture by thermo-mechanical techniques has 5 to 45 atomic percent nickel with the balance being copper. The alloy is useful as a conductive substrate for superconducting composites where the substrate is coated with a superconducting oxide. A buffer layer can optionally be coated on the substrate to enhance deposition of the superconducting oxide. Methods for producing the alloys, substrates, and superconductors are included.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 6, 2002
    Assignees: American Superconductor Corporation, The Regents of the University of California
    Inventors: Leslie G. Fritzemeier, Elliott D. Thompson, Edward J. Siegal, Cornelis Leo Hans Thieme, Robert D. Cameron, James L. Smith, W. Larry Hults
  • Patent number: 6420318
    Abstract: Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (&lgr;). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a &lgr; greater than 0.2, preferably the &lgr; is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high &lgr;. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: July 16, 2002
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Matthew J. Holcomb
  • Patent number: 6387525
    Abstract: A process for manufacturing superconducting magnets is described. Two conducting tapes are assembled with an insulating ceramic layer deposited between facing sides of the tapes. The tapes and the insulative refractory material are bonded together by, for example, rolling to result in a self insulating substrate tape to which superconducting composition precursors are applied for later annealing. In one aspect, the composite tape is then wound to result in a pancake coil which is exposed to high temperatures in an oxidizing environment to convert the superconducting precursors to superconducting materials. The resultant high temperature superconducting composition coil can then be used as a high temperature superconducting magnet with appropriate conducting connectors applied thereto.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: May 14, 2002
    Assignee: Florida State University
    Inventors: Ibrahim Belenli, Yusuf Hascicek, Ibrahim Mutlu
  • Patent number: 6381832
    Abstract: A superconducting wire having a stacked structure comprising (a) a substrate composed of an electrically conductive material, (b) an oxide superconductor material, and (c) an electrically conductive material which is substantially not reactive with said oxide superconductor material (b), wherein said electrically conductive material (c) is impregnated in said oxide superconductor material (b) by way of heat fusion such that gaps among crystal grains contained in said oxide superconductor material (b) are filled with said electrically conductive material (c). And a process for the production of said superconducting wire.
    Type: Grant
    Filed: May 13, 1996
    Date of Patent: May 7, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventor: Norio Kaneko
  • Patent number: 6383989
    Abstract: Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: May 7, 2002
    Assignee: The Regents of the University of California
    Inventors: Quanxi Jia, Stephen R. Foltyn
  • Patent number: 6370405
    Abstract: A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: April 9, 2002
    Assignee: American Superconductor Corporation
    Inventors: Gilbert N. Riley, Jr., Qi Li, Peter R. Roberts, Peter D. Antaya, Jeffrey M. Seuntjens, Steven Hancock, Kenneth L. DeMoranville, Craig J. Christopherson, Jennifer H. Garrant, Christopher A. Craven
  • Patent number: 6365553
    Abstract: The invention provides an oxide superconductor capable of sufficiently withstanding external forces such as a large electromagnetic force and thermal stresses accompanying rapid heating and cooling while in service, and internal stresses so as to be able to exhibit a high trapped magnetic field stably over a long period of time. The oxide superconductor such as, for example, “a copper oxide superconductor containing rare earth elements”, is composed of an oxide superconductive bulk body impregnated with a low melting metal or an oxide superconductive bulk body impregnated with a low melting metal and having a thin film of the low melting metal formed on the external surface thereof. Such oxide superconductors as described above can be produced by a process whereby the oxide superconductive bulk body kept in an atmosphere of reduced pressure is brought into contact with the low melting metal.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: April 2, 2002
    Assignees: International Superconductivity Technology Center, Railway Technical Research Institute
    Inventors: Masaru Tomita, Masato Murakami
  • Patent number: 6355599
    Abstract: This invention provides a radiation curable coating composition for superconducting wires. The coating composition comprises at least one (meth)acrylate terminated urethane oligomer, at least one adhesion promoter, at least one (meth)acrylate functionalized diluent and at least one free radical photoinitiator.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: March 12, 2002
    Assignee: DSM Desotech, Inc.
    Inventors: Edward P. Zahora, Steven C. Lapin, David M. Szum, Steven R. Schmid
  • Patent number: 6349226
    Abstract: An oxide superconductive wire having practically sufficient tensile strength and superconductive properties is claimed. A first aspect of the present invention includes a first metallic layer made of a silver based alloy containing a metal selected from the group consisting of copper, antimony, tin, germanium, gallium, indium, zinc, platinum and palladium; a second metallic layer having a tensile strength higher than that of silver and fixed to the first metallic layer; and an oxide superconductor layer formed on the first metallic layer. Another aspect of the present invention provides an oxide superconductive wire having first and a second layers and an oxide superconductive wire. The first metallic layer is made of silver and oriented along crystallographic (210) plane. The second metallic layer has a tensile strength higher than that of silver and is fixed to the first metallic layer. The present invention also provides a superconductive device using each of the oxide superconductive wires.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: February 19, 2002
    Assignee: Kabuhsiki Kaisha Toshiba
    Inventors: Hisashi Yoshino, Mutsuki Yamazaki
  • Patent number: 6316391
    Abstract: The present invention provides superconductors capable of being used at temperatures to which the superconductor can be cooled in liquid nitrogen and of carrying current in a high critical current density in a magnetic field, and superconducting apparatuses employing the superconductors and more advantageous in costs than the conventional superconducting apparatuses. A superconducting wire is formed by combining a metallic body of a cubic aggregate structure and an oxide superconducting substance. The present invention provides superconductors, superconducting wires, superconducting magnets and applied superconducting apparatuses having a high superconducting critical current density. The applied super conducting apparatuses employing the superconductors or the superconducting wires in accordance with the present invention are able to operate when cooled in liquid nitrogen-and can be manufactured at costs lower than those of the conventional superconducting apparatuses.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: November 13, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Toshiya Doi, Takesi Ozawa, Toyotaka Yuasa, Kazutoshi Higashiyama
  • Patent number: 6256521
    Abstract: A multi-domained bulk REBa2Cu3Ox with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa2Cu3Ox pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa2Cu3Ox deposited on such textured substrate, such seeds being tailored for various REBa2Cu3Ox compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa2Cu3Ox elements of virtually unlimited size and complex geometry can be fabricated.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: July 3, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Dominic F. Lee, Donald M. Kroeger, Amit Goyal
  • Patent number: 6251834
    Abstract: The invention provides an improved substrate for growing layers of oxide superconductor materials for use in high current engineering applications. The invention also provides superconducting laminates based on the inventive substrates, and processes for the manufacture thereof. The substrate includes an alloy layer that is formed of either a cube-textured FeNi alloy containing about 47% Ni to 58% Ni, or (b) a cube-texture Ni—Cu alloy in the composition range 41% Ni to 44% Ni. The substrate may further include an oxide buffer layer covering a surface of the alloy layer.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: June 26, 2001
    Assignee: Carpenter Technology (UK) Limited
    Inventors: Bartlomiej Andrzej Glowacki, Jan Edgar Evetts, Rodney Major
  • Patent number: 6251530
    Abstract: A thin-film of a high temperature superconducting compound having the formula M1-xCuO2-y, where M is Ca, Sr, or Ba, or combinations thereof, x is 0.05 to 0.3, and x>y. The thin film has a Tc (zero resistivity) of about 40 K. Also disclosed is a method of producing the superconducting thin film.
    Type: Grant
    Filed: August 18, 1992
    Date of Patent: June 26, 2001
    Assignee: Varian, Inc.
    Inventors: Ivan Bozovic, James N. Eckstein
  • Patent number: 6253096
    Abstract: A composite superconductor having an interior component of multiple filaments of superconducting Bi-2223 sheathed in a Ag or Ag alloy material, and a RE, TI or Hg based superconductor surrounding the interior component.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: June 26, 2001
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Milan Lelovic, Nicholas G. Eror
  • Patent number: 6243598
    Abstract: A method of preparing a rare earth-barium-cuprate superconductor in the form of metallic tapes or wires, using a thick film or powder-in-tube process by supporting on a metallic substrate a mixture of seed crystals or aligned platelets of rare earth-barium cuprate having a high melting point and rare earth-barium-cuprate powder having a lower melting point. The material supported on the substrate is then subjected to a heat treatment at a temperature below the melting point of the high melting rare earth-barium-cuprate seed crystals and the metallic substrate and above the melting point of the low melting powder. Subsequently, the heat treated supported material is cooled below the melting temperature of the material and annealed.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: June 5, 2001
    Assignee: Haldor Topsoe A/S
    Inventor: Jens Christiansen
  • Patent number: 6235685
    Abstract: A rod 1 made of superconducting oxide is soaked in a molten normal conductor 2 to join the rod 1 and the normal conductor 2, whereby a superconducting oxide current lead is prepared. As a result, a contact resistance at the interface between the superconducting oxide and the normal conductor can be reduced. Consequently, Joule's heat at a current lead having a small cross sectional area can be suppressed low, which in turn realizes the reduction of the load on a freezer and the amount of evaporated cooling solvent, with respect to a superconducting coil.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: May 22, 2001
    Assignee: International Superconductivity Technology Center
    Inventors: Junya Maeda, Teruo Izumi, Yuichi Imagawa, Satoshi Matsuoka, Yuh Shiohara, Shoji Tanaka, Hiroshi Okamoto
  • Patent number: 6230033
    Abstract: A superconducting ceramic includes a laminate and a superconducting ceramic tape joined to the laminate. The laminate and superconductor tape are joined such that the tape is under a compressive stress. The compressive stress is of a greater amount than compressive stress which results from differences in thermal expansion of the tape and the laminate. The greater compressive stress can be achieved by putting the laminate under a greater tension than the superconducting ceramic tape during joining of the superconducting ceramic tape to the laminate.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: May 8, 2001
    Assignee: American Superconductor Corporation
    Inventors: John D. Scudiere, David M. Buczek, Gregory L. Snitchler, Paul J. Di Pietro
  • Patent number: 6226858
    Abstract: A method of manufacturing a superconductor wire which comprises: rolling a polycrystalline metallic substrate; heating the rolled polycrystalline metallic substrate at a temperature of 900° C. or more in a non-oxidizing atmosphere, whereby obtaining a rolled textured structure which is oriented such that the [100] plane thereof is parallel with a rolled plane and the <001> axis thereof is parallel with a rolled direction; heating the polycrystalline metallic substrate of the rolled textured structure at a temperature of 1,000° C. or more in an oxidizing atmosphere, whereby forming an oxide crystal layer consisting essentially of an oxide of the polycrystalline metal; and forming an oxide superconductor layer on the oxide crystal layer.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: May 8, 2001
    Assignees: The Furukawa Electric Co., Ltd., International Superconductivity Technology Center
    Inventors: Kaname Matsumoto, Naoki Koshizuka, Yasuzo Tanaka
  • Patent number: 6219901
    Abstract: A composite for preparation of an oxide superconductor includes a primary alloy phase of constituent elements of a desired oxide superconductor; and a secondary phase comprising copper, the secondary phase supported by the primary alloy phase. The composite may additionally include a matrix material for supporting the primary alloy phase and second phase disposed therein. The composite is oxidized to form an oxide superconductor composite.
    Type: Grant
    Filed: November 6, 1996
    Date of Patent: April 24, 2001
    Assignee: American Superconductor Corporation
    Inventors: Eric R. Podtburg, Kenneth H. Sandhage, Alexander Otto, Lawrence J. Masur, Christopher A. Craven, Jeffrey D. Schreiber