Producing Lattice Imperfection Flux Pinning Sites Or Increasing Critical Current Density Through Particle Bombardment, Electromagnetic Wave Energy, Or Using Fissionable Material Patents (Class 505/320)
  • Patent number: 11783953
    Abstract: Disclosed are a superconductor having improved critical current density when exposed to high-energy neutron radiation and high magnetic fields, such as found in a compact nuclear fusion reactor, and a method of making the same. The method includes, prior to deployment in the exposure environment, irradiating a polycrystalline (e.g. cuprate) superconductor with ionic matter or neutrons at a cryogenic temperature to create “weak” magnetic flux pinning sites, such as point defects or small defect clusters. Irradiation temperature is chosen, for example as a function of the superconducting material, so that irradiation creates the beneficial flux pinning sites while avoiding detrimental widening of the boundaries of the crystalline grains caused by diffusion of the displaced atoms. Such a superconductor in a coated-conductor tape is expected to be beneficial when used, for example, as a toroidal field coil in a fusion reactor when cooled well below its critical temperature.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: October 10, 2023
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Brandon Nils Sorbom, Zachary Hartwig, Dennis G. Whyte
  • Publication number: 20140302996
    Abstract: Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.
    Type: Application
    Filed: March 7, 2014
    Publication date: October 9, 2014
    Applicant: University of Notre Dame du Lac
    Inventors: Boldizsar Janko, Cynthia Reichhardt, Charles Reichhardt, Dipanjan Ray
  • Patent number: 8629087
    Abstract: A high temperature superconductor (=HTS) coated conductor (1), comprising an HTS layer (11) deposited epitaxially on a substrate (2), wherein the HTS layer (11) exhibits a lattice with a specific crystal axis being oriented perpendicular to the substrate plane (SP), in particular wherein the HTS layer material is of ReBCO type and the c-axis (c) is oriented perpendicular to the substrate plane (SP), wherein the HIS layer (11) comprises particle inclusions (4), in particular wherein the particle inclusions (4) may be used to introduce pinning of magnetic flux, is characterized in that at least a part (4a) of the particle inclusions (4) are formed of the same material as the HTS layer (11), and/or of chemical fractions of the material of the HTS layer (11), such that the average stoichiometry of said part (4a) of the particle inclusions (4) corresponds to the stoichiometry of the HTS layer (11), and that the particle inclusions of said part (4a) are discontinuities of the lattice of the HTS layer (11).
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Klaus Schlenga
  • Patent number: 8536098
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: July 30, 2011
    Date of Patent: September 17, 2013
    Inventor: Amit Goyal
  • Patent number: 8415276
    Abstract: A method of operating a superconductor in its superconductivity state at a temperature Tc(i) in the range of Tc* to Tc, where Tc* is greater than the superconductivity temperature Tc of the superconductor, includes cooling the superconductor to a temperature of Tc or less and applying energy to the superconductor after the superconductor has entered a superconducting state. The energy corresponds to the quantum energy h? in the range of a minimum energy less than E0 to less than E0, where E0 is the ground state of the two-dimensional excitation binding energy of the superconductor The superconductor is then cooled to the selected temperature Tc(i). The minimum energy is 8/9 of E0.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: April 9, 2013
    Assignee: CZT Inc.
    Inventors: Susana Curatolo, Kai Wai Wong
  • Patent number: 8227020
    Abstract: Techniques to form dislocation cores along an interface of a multilayer thin film structure are described. The loading and/or deloading of isotopes of hydrogen are also described in association with core formation. The described techniques can provide be applied to superconductive structure formation, x-ray and charged particle generation, nuclear reaction processes, and/or inertial confinement fusion targets.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 24, 2012
    Assignee: NPL Associates, Inc.
    Inventor: George H. Miley
  • Patent number: 8119571
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: February 21, 2012
    Inventors: Amit Goyal, Sukill Kang
  • Patent number: 8034745
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 11, 2011
    Inventor: Amit Goyal
  • Patent number: 7919435
    Abstract: The present invention relates to a method for producing a defect-containing superconducting film, the method comprising (a) depositing a phase-separable layer epitaxially onto a biaxially-textured substrate, wherein the phase-separable layer includes at least two phase-separable components; (b) achieving nanoscale phase separation of the phase-separable layer such that a phase-separated layer including at least two phase-separated components is produced; and (c) depositing a superconducting film epitaxially onto said phase-separated components of the phase-separated layer such that nanoscale features of the phase-separated layer are propagated into the superconducting film.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 5, 2011
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Patent number: 7902119
    Abstract: Porous ceramic superconductors having a film thickness over 0.5 microns are provided. The superconducting material is applied to a vicinal substrate and optionally nanoparticles are inserted to release local strain. The resultant superconductors exhibit improved Jc values compared to nonvicinal (flat) counterparts and those having no nanoparticles.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 8, 2011
    Inventors: Judy Wu, Rose Emergo, Timothy Haugan, Paul Barnes
  • Patent number: 7838061
    Abstract: Disclosed herein is a method of fabricating a high temperature superconducting film in a vacuum chamber through auxiliary cluster beam spraying using an evaporation method, wherein a high temperature superconducting material is deposited on a substrate in a vapor state by evaporating the high temperature superconducting material, and at the same time, a cluster beam material is formed into gas atoms by heating the cluster beam material charged in a housing, and the formed gas atoms pass through a nozzle of an inlet of the housing and then are sprayed and grown on the substrate in the form of the cluster beam, thereby forming pinning centers in the high temperature superconducting film.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: November 23, 2010
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Sang Soo Oh, Ho Seop Kim, Kyu Jung Song, Do Jun Youm, Sun Mi Lim, Yong Hwan Jung, Sang Moo Lee, Ye Hyun Jung, Jae Eun Yoo
  • Patent number: 7820596
    Abstract: A thick film superconductor includes a substrate and a superconducting thick film formed on the substrate. The thick film is 1-20 microns thick with an average twin spacing to film thickness ratio of about 0.016, and is formed from an aqueous solution of YBC ions doped with a particulate rare earth oxide having a diameter of about 50-500 nm. The coated substrate is heat treated, preferably above 650 degrees C. and cooled at a rate less than 15 degrees C. per hour, resulting in a substantially fully oxygenated YBCO layer.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: October 26, 2010
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: Siu-Wai Chan
  • Patent number: 7737087
    Abstract: A process and composition of matter are provided and involve flux pinning in thin films of high temperature superconductive oxides such as YBCO by inclusion of particles including barium and a group 4 or group 5 metal, such as zirconium, in the thin film.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: June 15, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Judith L. Driscoll, Stephen R. Foltyn
  • Patent number: 6949490
    Abstract: High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods for making such high-Tc superconducting products. Completely sealed high-Tc superconducting ceramic oxide provides are made by a macroscopic process including the steps of pressing a superconducting ceramic oxide powder into a hollow body of a material inert to oxygen; heat treating the superconducting ceramic oxide powder packed body under conditions sufficient to sinter the ceramic oxide powder; and then sealing any openings of the body. Optionally, a waveform or multiple pulses of alternate magnetic filed can be applied during the heat treatment.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: September 27, 2005
    Inventor: Dawei Zhou
  • Patent number: 6869915
    Abstract: An oxide superconductor includes a textured superconducting material including an array of defects, where the defects are a compound of two elements foreign to the superconductor, plus other elements native to the superconductor. The two foreign elements include one from group A and one from group B (or alternately the two foreign elements include the element uranium and one element from group C), where group A includes Cr, Mo, W, or Nd, group B includes Pt, Zr, Pd, Ni, Ti, Hf, Ce and Th, and group C includes Zr, Pd, Ni, Ti, Hf, Ce and Th. The array of defects is dispersed throughout the superconducting material. The superconducting material may be the RE1Ba2Cu3O7?? compound, wherein RE=Y, Nd, La, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Tb; the Bi2Sr2CaCu2Ox, (Bi, Pb)2Sr2CaCu2Ox, Bi2Sr2Ca2Cu3Ox (Bi, Pb)2Sr2Ca2Cu3Ox compounds; the HgBa2Ca2Cu3O8 and HgBa2CaCu2O6 compounds, the TlCaBa2Cu2Ox or Tl2Ca2Ba2Cu3Ox compounds and compounds involving substitution such as the Nd1+xBa2?xCu3Ox compounds.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: March 22, 2005
    Inventor: Roy Weinstein
  • Patent number: 6809066
    Abstract: Ion texturing methods and articles are disclosed.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: October 26, 2004
    Assignee: The Regents of the University of California
    Inventors: Ronald P. Reade, Paul H. Berdahl, Richard E. Russo, Leslie G. Fritzemeier
  • Patent number: 6638895
    Abstract: A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10° K. to about 90° K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: October 28, 2003
    Assignee: The University of Chicago
    Inventors: Goran T. Karapetrov, Wai-Kwong Kwok, George W. Crabtree, Maria Iavarone
  • Patent number: 6630426
    Abstract: A method for increasing the critical temperature, Tc, of a high critical temperature superconducting (HTS) film (104) grown on a substrate (102) and a superconducting structure (100) made using the method. The HTS film has an a-b plane parallel to the surface of the substrate and a c-direction normal to the surface of the substrate. Generally, the method includes providing the substrate, growing the HTS film on the substrate and, after the HTS film has been grown, inducing into the HTS film a residual compressive strain the a-b plane and a residual tensile strain into the c-direction.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: October 7, 2003
    Assignee: TeraComm Research Inc.
    Inventors: Thomas G. Ference, Kenneth A. Puzey
  • Patent number: 6525002
    Abstract: An oxide superconductor includes a textured superconducting material including an array of defects with a neutron-fissionable element, or with at least one of the following chemical elements: uranium-238, Nd, Mn, Re, Th, Sm, V, and Ta. The array of defects is dispersed throughout the superconducting material. The superconducting material may be the RE1Ba2Cu3O7−&dgr; compound, wherein RE=Y, Nd, La, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu; the Bi2Sr2CaCu2Ox, the (Bi, Pb)2Sr2CaCu2Ox, Bi2Sr2Ca2Cu3Ox or (Bi, Pb)2Sr2Ca2Cu3Ox compound; the Tl2Ca1.5BaCu2Ox or Tl2Ca2Ba2Cu3Ox compound; or a compound involving substitution such as the Nd1+xBa2−xCu3Ox compounds. The neutron-fissionable element may be uranium-235. The oxide superconductor may include additional defects created by fission.
    Type: Grant
    Filed: May 6, 2000
    Date of Patent: February 25, 2003
    Inventor: Roy Weinstein
  • Patent number: 6493411
    Abstract: Thermal neutron irradiation of superconducting body compositions into which Li or B has been incorporated as a unit cell external or internal dopant introduces by the nuclear reaction of the dopant pinning centers which substantially improve the critical current density of the body.
    Type: Grant
    Filed: October 1, 1996
    Date of Patent: December 10, 2002
    Assignee: University of Houston-University Park
    Inventors: Wei-Kan Chu, Jiarui Liu
  • Publication number: 20020165100
    Abstract: The present invention concerns the improvement of the supercurrent carrying capabilities, i.e. the increase of critical current densities, of bicrystalline or polycrystalline superconductor structures, especially of high-Tc superconductors. By providing an appropriate predetermined dopant profile across the superconductor structure, in particular within or in the vicinity of the grain boundaries, the space-charge layers at the grain boundaries are reduced and thereby the current transport properties of the superconductor significantly improved. Simultaneously, the influence of magnetic fields on the critical current densities is significantly reduced, which in turn enhances the overall supercurrent carrying capabilities while keeping the supercurrent transport properties of the grains at good values.
    Type: Application
    Filed: March 2, 2001
    Publication date: November 7, 2002
    Inventors: Hartmut Ulrich Bielefeldt, Barbel Martha Gotz, German Hammerl, Johannes Wilhelmus Maria Hilgenkamp, Jochen Dieter Mannhart, Andreas Fritz Albert Schmehl, Christof Walter Schneider, Robert Ralf Schulz
  • Publication number: 20020164418
    Abstract: A method for creating a long superconducting wire and tape materials that can be loaded with high current densities using MgB2. The method is based on the powder-in-the-tube technology. In this process, there is a composite consisting of a cover tube made of material with normal conductivity, and a powder of a superconducting compound or a preliminary product. This powder compound contained in this cover tube, are processed by reshaping and thermal treatment steps to the superconducting wire or tape material. According to the invention, a composite is supplied to the processing process that contains a powdery superconducting MgB2 compound or a powdery preliminary product for a superconducting MgB2 compound. The powdery preliminary product, has been only partially reacted to an MgB compound, or is a powder mixture consisting of the individual components of the desired MgB2 compound. This product is filled into the cover tube.
    Type: Application
    Filed: March 21, 2002
    Publication date: November 7, 2002
    Inventors: Claus Fischer, Wolfgang Hassler, Margitta Schubert, Hans-Peter Trinks, Andreas Gumbel
  • Patent number: 6083885
    Abstract: An oxide superconductor includes a textured superconducting material including an array of defects with a neutron-fissionable element, or with at least one of the following chemical elements: uranium-238, Nd, Mn, Re, Th, Sm, V, and Ta. The array of defects is dispersed throughout the superconducting material. The superconducting material may be the RE.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-.delta. compound, wherein RE=Y, Nd, La, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu; the Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.x, the (Bi, Pb).sub.2 Sr.sub.2 CaCu.sub.2 O.sub.x, Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x or (Bi, Pb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x compound; the Tl.sub.2 Ca.sub.1.5 BaCu.sub.2 O.sub.x or Tl.sub.2 Ca.sub.2 Ba.sub.2 Cu.sub.3 O.sub.x compound; or a compound involving substitution such as the Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.x compounds. The neutron-fissionable element may be uranium-235. The oxide superconductor may include additional defects created by fission.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: July 4, 2000
    Inventor: Roy Weinstein
  • Patent number: 5912210
    Abstract: There is disclosed herein an invention for increasing the current carrying capability of high-Tc superconductor materials. The inventive method includes irradiating such superconductors with light particles, such as neutrons, protons and thermal neutrons, having energy sufficient to cause fission of one or more elements in the superconductor material at a dose rate and for a time sufficient to create highly splayed (dispersed in orientation) extended columns of damaged material therein. These splayed tracks significantly enhance the pinning of magnetic vortices thereby effectively reducing the vortex creep at high temperatures resulting in increased current carrying capability.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: June 15, 1999
    Assignee: International Business Machines Corporation
    Inventors: Lia Krusin-Elbaum, Alan David Marwick, Paul William Lisowski, James Russell Thompson, Jr., James Francis Ziegler
  • Patent number: 5856205
    Abstract: In a Josephson junction device comprises two superconducting electrodes formed of an oxide superconductor and connected through a Josephson junction, a temperature dependent noise of the Josephson junction becomes the minimum at a liquid nitrogen temperature.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: January 5, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Hirokazu Kugai
  • Patent number: 5731270
    Abstract: An oxide is formed which will form an oxide superconductor containing a Cu-O atomic layer. The oxide is hydrogenated. The oxide is oxidized after it is hydrogenated. The hydrogenation and the oxidization are executed simultaneously with or after the oxide is formed. The hydrogenation and the oxidization improve the superconducting characteristics of the oxide superconductor.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: March 24, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kentaro Setsune, Yo Ichikawa, Akira Enokihara, Masahiro Sakai
  • Patent number: 5683967
    Abstract: Method for increasing the critical current density in Type II superconducting materials. The generation of a regular pattern of defects for pinning vortices, where the density of pinning sites is matched to the density of vortices produced by a chosen magnetic field in the particular superconducting material, is described. It is anticipated that such a defect pattern will substantially increase the critical current density carrying capability of the superconducting material so patterned. The fabrication of thick superconductors and conductors having chosen shapes is also described.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: November 4, 1997
    Inventor: Anatoly Frenkel
  • Patent number: 5677265
    Abstract: A process for the oxygenation of ceramic high T.sub.c superconductors is disclosed. The superconductor is formed from a sintered powdered ceramic. Microchannels are formed in the ceramic material by embedding in the powder a plurality of wires or fibers formed of a material which is thermally removable during the sintering process to leave thin, continuous, tubular channels. After sintering, the ceramic is exposed to oxygen in a high temperature, high pressure environment. The microchannels aid in the transport of oxygen into the interior of the material by providing passages along which the oxygen travels prior to diffusing into the material. The lengths of the diffusion paths in the material are thereby greatly shortened. In another embodiment, the channels are formed after sintering and prior to oxygenation by drilling, punching, or etching.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: October 14, 1997
    Assignee: Northeastern University
    Inventors: Bill C. Giessen, Robert S. Markiewicz, Bala Maheswaran, Thomas R. Gilbert
  • Patent number: 5627140
    Abstract: Enhanced flux pinning in superconductors is achieved by embedding carbon nanotubes into a superconducting matrix. The carbon nanotubes simulate the structure, size and shape of heavy ion induced columnar defects in a superconductor such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8+x. The nanotubes survive at treatment temperatures of up to approximately 800.degree. C. both in oxygen containing and in inert atmospheres. The superconducting matrix with nanotubes is heat treated at a lower temperature than the temperature used to treat the best case pure superconductor material.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: May 6, 1997
    Assignees: NEC Research Institute, Inc., Florida State University
    Inventors: Kristian Fossheim, Thomas W. Ebbesen
  • Patent number: 5597782
    Abstract: A method for improving the phase purity of a multiphase ceramic high temperature superconductor by selective microwave heating of undesired phases in a multiphase material to cause a phase transformation of the undesired phase to the desired phase. The selective microwave heating may be employed during initial firing and sintering of the ceramic superconductor compound or as a subsequent annealing step. Plane polarized microwave energy may be employed to enhance the two dimensional anisotropy of the compound by similar selective heating.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: January 28, 1997
    Inventor: David L. Henty