Laser Ablation Patents (Class 505/412)
  • Patent number: 8809236
    Abstract: A method for manufacturing a high temperature superconductor (=HTS) coated tape (20), with the following steps: preparation of a substrate tape (1), deposition of at least one buffer layer (2), deposition of an HTS film (3), deposition of a metallic protection layer (35) on the HTS film (3) and deposition of a metallic shunt layer (36) is characterized in that, prior to deposition of the metallic shunt layer (36), the partially prepared coated tape (10) undergoes a laser beam cutting in order to provide a desired tape form, wherein the laser beam cutting is applied together with a gas flow and/or a liquid flow (23). The method reduces the loss of critical current and reduces or avoids a deterioration of the critical temperature in a HTS coated tape due to tape cutting.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 19, 2014
    Assignees: Oswald Elektromotoren GmbH, Bruker HTS GmbH
    Inventors: Johannes Oswald, Bernhard Oswald, Thomas Reis, Alexander Rutt, Alexander Usoskin
  • Patent number: 7888290
    Abstract: The invention herein is directed towards a material exhibiting superconductivity characteristics which includes a laser processed region of a metal oxide crystal. The material has a transition temperature greater than a transition temperature of the metal oxide crystal, preferably greater than 140K. The transition temperature of the material may be considered greater than the transition temperature of the metal oxide crystal if the material has a transition temperature and the metal oxide crystal has no transition temperature. The present invention is also directed to a material which includes a laser processed strontium ruthenate crystal wherein the material has a greater oxygen content than the starting strontium ruthenate crystal. The present invention is also directed towards a method for manufacturing a material exhibiting superconductivity characteristics that includes providing a metal oxide crystal and laser ablating the metal oxide crystal and a material made by this process.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: February 15, 2011
    Inventors: Armen Gulian, Kent S Wood, Deborah Van Vechten, Vahan R Nikoghosyan
  • Patent number: 7884051
    Abstract: The invention herein is directed towards a method of making material exhibiting superconductivity characteristics which includes a laser processed region of a metal oxide crystal. The material has a transition temperature greater than a transition temperature of the metal oxide crystal, preferably greater than 140K. The transition temperature of the material may be considered greater than the transition temperature of the metal oxide crystal if the material has a transition temperature and the metal oxide crystal has no transition temperature. The present invention is also directed to a material which includes a laser processed strontium ruthenate crystal wherein the material has a greater oxygen content than the starting strontium ruthenate crystal. The present invention is also directed towards a method for manufacturing a material exhibiting superconductivity characteristics that includes providing a metal oxide crystal and laser ablating the metal oxide crystal and a material made by this process.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 8, 2011
    Inventors: Armen M Gulian, Kent S Wood, Deborah Van Vechten, Vahan R Nikoghosyan
  • Publication number: 20110028329
    Abstract: The invention herein is directed towards a method of making material exhibiting superconductivity characteristics which includes a laser processed region of a metal oxide crystal. The material has a transition temperature greater than a transition temperature of the metal oxide crystal, preferably greater than 140K. The transition temperature of the material may be considered greater than the transition temperature of the metal oxide crystal if the material has a transition temperature and the metal oxide crystal has no transition temperature. The present invention is also directed to a material which includes a laser processed strontium ruthenate crystal wherein the material has a greater oxygen content than the starting strontium ruthenate crystal. The present invention is also directed towards a method for manufacturing a material exhibiting superconductivity characteristics that includes providing a metal oxide crystal and laser ablating the metal oxide crystal and a material made by this process.
    Type: Application
    Filed: February 23, 2010
    Publication date: February 3, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Armen Gulian, Kent S. Wood, Deborah Van Vechten, Vahan R. Nikoghosyan
  • Publication number: 20100248967
    Abstract: The invention herein is directed towards a material exhibiting superconductivity characteristics which includes a laser processed region of a metal oxide crystal. The material has a transition temperature greater than a transition temperature of the metal oxide crystal, preferably greater than 140K. The transition temperature of the material may be considered greater than the transition temperature of the metal oxide crystal if the material has a transition temperature and the metal oxide crystal has no transition temperature. The present invention is also directed to a material which includes a laser processed strontium ruthenate crystal wherein the material has a greater oxygen content than the starting strontium ruthenate crystal. The present invention is also directed towards a method for manufacturing a material exhibiting superconductivity characteristics that includes providing a metal oxide crystal and laser ablating the metal oxide crystal and a material made by this process.
    Type: Application
    Filed: September 12, 2006
    Publication date: September 30, 2010
    Inventors: Armen Gulian, Kent S. Wood, Deborah Van Vechten, Vahan R. Nikoghosyan
  • Publication number: 20100216646
    Abstract: A process for preparing a superconductor article includes depositing a precursor solution onto a substrate to form a precursor film, the precursor solution comprising precursor components to a rare earth-alkaline earth metal-transition metal oxide in one or more solvents, decomposing the precursor film to form an intermediate film comprising the rare earth metal, the alkaline earth metal, and the transition metal of the first precursor solution, selectively removing portions of the intermediate film, wherein a patterned intermediate film is obtained, and treating the patterned intermediate film to form a rare earth-alkaline earth metal-transition metal oxide superconductor.
    Type: Application
    Filed: February 26, 2010
    Publication date: August 26, 2010
    Applicant: American Superconductor Corporation
    Inventors: Thomas Kodenkandath, Wei Zhang
  • Patent number: 7510997
    Abstract: The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: March 31, 2009
    Assignees: Applied Thin Films, Inc., UT-Battelle, LLC
    Inventors: Sambasivan Sankar, Amit Goyal, Scott A. Barnett, Ilwon Kim, Donald M. Kroeger
  • Patent number: 7507519
    Abstract: Aspects of the invention can provide a patterning forming method capable of patterning a thin film by a simple and inexpensive device. The thin film can be provided on a base member including a photothermal conversion material that converts optical energy into thermal energy and light is radiated onto the base member to remove the thin film corresponding to a light-radiated region, such that the thin film is patterned.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: March 24, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Naoyuki Toyoda
  • Publication number: 20080176752
    Abstract: This invention provides a laser trimming method for tuning the frequency of a spiral resonator, and for improving the characteristics of a high temperature superconductor filter comprised of high temperature superconductor spiral resonators, by tuning the individual high temperature superconductor spiral resonators. This invention also provides a method for tuning the resonance frequency of a high temperature superconductor planar coil. This invention also provides a laser ablation process for creating high temperature superconductor circuit elements.
    Type: Application
    Filed: March 26, 2008
    Publication date: July 24, 2008
    Inventors: Paul J. Martin, James D. MCCAMBRIDGE
  • Patent number: 6097417
    Abstract: A vacuum system can remove ablated particles from an internal drum platesetter which has a drum for supporting a photosensitive medium, a carriage moveable in a direction parallel to a longitudinal axis of the drum, and a laser mounted onto the moveable carriage for generating a beam to create an image on the medium during movement of the carriage, the beam ablating particles of the medium during creation of the image. The vacuum system includes: a vacuum head fixedly attached to the moveable carriage, and having at least one chamber for receiving the ablated particles through a slot located proximate to a periphery of the vacuum head; and an exhaust system connected to the vacuum head and including ductwork, at least one fan and at least one filter, for extracting the ablated particles from the at least one chamber of the vacuum head.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: August 1, 2000
    Assignee: Agfa Corporation
    Inventors: Donald B. Richardson, Jr., Robert D. Olenio, Jeffrey Knox, Nicholas Stefanidakis, Behrouz Abedian
  • Patent number: 5952271
    Abstract: The method for manufacturing superconducting elements according to the present invention includes the following steps of: (a) placing a substrate near a target in a chamber so that the substrate is positioned to face a surface of the target, wherein the target comprises a target material of a complex oxide superconducting compounds; (b) irradiating a laser beam to the surface of the target to vaporize or sublime the target material so that the target material is deposited onto a surface of the substrate, wherein the surface of the substrate maintains the position facing the surface of the target; and (c) fabricating the surface of the target material layer on the substrate to form a superconducting element by irradiating a laser beam to the surface of the substrate, without removing the substrate from the chamber.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: September 14, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akihiro Moto, Tatsuoki Nagaishi, Hideo Itozaki
  • Patent number: 5702565
    Abstract: An improved dielectric layer of an electroluminescent laminate, and method of preparation are provided. The dielectric layer is formed as a thick layer from a ceramic material to provide:a dielectric strength greater than about 1.0.times.10.sup.6 V/m;a dielectric constant such that the ratio of the dielectric constant of the dielectric material to that of the phosphor layer is greater than about 50:1;a thickness such that the ratio of the thickness of the dielectric layer to that of the phosphor layer is in the range of about 20:1 to 500:1; anda surface adjacent the phosphor layer which is compatible with the phosphor layer and sufficiently smooth that the phosphor layer illuminates generally uniformly at a given excitation voltage.The invention also provides for electrical connection of an electroluminescent laminate to voltage driving circuity with through hole technology. The invention also extends to laser scribing the transparent conductor lines of an electroluminescent laminate.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: December 30, 1997
    Assignee: Westaim Technologies, Inc.
    Inventors: Xingwei Wu, James Alexander Robert Stiles, Ken Kok Foo, Phillip Bailey
  • Patent number: 5618446
    Abstract: The present invention relates to a method for foxing a step on a deposition surface of a substrate for depositing a thin film on it. According to the method, the step is formed by etching a portion of the deposition surface of the substrate by emitting a laser beam to the portion.
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: April 8, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tatsuoki Nagaishi
  • Patent number: 5602079
    Abstract: A superconducting device having a superconducting film measures a characteristic such as its resonance frequency while in an environment having a temperature that is less than or equal to its superconducting transition temperature. A laser then thermally etches the superconducting film on the basis of said measurement in the environment having a temperature that is less than or equal to a superconducting transition temperature.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: February 11, 1997
    Assignees: International Superconductivity Technology Center, Kawasaki Jukogyo Kabushiki Kaisha, NEC Corporation, Mitsubishi Materials Corporation
    Inventors: Tsuyoshi Takenaka, Katsumi Suzuki, Shuichi Fujino, Youichi Enomoto
  • Patent number: 5567330
    Abstract: Electrical interconnect structures comprised of high temperature superconducting signal layers on a substrate bonded to one another or optionally to a base substructure containing power and ground planes and processes for their preparation are disclosed.
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: October 22, 1996
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Robert G. Dorothy
  • Patent number: 5332723
    Abstract: A method of producing a new high Tc superconducting material using fullerene molecules as artificial pinning sites for any magnetic flux that may enter the material.
    Type: Grant
    Filed: July 28, 1993
    Date of Patent: July 26, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Walter Eidelloth, deceased, James T. Busch, heir, Richard J. Gambino, Rodney Ruoff, Claudia D. Tesche