Process Of Making Wire, Tape, Cable, Coil, Or Fiber Patents (Class 505/430)
  • Publication number: 20090156410
    Abstract: In a fabrication method of a MgB2 superconducting tape and wire by filling a tube with a MgB2 superconducting powder and forming it into a tape or wire, a fabrication method of a MgB2 superconducting tape (and wire) which is characterized by using a MgB2 superconducting powder having a high critical current density (Jc) owing to its lowered crystallinity and having potential for excellent grain connectivity as the MgB2 superconducting powder. Provided are a fabrication method of a MgB2 superconducting tape and wire which can fabricate a MgB2 superconducting tape and wire having a level of Jc sufficiently high for practical applications and homogeneous quality throughout its length by an ex-situ process employing a material of the composition suitable for its working environment as the sheath material, and a MgB2 superconducting tape and wire thereby fabricated.
    Type: Application
    Filed: October 24, 2006
    Publication date: June 18, 2009
    Inventors: Takayuki Nakane, Hitoshi Kitaguchi, Hiroki Fujii, Hiroaki Kumakura
  • Patent number: 7521082
    Abstract: A superconducting article is disclosed, including a substrate and a chemical vapor deposited thin film superconducting layer overlying the substrate, the superconducting layer having a critical current not less than about 100 A/cm width at 77K and self field. The superconducting article may be a tape, multiple tapes, or a power device, such as a power cable, power generator, or power transformer. Also disclosed are methods for manufacturing same and methods for using same.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: April 21, 2009
    Assignee: Superpower, Inc.
    Inventor: Venkat Selvamanickam
  • Publication number: 20090099026
    Abstract: A method of processing width of a superconducting wire rod is provided, in which slit processing is performed to a superconducting wire rod formed using a wide substrate, without deteriorating the superconducting feature and at high production efficiency. The method includes a step of preparing the superconducting wire rod and a step of cutting the superconducting wire rod by processing portions each having two opposing cutting portions. At least two sets of the processing portions are arranged adjacent to each other with a distance in a width direction of the superconducting wire rod so that the superconducting wire rod is interposed between the two cutting portions. Contacting positions of the cutting portions contacting one surface of the superconducting wire rod are externally positioned in the width direction of the superconducting wire rod relative to contacting positions of the cutting portions contacting the other surface of the superconducting wire rod.
    Type: Application
    Filed: April 17, 2007
    Publication date: April 16, 2009
    Applicant: Sumitomo Electric Industries Ltd
    Inventors: Munetsugu Ueyama, Kazuya Ohmatsu
  • Patent number: 7517834
    Abstract: The invention provides an improved method of manufacturing an HTS tape coil for an MRI device with enhanced protection, the method comprising attaching high-Q capacitors at each end of an HTS wire, removing substantially all electrically conductive sheathing material on an inner side of the HTS wire, while retaining substantially all electrically conductive sheathing material on an outer side of the HTS wire. The invention also provides an HTS wire made in accordance with the foregoing method.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: April 14, 2009
    Assignee: The University of Hong Kong
    Inventors: Yum Wing Wong, Edward S. Yang
  • Publication number: 20090005251
    Abstract: A superconductive element containing magnesiumdiboride (=MgB2), comprising at least one superconductive filament (1) of a size between 5 and 500 micron, which is enclosed in a metallic matrix (2) and also comprising at least one highly conductive ohmic element (4),the superconducting filaments being separated from the matrix (2) and from the conductive ohmic element (4) by a protective metallic layer (3), the superconductive filament being formed by a reaction between boron (B) and magnesium (Mg) powders and boron carbide (=B4C) powders as a first additive is characterized in that one or more additional powder additives containing carbon are present in the reaction of the powder mixtures including Mg, B and B4C. The reaction of the powder mixture to MgB2 is carried out at temperatures between 500 and 760° C. leading to a maximum of the critical current density, Jc, at temperatures at 760° C. and below.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 1, 2009
    Inventors: Rene Fluekiger, Paola Lezza
  • Publication number: 20080293575
    Abstract: A superconducting cable enables the cooling of the superconducting conductor with high efficiency and has a sufficient insulating strength. A method of controlling the temperature of the coolants used in the cable is offered. The superconducting cable comprises a heat-insulated pipe that houses a cable core provided with a superconducting conductor made of a superconducting material. The cable core is also provided with a poorly heat-conductive pipe placed at the outer side of the outer circumference of the superconducting conductor. The inside and outside of the poorly heat-conductive pipe are separately filled with different types of coolants having different purposes. The poorly heat-conductive pipe is filled with a conductor-use coolant for cooling the superconducting conductor so as to maintain it at the superconducting state. The heat-insulated pipe is filled with an insulation-use coolant for performing electric insulation of the superconducting conductor.
    Type: Application
    Filed: September 30, 2005
    Publication date: November 27, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masayuki Hirose, Ryosuke Hata
  • Publication number: 20080287302
    Abstract: A method of producing a superconducting wire comprises the steps of (a) preparing a superconducting precursor powder by treating a material powder for a superconducting use, (b) packing a first metal pipe with the superconducting precursor powder, and (c) sealing the first metal pipe. In the method, the step of packing the first metal pipe and the step of sealing the first metal pipe are performed in an atmosphere under a reduced pressure to reliably perform a degassing treatment of the superconducting powder. Thus, a method of producing a superconducting wire excellent in superconducting property, particularly a critical current, is offered. A production method of a superconducting multifilament wire is offered. A superconducting apparatus produced through these methods is offered.
    Type: Application
    Filed: March 1, 2006
    Publication date: November 20, 2008
    Inventor: Koso Fujino
  • Publication number: 20080274902
    Abstract: The present invention provides a method for producing a MgB2 superconductor, comprising compacting and heating a mixture comprising Mg or MgH2 powder and B powder, wherein said mixture comprises SiC powder and an aromatic hydrocarbon, and a MgB2 superconductor having a higher critical current density (Jc) than that of the known MgB2 superconductors added SiC only or added an aromatic hydrocarbon only such as benzene.
    Type: Application
    Filed: February 20, 2008
    Publication date: November 6, 2008
    Inventors: Hideyuki Yamada, Nobuhito Uchiyama, Hiroaki Kumakura, Hitoshi Kitaguchi, Akiyoshi Matsumoto
  • Publication number: 20080274900
    Abstract: A method of manufacturing a sintered body, which is a method of manufacturing a sintered body containing Mg and B, comprises the arrangement and heat treatment steps of arranging Mg powder (3a, 3b) and B powder (2) without mixing the Mg powder and the B powder with each other and heat-treating the Mg powder (3a, 3b) and the B powder (2) after the arrangement step. The temperature in the heat treatment step is at least 651° C. and not more than 1107° C. Thus, the critical current density can be improved.
    Type: Application
    Filed: October 25, 2005
    Publication date: November 6, 2008
    Inventors: Jun-ichi Shimoyama, Takeshi Kato
  • Patent number: 7432229
    Abstract: Laminated, biaxially textured superconductors include Ir-based buffer layers and/or substrates.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: October 7, 2008
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan P. Paranthaman, Tolga Aytug
  • Patent number: 7383625
    Abstract: Disclosed is a method of manufacturing a continuous disk winding. A high-temperature superconducting wire is lapped using Kapton films to insulate the high-temperature superconducting wire. The high-temperature superconducting wire is wound on a bobbin by a predetermined number of turns to form a layer of windings. An annular disk having a slit formed therein is fitted onto the bobbin. The slit is formed along the circumference of the disk and to be inclined from the inner side of the disk towards the outer side thereof. The high-temperature superconducting wire is inserted into the slit of the disk to pass through the annular disk smoothly along the inclined slit and wound again by the predetermined number of turns to form a next layer of windings. The above steps of fitting an annular disk, and inserting and winding the high-temperature superconducting wire are repeated to form multiple layers of windings.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 10, 2008
    Assignee: Korea Polytechnic University
    Inventors: Kyeong Dal Choi, Woo Seok Kim, Seung Wook Lee, Young In Hwang
  • Patent number: 7319195
    Abstract: A composite conductor suitable as a connecting conductor that includes a superconductor and is capable of reducing the generation of Joule heat in a joint part between the system side and power-supply sides of a superconductor apparatus. A composite conductor 10 includes a superconductor 12 provided continuously in the flowing direction of the electric current, and a metal conductor 11 joined with the superconductor 12 and provided at least at a joint part with mating conductors 50, 60 to be joined, wherein the electric current is fed and received between the metal conductor 11 and the mating conductors 50, 60 by joining the metal conductor 11 and the mating conductors 50, 60, and wherein the superconductor 12 is arranged in the metal conductor 11 so as to be approximately parallel to the joint surface (joint interface) between the metal conductor 11 and the mating conductors 50,60.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: January 15, 2008
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Shuichi Kohayashi, Kazuyuki Uemura, Shigeo Nagaya, Naoji Kashima
  • Publication number: 20070270314
    Abstract: A low AC loss electrical conductor includes a plurality of single-filament superconducting strands longitudinally wound about one another. An insulative housing surrounds the plurality of single-filament superconducting strands.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 22, 2007
    Inventors: Xianrui Huang, Minfeng Xu
  • Patent number: 7275301
    Abstract: A method for manufacturing clad superconducting wire for use in superconducting coils, such wire having improved resistance to electromagnetic forces by using composite superconducting wires that are clad with selected high-stiffness high-strength materials.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: October 2, 2007
    Inventors: Shahin Pourrahimi, Nadder Pourrahimi
  • Patent number: 7247340
    Abstract: A method of forming a superconducting conductor is disclosed. The method provides translating a substrate tape through a deposition chamber and along a helical path, where the helical path has multiple windings of the substrate tape and each winding of the substrate tape extends along a feed path and a return path. The method further provides depositing a HTS layer overlying the substrate tape within a deposition chamber, wherein the deposition chamber houses the substrate tape along the feed path but not the return path.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: July 24, 2007
    Assignee: Superpower, Inc.
    Inventors: Thomas Martin Salagaj, Venkat Selvamanickam
  • Patent number: 7226894
    Abstract: Disclosed herein is method for making a wire comprising contacting a first end of a first superconducting wire with a second end of a second superconducting wire, wherein the superconducting wire comprises a superconducting filament having a superconducting composition comprising magnesium diboride; heating the first end of the first superconducting wire with the second end of the second superconducting wire at a point to form a joint, wherein the superconducting filament having the superconducting composition is in continuous electrical contact with any other part of the superconducting filament after the formation of the joint.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: June 5, 2007
    Assignee: General Electric Company
    Inventors: Thomas Robert Raber, Judson Sloan Marte, Evangelos Trifon Laskaris, Sergio Martins Loureiro, Robert John Zabala, Bruce Alan Knudsen, Kathleen Melanie Amm, Bruce Campbell Amm, James William Bray
  • Patent number: 7152302
    Abstract: A method of producing an electrical connection structure between at least two superconducting lines. The method comprises adding metal powder or alloy powder to a superconducting material comprising magnesium diboride, intervening the superconducting material between at least two superconducting lines, and heating said superconducting lines and said superconducting material to a temperature lower than the melting point of said superconducting material prior to the addition of said metal powder or alloy powder thereto, but higher than the melting point of said metal powder or alloy powder.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: December 26, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Morita, Kazuhide Tanaka, Yasuo Suzuki, Michiya Okada
  • Patent number: 7109425
    Abstract: A low alternating current loss superconducting cable is provided, including a plurality of superconducting tapes spirally wound around a longitudinally extending core. The tapes are provided in a path between about 5° and 85° relative to the longitudinal axis of the core such that the tape completely covers the surface of the core. The tapes are generally parallel to each other and include first and second tapes that are adjacent to each other. The first and second tapes partially overlap each other.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: September 19, 2006
    Assignee: Superpower, Inc.
    Inventors: Chandra T. Reis, Michael S. Walker
  • Patent number: 7018954
    Abstract: Processes for the fabrication of MgB2 powder and wires are provided. Powders are produced by mechanically alloying magnesium- and boron-containing precursors under controlled conditions to avoid secondary phase and impurity formation. Powders are also prepared by vapor phase reaction of volatile magnesium- and boron-containing precursors. Wires, tapes, films and coatings are provided.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: March 28, 2006
    Assignee: American Superconductor Corporation
    Inventors: Cornelis L. Thieme, Martin W. Rupich, Alexander Otto, Gilbert N. Riley, Jr.
  • Patent number: 7009104
    Abstract: A superconducting cable comprising at least a superconducting conductor and a cryostat, including a thermal insulation and an inner tube, with a protecting element between the superconducting conductor and the inner tube, to prevent damages to the superconducting material by the inner tube of the cryostat.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: March 7, 2006
    Assignee: Pirelli Cavi e Sistemi S.p.A.
    Inventor: Sergio Spreafico
  • Patent number: 6993823
    Abstract: The inventive method of manufacturing an oxide superconducting wire comprises a step (S1, S2) of preparing a wire formed by covering raw material powder of an oxide superconductor with a metal and a step (S4, S6) of heat-treating the wire in a pressurized atmosphere, and the total pressure of the pressurized atmosphere is at least 1 MPa and less than 50 MPa. Thus, formation of voids between oxide superconducting crystals and blisters of the oxide superconducting wire is suppressed while the partial oxygen pressure can be readily controlled in the heat treatment, whereby the critical current density can be improved.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: February 7, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin-ichi Kobayashi, Takeshi Kato
  • Patent number: 6961597
    Abstract: Based on its superconductive properties relating to “nonlineanty,” a conventional HTS strip is divisible into three “domains,” namely, a medial domain and two lateral domains. The nonlinearity associated with the conventional strip's medial domain is considerably greater than that which is associated with its lateral domains. Similarly divisible into a medial domain and two lateral domains, the present invention's HTS strip uniquely exploits these physical distinctions by causing more (e.g., most) of the current that it conducts to be conducted by its lateral domains. Various inventive designs accomplish this through narrowing or interruption/punctuation (e.g., via holes and/or trenches) or degradation, or some combination thereof, of the medial domain. By thus “re-proportioning” current conduction as compared with a conventional strip, an inventive strip succeeds in “re-proportioning” the associated nonlinearities.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: November 1, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Yehoshua Dan Agassi
  • Patent number: 6960554
    Abstract: A method of making an oxide superconductor article includes converting an oxide superconducting precursor into an oxide superconductor by thermo-mechanical processing using intermediate rolling deformation and heat treatment (including liquid-phase sintering and low temperature baking) and applying an additional heat treatment after the material is fully processed (including optional liquid-phase sintering and low temperature baking) to decompose any secondary phase remaining at the grain boundaries and to promote diffusion of the secondary phase into the oxide grain, where they form 2223 phase. The material has a better superconducting grain connectivity and improved superconducting transport property.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 1, 2005
    Assignee: American Superconductor Corporation
    Inventors: Yibing Huang, Gilbert N. Riley, Jr., Noe DeMedeiros
  • Patent number: 6892440
    Abstract: A method for winding on embedded b-zero coil maintains the integrity of superconducting main coil and the b-zero wire during coil winding and during normal operation of a superconducting MRI magnet. The b-zero coil is co-wound with an aluminum overwrap while the aluminum overwrap is being wound onto the superconducting MRI coil. The two-wire geometries are selected such that the height or thickness of the aluminum overwrap is greater than or equal to the height or thickness of the b-zero coil wire. The b-zero coil wire sits in a cavity that is created by adjacent turns.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: May 17, 2005
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Stephen R. Elgin, II, Michael R. Eggleston, Minfeng Xu
  • Publication number: 20040247780
    Abstract: An ion source impinging on the surface of the substrate to be coated is used to enhance a MOCVD, PVD or other process for the preparation of superconducting materials.
    Type: Application
    Filed: June 5, 2003
    Publication date: December 9, 2004
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Publication number: 20040247779
    Abstract: The present invention is a high-throughput, ultraviolet (UV) assisted metalorganic chemical vapor deposition (MOCVD) system for the manufacture of HTS-coated tapes. The UV-assisted MOCVD system of the present invention includes a UV source that irradiates the deposition zone and improves the thin film growth rate. The MOCVD system further enhances the excitation of the precursor vapors and utilizes an atmosphere of monatomic oxygen (O) rather than the more conventional diatomic oxygen (O2) in order to optimize reaction kinetics and thereby increase the thin film growth rate. In an alternate embodiment, a microwave plasma injector is substituted for the UV source.
    Type: Application
    Filed: June 5, 2003
    Publication date: December 9, 2004
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Patent number: 6806432
    Abstract: A method of heat treating a coil (14) for use as a superconducting coil. The coil (14) is heated in a furnace, the temperature of the furnace being controlled to perform a predetermined heating cycle. A current is passed through the coil (14) for at least a portion of the heating cycle so as to further heat the coil by resistance heating.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: October 19, 2004
    Assignee: Oxford Instruments Superconductivity Limited
    Inventors: David Thomas Ryan, Martin Norman Wilson
  • Publication number: 20040194290
    Abstract: In one embodiment, the invention comprises a system for manufacturing a superconductive electrical conductor. A channel (140) is formed in a mold (130) that is formed from a ceramic material having a negative heat coefficient of expansion. A material (142) having a positive heat coefficient of expansion that develops superconductivity characteristics upon the application of heat is deposited in the channel. Heat is applied to the mold (130) with the material (142) that develops superconductivity characteristics deposited in the channel to develop the superconductivity characteristics in the deposited material. In a particular embodiment, the negative heat coefficient of expansion and said positive heat coefficient of expansion are complementary, such that change with heat in dimensions of the channel (140) formed in the mold (130) and change with heat in dimensions of the material (142) deposited in the channel (140) are substantially the same. In a more particular embodiment the channel forms a coil (22).
    Type: Application
    Filed: June 30, 2003
    Publication date: October 7, 2004
    Inventor: Charles Bayne Dickinson
  • Patent number: 6799363
    Abstract: In one embodiment, the invention comprises a system for manufacturing a superconductive electrical conductor. A channel (140) is formed in a mold (130) that is formed from a ceramic material having a negative heat coefficient of expansion. A material (142) having a positive heat coefficient of expansion that develops superconductivity characteristics upon the application of heat is deposited in the channel. Heat is applied to the mold (130) with the material (142) that develops superconductivity characteristics deposited in the channel to develop the superconductivity characteristics in the deposited material. In a particular embodiment, the negative heat coefficient of expansion and said positive heat coefficient of expansion are complementary, such that change with heat in dimensions of the channel (140) formed in the mold (130) and change with heat in dimensions of the material (142) deposited in the channel (140) are substantially the same. In a more particular embodiment the channel forms a coil (22).
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: October 5, 2004
    Inventor: Charles Bayne Dickinson
  • Patent number: 6794579
    Abstract: A high temperature superconducting cable includes a tubular support and a plurality of superconducting tapes. The superconducting tapes include a superconducting material enclosed in a metal covering, spirally wound onto the tubular support to form at least an electroinsulated, thermally-insulated, and refrigerated superconducting layer. The superconducting tapes also include at least a metal strip coupled to the metal covering. A process for manufacturing high temperature superconducting cables is also disclosed.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: September 21, 2004
    Assignee: Pirelli Cavi E Sistemi S.p.A.
    Inventors: Paola Caracino, Laura Gherardi, Piero Metra, Marco Nassi
  • Patent number: 6735848
    Abstract: Method of manufacture a wide bore, high field superconducting magnet. The superconducting magnet has a plurality of superconducting coils impregnated with epoxy and nested within each other. An innermost one of the nested coils has a bore therethrough that defines a bore width of the magnet. The bore width is greater than approximately 100 millimeters. The nested coils are electrically connected in series and cooled to an operating temperature less than approximately 4 degrees K. The magnet also has external reinforcements on the coils that are applied prior to impregnating the coils with epoxy. An active protection circuit protects the coils in response to a quench in the magnet. The protection circuit includes heater elements positioned in thermal contact with the coils prior to impregnating the coils with epoxy. The magnet further has lead supports for supporting the lead wires with epoxy that extend from the coils.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: May 18, 2004
    Assignee: FSU Research Foundation, Inc.
    Inventors: W. Denis Markiewicz, Iain R. Dixon, Charles A. Swenson, W. Scott Marshall, Robert P. Walsh, Thomas Painter, Steven van Van Sciver
  • Patent number: 6699820
    Abstract: The present invention concerns the improvement of the supercurrent carrying capabilities, i.e. the increase of critical current densities, of bicrystalline or polycrystalline superconductor structures, especially of high-Tc superconductors. By providing an appropriate predetermined dopant profile across the superconductor structure, in particular within or in the vicinity of the grain boundaries, the space-charge layers at the grain boundaries are reduced and thereby the current transport properties of the superconductor significantly improved. Simultaneously, the influence of magnetic fields on the critical current densities is significantly reduced, which in turn enhances the overall supercurrent carrying capabilities while keeping the supercurrent transport properties of the grains at good values.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: March 2, 2004
    Inventors: Hartmut Ulrich Bielefeldt, Barbel Martha Gotz, German Hammerl, Johannes Wilhelmus Maria Hilgenkamp, Jochen Dieter Mannhart, Andreas Fritz Albert Schmehl, Christof Walter Schneider, Robert Ralf Schulz
  • Patent number: 6699821
    Abstract: A Nb3Al superconducting wire and method for fabricating the same wherein Nb and Al powders in combination, or Nb—Al alloy powders are encapsulated in a metal tube, preferably copper or copper-alloy (e.g., CuNi), and the resultant composite is processed by conventional means to fine wire. Multifilamentary composites are produced by rebundling of the powder-filled wires into metal tubes followed by conventional processing to wire of a desired size. It is required for the use of Nb and Al powders in combination that the Nb and Al powder particle size be less than 100 nm. In the use of Nb—Al alloy powders, it is preferred, but not required, that the powder particle size be similarly of a nanometer scale. The use of nanometer-scale powders is beneficial to wire fabrication, allowing the production of long wire piece-lengths. At final wire size, the wires produced by practice of the present invention are heat treated at temperatures below the melting point of copper (1083° C.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: March 2, 2004
    Assignee: Composite Materials Technology, Inc.
    Inventors: Mark K. Rudziak, Leszek R. Motowidlo, Terence Wong
  • Patent number: 6687975
    Abstract: There is disclosed a continuous process for the formation of a superconducting wire utilizing magnesium diboride powder. The process provides a long length, low cost strand of superconducting wire which can be used in a monofilament or multifilament form.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: February 10, 2004
    Assignee: Hyper Tech Research Inc.
    Inventor: Michael J. Tomsic
  • Patent number: 6684486
    Abstract: By a method for constructing a superconducting multiphase cable comprising N phases, the phases are divided into n groups with N phases in each group, all the groups have a common screen. The individual groups may be geomtrically formed with coaxial or flat phases. The individual phases in each group may further be divided into individual conductors such as tapes. The insulation between the individual conductors in the groups may be separately insulated from each other or have a common insulation. In a particularly appropriate embodiment, the number of groups is 1 and implemented with a flat or concentric geometry. In this way, a compact superconducting power cable is provided, which is relatively inexpensive in production and has few working operations while maintaining good electrical properties.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: February 3, 2004
    Assignee: NKT Research Center A/S
    Inventor: Dag Willén
  • Patent number: 6671953
    Abstract: A method for fabricating a cable-in-conduit-conductor for use in superconductor application is described. The system utilizes a work surface with drum means provided at each end. A superconductor cable is fed from a supply source at one end. After the cable is pulled through a tube on the work surface, the leading edge of the cable is bent around one of the drums and returned to the opposite end of the table. This naked length of cable is once again bent around one of the drums and then pulled through another tube on the table. This process is repeated until an acceptable length of superconductor cable is present. Tension means are used in conjunction with a tube mill which compresses the tube-cable combination into a viable cable-in-conduit conductor (CICC). Notably, as this tension-compression is occurring, the naked lengths of cable are eliminated and each separate tube section is joined together to create a uniform CICC.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: January 6, 2004
    Assignee: BWX Technologies, Inc.
    Inventors: Michael D. McAninch, James G. Hatmaker
  • Patent number: 6630426
    Abstract: A method for increasing the critical temperature, Tc, of a high critical temperature superconducting (HTS) film (104) grown on a substrate (102) and a superconducting structure (100) made using the method. The HTS film has an a-b plane parallel to the surface of the substrate and a c-direction normal to the surface of the substrate. Generally, the method includes providing the substrate, growing the HTS film on the substrate and, after the HTS film has been grown, inducing into the HTS film a residual compressive strain the a-b plane and a residual tensile strain into the c-direction.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: October 7, 2003
    Assignee: TeraComm Research Inc.
    Inventors: Thomas G. Ference, Kenneth A. Puzey
  • Patent number: 6617284
    Abstract: A superconductor composite material consists of sintering products of interaction of superconductor ceramics with silicone material. The superconductor composite material can also include at least one metal, metal oxide or halogen element dope that interacts with superconductor ceramics and silicone residuals at sintering high temperature. The suspension or slurry of superconductor ceramics, silicone and dope powders can be used for coating of the particular substrate. Such coating employs modified forming methods including dip coating, painting, slip casting, cladding, printing, and spraying in order to produce continuous superconductor filament, wire, tape, coil, large size screen, and small chip or electronic element. The condensed suspension is used for extrusion, injection molding, and pressing continuous and short superconductor tubes, rods, beams, rails as well as disks, rings and other bulk shaped materials.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: September 9, 2003
    Inventors: Anatoly Rokhvarger, Mikhail I. Topchiashvili
  • Patent number: 6613463
    Abstract: A superconducting laminated oxide substrate, which comprises a laminate a layer of a superconducting oxide crystal substrate made of a superconducting oxide single crystal or a superconducting oxide polycrystal and a layer of a reinforcing crystal substrate, prevents cracks from occurring in the superconducting oxide crystal substrate due to the heat treatment conducted for the purpose of forming an insulation film or a conductor film, and provides easy connectivity between electrodes and wiring formed on substrates located at upper and lower positions.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: September 2, 2003
    Assignee: International Superconductivity Technology Center
    Inventors: Teruo Izumi, Satoshi Koyama, Yuh Shiohara, Shoji Tanaka, Masahiro Egami, Youichi Enomoto, Hideo Suzuki, Michitomo Iiyama
  • Patent number: 6601289
    Abstract: It is an object to provide a process for producing a superconducting wire without defects, such as deterioration of characteristics and deformation, in which a superconducting wire having a length of 1 km or more and a high critical electric current density is easily subjected to heat treatment. The first invention comprises a step of inserting a metallic sheath wire, which is formed by filling a superconducting material in a metallic sheath, into a metallic tube having an inner diameter larger than an outer diameter or a width of the metallic sheath wire; and a step of conducting heat treatment under such a condition in that the superconducting wire is wound to overlap a cylindrical fixture to prevent contact with each other while controlling the interior of the metallic tube. The second invention uses a ceramic board on the heat treatment of a pancake formed by winding the metallic sheath wire on a core.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: August 5, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Shinichi Kobayashi
  • Patent number: 6574852
    Abstract: High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods for making such high-Tc superconducting products. Completely sealed high-Tc superconducting ceramic oxide provides are made by a macroscopic process including the steps of pressing a superconducting ceramic oxide powder into a hollow body of a material inert to oxygen; heat treating the superconducting ceramic oxide powder packed body under conditions sufficient to sinter the ceramic oxide powder; and then sealing any openings of the body. Optionally, a waveform or multiple pulses of alternate magnetic filed can be applied during the heat treatment.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: June 10, 2003
    Inventor: Dawei Zhou
  • Patent number: 6572916
    Abstract: Coatings especially for superconductive strip conductors, as well as methods of applying the coatings, are addressed. Exemplary coatings include aluminum oxide in an aqueous suspension, with aluminum oxide particles contained in the suspension having size typically between 0.5-10 &mgr;m.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: June 3, 2003
    Assignee: Vacuumschmelze GmbH
    Inventors: Arnold Meyer, Jens Müller, Bernhard Fischer, Stefan Kautz, Bernhard Roas, Helmut Helldörfer
  • Patent number: 6559103
    Abstract: A process is provided for preparing solid superconducting mixed-metal oxides whereby the superconductor can be formed into any predetermined shape by way of viscous sol precursors. The superconductors are also formed by this process into homogeneous phases.
    Type: Grant
    Filed: March 17, 1989
    Date of Patent: May 6, 2003
    Assignee: The Boeing Company
    Inventors: Brad Lee Kirkwood, Thomas S. Luhman, Ronald Roy Stephenson, Michael Strasik
  • Publication number: 20030074779
    Abstract: A niobium-based superconductor is manufactured by establishing multiple niobium components in a billet of a ductile metal, working the composite billet through a series of reduction steps to form the niobium components into elongated elements, each niobium element having a thickness on the order of 1 to 25 microns, surrounding the billet prior to the last reduction step with a porous confining layer of an acid resistant metal, immersing the confined billet in an acid or a high temperature liquid metal to remove the ductile metal from between the niobium elements while the niobium elements remain confined by said porous layer, exposing the confined mass of niobium elements to a material capable of reacting with Nb to form a superconductor.
    Type: Application
    Filed: October 29, 2002
    Publication date: April 24, 2003
    Inventor: James Wong
  • Patent number: 6546614
    Abstract: The diameter of a first metal tube charged with raw material powder is reduced for obtaining an elementary wire. A plurality of such elementary wires are charged into a second metal tube, which in turn is reduced in diameter for obtaining a round first wire having a plurality of first filaments. The first wire is uniaxially compressed thereby obtaining a tape-like second wire having a plurality of second filaments. The second wire is heat treated thereby obtaining an oxide superconducting wire including a plurality of superconductor filaments. The maximum grain size of the raw material powder is smaller than the minor diameter of the first or second filaments.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: April 15, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuyuki Kaneko, Naoki Ayai, Jun Fujikami, Shinichi Kobayashi
  • Patent number: 6543123
    Abstract: A niobium-based superconductor is manufactured by establishing multiple niobium components in a billet of a ductile metal, working the composite billet through a series of reduction steps to form the niobium components into elongated elements, each niobium element having a thickness on the order of 1 to 25 microns, surrounding the billet prior to the last reduction step with a porous confining layer of an acid resistant metal, immersing the confined billet in an acid to remove the ductile metal from between the niobium elements while the niobium elements remain confined by said porous layer, exposing the confined mass of niobium elements to a material capable of reacting with Nb to form a superconductor.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: April 8, 2003
    Assignee: Composite Materials Technology, Inc.
    Inventor: James Wong
  • Patent number: 6536096
    Abstract: Powder of not more than 1 &mgr;m in mean particle diameter is prepared to contain a mixture of superconducting phases mainly composed of 2212 phases of Bi—Sr—Ca—Cu or (Bi, Pb)—Sr—Ca—Cu and non-superconducting phases which is obtained by calcining and pulverizing raw material powder at least once, this powder is heat treated at a high temperature and thereafter coated with a metal to prepare a round wire by deformation processing, thereafter a tape type or flat type wire is prepared by deformation processing, then the wire is heat treated under conditions for allowing phase transformation of the 2212 phases of main superconducting phases to 2223 phases with facilitation of grain growth, thereafter the as-formed 2223 phases are highly densified by deformation processing or pressurization, and the wire is again heat treated so that the 2223 phases are strongly bonded with each other and the non-superconducting phases are finely dispersed.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: March 25, 2003
    Assignee: Sumitomo Electric Industries, Ltd
    Inventors: Kenichi Sato, Nobuhiro Shibuta, Hidehito Mukai, Takeshi Hikata, Munetsugu Ueyama, Takeshi Kato
  • Patent number: 6534718
    Abstract: A reinforced superconducting coil and method for the reinforcement of such coil utilizing composite superconducting wires clad with high-strength material are disclosed.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: March 18, 2003
    Inventors: Shahin Pourrahimi, Nadder Pourrahimi
  • Patent number: 6511943
    Abstract: A process of preparing superconducting magnesium diboride powder by heating an admixture of solid magnesium and amorphous boron powder or pellet under an inert atmosphere in a Mg:B ratio of greater than about 0.6:1 at temperatures and for time sufficient to form said superconducting magnesium diboride. The process can further include exposure to residual oxygen at high synthesis temperatures followed by slow cooling. In the cooling process oxygen atoms dissolved into MgB2 segregated to form nanometer-sized coherent Mg(B,O) precipitates in the MgB2 matrix, which can act as flux pinning centers.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: January 28, 2003
    Assignee: The Regents of the University of California
    Inventors: Adriana C. Serquis, Yuntian T. Zhu, Frederick M. Mueller, Dean E. Peterson, Xiao Zhou Liao
  • Publication number: 20020194724
    Abstract: A niobium-based superconductor is manufactured by establishing multiple niobium components in a billet of a ductile metal, working the composite billet through a series of reduction steps to form the niobium components into elongated elements, each niobium element having a thickness on the order of 1 to 25 microns, surrounding the billet prior to the last reduction step with a porous confining layer of an acid resistant metal, immersing the confined billet in an acid or a high temperature liquid metal to remove the ductile metal from between the niobium elements while the niobium elements remain confined by said porous layer, exposing the confined mass of niobium elements to a material capable of reacting with Nb to form a superconductor.
    Type: Application
    Filed: January 2, 2002
    Publication date: December 26, 2002
    Inventor: James Wong