With Melting Patents (Class 505/450)
  • Patent number: 9023765
    Abstract: An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: May 5, 2015
    Assignee: Jefferson Science Associates, LLC
    Inventors: Robert Rimmer, Pedro E. Frigola, Alex Y. Murokh
  • Publication number: 20120108438
    Abstract: A method of manufacturing superconductors with critical temperature Tc>300K is disclosed. This method is from a theory of high-Tc superconductivity wherein the doping mechanism is found. A kind of superconductors composed by this method is the AlB2-type superconductors obtained by doping AlB2-type intermetallics such as Sr1-xCaxGa2. Another kind of superconductors composed by this method is the CaCu5-type superconductors obtained by doping CaCu5-type intermetallics such as L1-xAxCu5, LCu5(10x)Ni5x(A-Ca, Sr; L-La, Y, Mm,), Sr1-xCaxCu5, La1-xSrx(1-y)CaxCu5. In particular the CaCu5-type intermetallics LaNi5 and MmNi5 are superconductors with critical temperature Tc>300K. These CaCu5-type superconductors are with high critical current densities and thus are applicable for the transmission of electricity.
    Type: Application
    Filed: October 5, 2011
    Publication date: May 3, 2012
    Inventor: Sze Kui Ng
  • Patent number: 7964532
    Abstract: An RE123-based oxide superconductor characterized by comprising a conductive layer containing an REBa2Cu3O7-?-based oxide superconductor formed using a mixed material of at least RE2BaO4 and a Bax—Cuy—Oz-based material and a holding member which holds said conductive layer, where, RE is one type or more of elements selected from La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 21, 2011
    Assignee: International Superconductivity Technology Center, The Juridical Foundation
    Inventors: Shoji Tanaka, Naomichi Sakai, Takato Machi, Muralidhar Miryala
  • Patent number: 7820596
    Abstract: A thick film superconductor includes a substrate and a superconducting thick film formed on the substrate. The thick film is 1-20 microns thick with an average twin spacing to film thickness ratio of about 0.016, and is formed from an aqueous solution of YBC ions doped with a particulate rare earth oxide having a diameter of about 50-500 nm. The coated substrate is heat treated, preferably above 650 degrees C. and cooled at a rate less than 15 degrees C. per hour, resulting in a substantially fully oxygenated YBCO layer.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: October 26, 2010
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: Siu-Wai Chan
  • Patent number: 7718573
    Abstract: A method for producing an oxide superconductor by partially melting and solidifying the precursor of the oxide superconductor is a method wherein the precursor is placed on a substrate material containing pure metal or a compound which is meltable in the precursor when the precursor is in a partially molten state, and partially melting and solidifying the precursor in said state.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: May 18, 2010
    Assignee: Origin Electric Company, Ltd
    Inventors: Motohide Matsui, Masato Murakami
  • Patent number: 7655601
    Abstract: A method for the enhanced melt-textured growth of superconducting crystals is disclosed for a sample having a first material capable of exhibiting superconducting properties. The sample is heated above a peritectic temperature of the first material, cooled below the peritectic temperature, and is subsequently subjected to a plurality of temperature spikes in which the sample is rapidly reheated above the peritectic temperature and recooled below the peritectic temperature to produce a superconducting crystalline structure substantially free of secondary nucleations. The resulting crystal is a superconducting crystalline structure comprising a plurality of bands formed in succession around a seed material. Each band has a non-uniform microstructure from an inner portion to an outer portion of the band.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: February 2, 2010
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: Scott H. Streett
  • Patent number: 7541313
    Abstract: A alloy (Mg—X) of metal (X) and Mg in a liquid phase is made to react with B in a solid phase at a low temperature to manufacture a superconductor, which contains a large amount of MgB2 potential for MRI, linear motorcar, superconducting cavity, electric power transmission cable, high-magnetic field magnet for medical units, electric power storage (SMES), and the like and is formed in the shape of bulk, wire, and foil, by heat treatment performed at a low temperature for a short time and at low cost.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: June 2, 2009
    Assignee: National Institute for Materials Science
    Inventors: Akihiro Kikuchi, Kiyoshi Inoue, Yasuo Iijima, Yuji Yoshida
  • Patent number: 7338921
    Abstract: An electrode is steeped in a solution of Mg and B and a negative voltage is applied to the electrode so as to precipitate superconductive MgB2 on the electrode. Superconductive MgB2 is easily manufactured in various forms and at low costs without any special device.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: March 4, 2008
    Assignee: National Institute for Materials Science
    Inventors: Hideki Abe, Hideaki Kitazawa, Akiyuki Matsushita
  • Patent number: 7008906
    Abstract: The present invention relates to a defect-free oxide high-critical temperature superconductor acicular crystal, that is, an oxide high-critical temperature superconductor acicular crystal that is substantially a perfect crystal and also relates to a method for producing the same, wherein such a crystal is essential for achieving superconducting electronic devices. The oxide high-critical temperature superconductor acicular crystal of the present invention includes an acicular crystal having a Bi2Sr2Ca2Cu3O10 (Bi-2223) crystal structure and is grown from a powder compact by heat-treating the powder compact in an oxygen atmosphere, wherein the powder compact contains an oxide having the Bi-2223 crystal structure and TeO2, CaO, or (SrCa)3TeO6. The achievement of the acicular crystal having the Bi-2223 crystal structure contributes to the development of superconducting electronic devices that have been theoretically proposed but have not been achieved.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: March 7, 2006
    Assignee: Japan Science and Technology Agency
    Inventors: Mitsunori Sato, Tsutomu Yamashita, Hiroshi Maeda, Sangjae Kim, Masanori Nagao
  • Patent number: 6960554
    Abstract: A method of making an oxide superconductor article includes converting an oxide superconducting precursor into an oxide superconductor by thermo-mechanical processing using intermediate rolling deformation and heat treatment (including liquid-phase sintering and low temperature baking) and applying an additional heat treatment after the material is fully processed (including optional liquid-phase sintering and low temperature baking) to decompose any secondary phase remaining at the grain boundaries and to promote diffusion of the secondary phase into the oxide grain, where they form 2223 phase. The material has a better superconducting grain connectivity and improved superconducting transport property.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 1, 2005
    Assignee: American Superconductor Corporation
    Inventors: Yibing Huang, Gilbert N. Riley, Jr., Noe DeMedeiros
  • Patent number: 6894006
    Abstract: A method for reducing the concentration of non-superconducting phases during the heat treatment of Pb doped Ag/Bi-2223 composites having Bi-2223 and Bi-2212 superconducting phases is disclosed. A Pb doped Ag/Bi-2223 composite having Bi-2223 and Bi-2212 superconducting phases is heated in an atmosphere having an oxygen partial pressure not less than about 0.04 atmospheres and the temperature is maintained at the lower of a non-superconducting phase take-off temperature and the Bi-2223 superconducting phase grain growth take-off temperature. The oxygen partial pressure is varied and the temperature is varied between about 815° C. and about 835° C. to produce not less than 80 percent conversion to Pb doped Bi-2223 superconducting phase and not greater than about 20 volume percent non-superconducting phases. The oxygen partial pressure is preferably varied between about 0.04 and about 0.21 atmospheres. A product by the method is disclosed.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: May 17, 2005
    Assignees: University of Chicago, American Superconductor Corp.
    Inventors: Victor A. Maroni, Nazarali N. Merchant, Ronald D. Parrella
  • Patent number: 6787504
    Abstract: The invention is intended to establish means for manufacturing MB2 single crystals and to provide a useful superconductive material (wire rod and so forth) taking advantage of anisotropic superconductive properties thereof. A mixed raw material of Mg and B or a precursor containing MgB2 crystallites, obtained by causing reaction of the mixed raw material of Mg and B, kept in contact with hexagonal boron nitride (hBN), is held at a high temperature in the range of 1300 to 1700° C. and under a high pressure in the range of 3 to 6 GPa to cause reaction for forming an intermediate product, thereby growing the MB2 single crystals having anisotropic superconductive properties via the intermediate product.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: September 7, 2004
    Assignee: International Superconductivity Technology Center, The Juridicial Foundation
    Inventors: Lee Sergey Romonovich, Ayako Yamamoto, Setsuko Tajima
  • Patent number: 6713437
    Abstract: The method of preparing an oxide superconducting wire comprises steps of preparing a wire by coating raw material powder for a Bi—Pb—Sr—Ca—Cu—O based oxide superconductor including a 2223 phase with a metal and heat treating the wire in a pressurized atmosphere containing oxygen in a prescribed partial pressure, and the total pressure of the pressurized atmosphere is at least 0.5 MPa. The pressure heat treatment apparatus comprises a pressure furnace storing and heat treating a target in a pressurized atmosphere, a pressure regulator for measuring the total pressure in the pressure furnace, an oxygen concentration meter for measuring the oxygen concentration in the pressure furnace and a controller for controlling the oxygen partial pressure in the pressure furnace in response to the total pressure measured by the pressure regulator and the oxygen concentration measured by the oxygen concentration meter.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: March 30, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shinichi Kobayashi, Tetsuyuki Kaneko, Ryosuke Hata
  • Patent number: 6699820
    Abstract: The present invention concerns the improvement of the supercurrent carrying capabilities, i.e. the increase of critical current densities, of bicrystalline or polycrystalline superconductor structures, especially of high-Tc superconductors. By providing an appropriate predetermined dopant profile across the superconductor structure, in particular within or in the vicinity of the grain boundaries, the space-charge layers at the grain boundaries are reduced and thereby the current transport properties of the superconductor significantly improved. Simultaneously, the influence of magnetic fields on the critical current densities is significantly reduced, which in turn enhances the overall supercurrent carrying capabilities while keeping the supercurrent transport properties of the grains at good values.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: March 2, 2004
    Inventors: Hartmut Ulrich Bielefeldt, Barbel Martha Gotz, German Hammerl, Johannes Wilhelmus Maria Hilgenkamp, Jochen Dieter Mannhart, Andreas Fritz Albert Schmehl, Christof Walter Schneider, Robert Ralf Schulz
  • Patent number: 6569811
    Abstract: The present invention comprises novel materials comprising composite high-Tc superconductors which contain a dispersion of precipitates and structural defects and thereby exhibit enhanced flux pinning and enhanced critical current in the superconducting state, and novel nanophase orientation processes for their preparation.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: May 27, 2003
    Assignee: University of Cincinnati
    Inventor: Douglu Shi
  • Patent number: 6559103
    Abstract: A process is provided for preparing solid superconducting mixed-metal oxides whereby the superconductor can be formed into any predetermined shape by way of viscous sol precursors. The superconductors are also formed by this process into homogeneous phases.
    Type: Grant
    Filed: March 17, 1989
    Date of Patent: May 6, 2003
    Assignee: The Boeing Company
    Inventors: Brad Lee Kirkwood, Thomas S. Luhman, Ronald Roy Stephenson, Michael Strasik
  • Patent number: 6410487
    Abstract: A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15°; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15°. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: June 25, 2002
    Assignee: The University of Chicago
    Inventors: Dean J. Miller, Michael B. Field
  • Patent number: 6365553
    Abstract: The invention provides an oxide superconductor capable of sufficiently withstanding external forces such as a large electromagnetic force and thermal stresses accompanying rapid heating and cooling while in service, and internal stresses so as to be able to exhibit a high trapped magnetic field stably over a long period of time. The oxide superconductor such as, for example, “a copper oxide superconductor containing rare earth elements”, is composed of an oxide superconductive bulk body impregnated with a low melting metal or an oxide superconductive bulk body impregnated with a low melting metal and having a thin film of the low melting metal formed on the external surface thereof. Such oxide superconductors as described above can be produced by a process whereby the oxide superconductive bulk body kept in an atmosphere of reduced pressure is brought into contact with the low melting metal.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: April 2, 2002
    Assignees: International Superconductivity Technology Center, Railway Technical Research Institute
    Inventors: Masaru Tomita, Masato Murakami
  • Patent number: 6258753
    Abstract: The invention concerns a process for producing optimized melt-textured volume samples based on the high temperature superconductor YBa2Cu3O7 (YBCO) for use in contact-free self-stabilizing magnetic bearings. The object of the invention is to provide a process by which structured high-temperature superconductive materials of the initially mentioned composition can be mass-produced economically in an automated process while maintaining a high degree of dimensional accuracy.
    Type: Grant
    Filed: June 17, 1998
    Date of Patent: July 10, 2001
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Hans-Jurgen Bornemann, Thomas Burghardt, Wolfgang Hennig
  • Patent number: 6258754
    Abstract: A process which relies on a joining technique between two individual strongly linked superconductors is disclosed. Specifically, this invention relates to fabrication of single domains of YBa2Cu3Ox or YBa2Cu3Ox with the addition of Y2BaCuO5 and/or other secondary phases such as Pt/PtO2, CeO2, SnO2, Ag, Y2O3 and other rare earth oxides, by using a top-seeded, melt processing technique. Beginning with a single crystal seed such as Nd1+xBa2−xCu3O3 or SmBa2Cu3Ox crystals, a melt-textured YBCO domain with crystallographic orientation nearly similar to that of the seed crystal can be fabricated. The samples are next machined to desired geometrical shapes. A bonding material is then applied to the ac plane. Low solidification or recrystalization point, similar crystal structure to that of YBa2Cu3Ox, and capability of growing epitaxially on YBCO domains are critical parameters of the bonding material.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: July 10, 2001
    Assignee: Superconductive Components, Inc.
    Inventor: Suvankar Sengupta
  • Patent number: 6256521
    Abstract: A multi-domained bulk REBa2Cu3Ox with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa2Cu3Ox pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa2Cu3Ox deposited on such textured substrate, such seeds being tailored for various REBa2Cu3Ox compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa2Cu3Ox elements of virtually unlimited size and complex geometry can be fabricated.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: July 3, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Dominic F. Lee, Donald M. Kroeger, Amit Goyal
  • Patent number: 6255255
    Abstract: An oxide superconducting material includes a REBa2Cu3O7−x phase (RE designating one or a combination of two or more rare earth elements including Y), particles composed of Ce, Ba, Cu and O dispersed therein, and RE2BaCuO5 or RE4Ba2Cu2O10 dispersed therein. A method is provided for producing the superconducting material from a mixed powder obtained by adding a Ce—Ba—Cu—O system additive to a starting material powder containing RE, Ba, Cu and O.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: July 3, 2001
    Assignee: Nippon Steel Corporation
    Inventors: Mitsuru Morita, Tetsuro Nose
  • Patent number: 6243598
    Abstract: A method of preparing a rare earth-barium-cuprate superconductor in the form of metallic tapes or wires, using a thick film or powder-in-tube process by supporting on a metallic substrate a mixture of seed crystals or aligned platelets of rare earth-barium cuprate having a high melting point and rare earth-barium-cuprate powder having a lower melting point. The material supported on the substrate is then subjected to a heat treatment at a temperature below the melting point of the high melting rare earth-barium-cuprate seed crystals and the metallic substrate and above the melting point of the low melting powder. Subsequently, the heat treated supported material is cooled below the melting temperature of the material and annealed.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: June 5, 2001
    Assignee: Haldor Topsoe A/S
    Inventor: Jens Christiansen
  • Patent number: 6136756
    Abstract: The high temperature superconducting material is made from a base material having two opposing surfaces and including a high purity yttrium barium copper oxide compound having a YBa.sub.2 Cu.sub.3 O.sub.7-x (123) composition with silver oxide. The method of making the superconducting material includes controlling a temperature of each opposing surface of the base material to form a time-dependent spatial temperature gradient across the base material; measuring the time-dependent spatial temperature gradient, determining whether it is within a desired range and controlling it so that the time-dependent spatial temperature gradient remains within the desired range, thereby melt-texturing the base material while decomposing the silver oxide into silver and transforming the base material into quasi-crystalline superconducting regions having YBa.sub.2 Cu.sub.3 O.sub.7-x (123) composition, intrinsically non-superconducting material zones consisting of coherent yttrium-rich material having a Y.sub.2 BaCuO.sub.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: October 24, 2000
    Assignee: Adelwitz Technologiezentrum GmbH
    Inventors: Gerhard Langbein, Frank Werfel
  • Patent number: 6083886
    Abstract: Provided is a method of preparing a large-sized oxide superconducting bulk body having excellent characteristics and high homogeneity. The method is adapted to prepare an oxide superconducting bulk body by melt growth through a seed crystal method, and comprises steps of preparing a precursor by press-molding material powder obtained by mixing REBa.sub.2 Cu.sub.3 O.sub.7-z powder with RE.sub.2 BaCuO.sub.5 or RE.sub.4 Ba.sub.2 Cu.sub.2 O.sub.10 powder and a platinum additive, homogeneously semi-melting the precursor by holding the same at a holding temperature T.sub.1 .degree. C. (t.sub.1 +20.ltoreq.T.sub.1 .ltoreq.t.sub.1 +80 assuming that the melting point of the oxide superconducting bulk body is t.sub.1 .degree. C.) for a prescribed time, and crystal-growing the precursor at a temperature not more than the melting point t.sub.1 .degree. C.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: July 4, 2000
    Assignees: Sumitomo Electric Industries, Ltd., International Superconductivity Technology Center
    Inventors: Noriki Hayashi, Masato Murakami
  • Patent number: 6046139
    Abstract: We make large (in excess of 2 cm in diameter), single crystal YBa.sub.2 Cu.sub.3 O.sub.7-x [123 YBCO] crystals, where x.ltoreq.0.6, in a seventeen step process or some variant thereof from finely ground and well mixed 123 YBCO and 211 YBCO powders with a small amount of Pt by controlling the rate of cooling from within a compact of the powders using a temperature gradient in the radial and axial planes (independently) of about 1-1.degree. C./inch diameter of compact to nucleate the crystal growth. We promote crystal growth as well using a samarium oxide seed crystal, preferably SmBa.sub.2 Cu.sub.3 O.sub.(7-y), where y.ltoreq.1.6. After nucleation we cool the compact slowly at a rate from about 0.1-1.degree. C./hr to promote the single crystal development.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: April 4, 2000
    Assignee: The Boeing Company
    Inventors: Kay Y. Blohowiak, Darryl F. Garrigus, Thomas S. Luhman, Kevin E. McCrary, Michael Strasik, Ilhan Aksay, Fatih Dogan, William C. Hicks, Corrie B. Martin
  • Patent number: 6034036
    Abstract: The present invention is aimed to provide a means for manufacturing a RE123 system oxide superconductor showing good superconductivity characteristics under atmospheric ambiance.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: March 7, 2000
    Assignees: International Superconductivity Technology Center, Ishikawajima-Harima Jukogyo Kabushiki Kaisha
    Inventors: Minoru Tagami, Xin Yao, Makoto Kambara, Yuh Shiohara, Shoji Tanaka
  • Patent number: 6013608
    Abstract: A process for texturing an HTc superconductor of the matrix type based on silver and the superconductor material (Bi.sub.1-x Pb.sub.x).sub.2 Sr.sub.2 Ca.sub.y Cu.sub.1+y O.sub.6+2y where x.epsilon.[0; 0,4] and y.epsilon.{0, 1, 2} includes the following steps carried out in succession: raising the temperature of the superconductor from room temperature to the melting point of the superconductor material, maintaining the temperature of the superconductor constant at the melting point of the superconductor material for a relatively short period, varying the temperature of the superconductor between the melting point of the superconductor material and its synthesis temperature, maintaining the temperature of the superconductor constant at the synthesis temperature of the superconductor material for a relatively long period and reducing the temperature of the superconductor from the synthesis temperature of the superconductor material to room temperature.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: January 11, 2000
    Assignee: Alcatel
    Inventors: Gerard Duperray, Peter Friedrich Herrmann, Denis Legat, Albert Leriche, Jean-Pierre Tavergnier
  • Patent number: 6008162
    Abstract: The present invention can provide an oxide superconductive film with a smooth surface and at homogeneous thickness on a simple substrate structure at a high film formation rate. In a liquid phase epitaxial growth method for producing an ReBa.sub.2 Cu.sub.3 Ox film (3) (Rerepresents one selected from lanthanoids such as Y and Nd, and X represents the oxygen amount) having a 123 type crystal structure from a molten liquid (1), a substrate (2) surface is inclined by 1 degree to 44 degrees with respect to the molten liquid surface at the time of separating the film from the molten liquid after film formation. After separating the film from the molten liquid, the substrate is rotated at 300 rpm to 3000 rpm for 5 seconds to 5 minutes. The film formation atmosphere contains 2 at. % of oxygen and 98 at. % of nitrogen, and the film formation temperature is 900 to 970.degree. C.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: December 28, 1999
    Assignees: NEC Corporation, International Conductivity Technology Center
    Inventors: Sadahiko Miura, Tadataka Morishita, Youichi Enomoto
  • Patent number: 5999833
    Abstract: A method for the production of a superconducting oxide tape having a Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10 (Bi-2223) structure interposed between silver sheets, which method consists essentially of preparing a sandwich structure having interposed between silver sheets a molded layer of a superconducting oxide precursor powder consisting essentially of Bi, Pb, Sr, Ca, Cu, and O obtained from a raw material substance composed of, in atomic composition ratio, 1.00 of Bi, 0-0.2 of Pb, 0.9-1.1 of Sr, 0.9-1.1 of Ca and 1.3-1.7 of Cu, and O, heating the sandwich structure in an atmosphere consisting of oxygen and an inert gas, having an oxygen partial pressure in the range of 0-5%, and kept at a temperature in the range of 830-850.degree. C., thereby melting the molded layer, then causing the atmosphere to retain the heating temperature and meanwhile increasing the oxygen partial pressure, thereby inducing precipitation of crystal grains possessing a Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: December 7, 1999
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Ryoji Funahashi, Ichiro Matsubara, Kazuo Ueno, Hiroshi Ishikawa
  • Patent number: 5998338
    Abstract: There is provided a method for stably preparing rare earth (RE) 123 type oxide superconductors exhibiting outstanding superconductive properties in the atmosphere. In the method for preparing RE 123-type oxide superconductors by melting, cooling and solidifying a starting composition containing one or more than two kinds of RE such as Y, Sm, Nd, etc., and Ba, Cu and O as constituent elements to crystallize the RE 123-type oxide superconductors, the quantity of replacement between RE and Ba in "RE 123 crystals to be formed" is controlled by changing the initial constitution of the starting composition, for example, by changing the initial constitution to a more Ba-rich side than a composition on a 123-211 (or 422) tie line on a phase diagram to yield RE 123-type oxide superconductors in the atmosphere, which exhibits a critical temperature of 90 K or above and higher critical current density (Jc) in a magnetic field. A trace amount of Pt or CeO.sub.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: December 7, 1999
    Assignees: Superconductivity Research Laboratory, The University of Tokyo
    Inventors: Yasuo Watanabe, Akihiko Endo, Takateru Umeda, Yuh Shiohara, Shoji Tanaka
  • Patent number: 5981442
    Abstract: An Nd-Ba-Cu-O bulk superconductor includes oxide including metallic elements of neodymium (Nd), barium (Ba) and copper (Cu), and has a structure in which fine particles of Nd.sub.4 Ba.sub.2 Cu.sub.2 O.sub.10 (i.e., Nd422) are dispersed uniformly in crystalline grains of NdBa.sub.2 Cu.sub.3 O.sub.x (i.e., Nd123). It is produced by preparing a mixture powder in which an Nd123 powder and an Nd422 powder are present uniformly, thermally treating the mixture powder in a temperature range where the Nd123 powder melts partially at least but the Nd422 powder hardly melts, and gradually cooling the partially melted mixture powder in a temperature range around a solidifying point of the Nd123 powder. It exhibits an enhanced magnetic-field-trapping capability in the regions of low magnetic field, because of the pinning effect resulting from the fine particles of Nd422 dispersed uniformly in the crystalline grains of Nd123.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: November 9, 1999
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Yousuke Yanagi, Takeo Yamazaki, Atsushi Takagi, Yuh Yamada, Uichiro Mizutani, Yoshitaka Itoh, Masaaki Yoshikawa, Tetsuo Oka
  • Patent number: 5968878
    Abstract: A high critical temperature and high critical current density superconductor containing a matrix phase of a metal oxide expressed by the formula RE.sup.1 Ba.sub.2 Cu.sub.3 O.sub.p wherein RE.sup.1 stands for La, Nd, Sm, Eu or Gd and p is a number of 6.8-7.2, a first dispersed phase of a metal oxide expressed by the formula RE.sup.2.sub.1+d Ba.sub.2-d Cu.sub.3 O.sub.q wherein RE.sup.2 stands for La, Nd, Sm, Eu or Gd, d is a number of 0<d<0.5 and q is a number of 6.0-7.2 and a second dispersed phase of a metal oxide expressed by the formula RE.sup.3.sub.4-2x Ba.sub.2+2x Cu.sub.2-x O.sub.10-y wherein RE stands for La or Nd, x is a number of 0<x .English Pound.0.25 and y is a number of 0<y<0.5. The first and second phases are dispersed in the matrix. The above superconductor may be prepared by cooling a partial melt having a temperature of 1,000.degree.-1,300.degree. C. and containing a major molar amount of RE.sup.1 Ba.sub.2 Cu.sub.3 O.sub.p and a minor molar amount of RE.sup.3.sub.4-2x Ba.sub.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: October 19, 1999
    Assignees: International Superconductivity Technology Center, Railway Technical Research Institute
    Inventors: Hiroki Kojo, Sang-Im Yoo, Masato Murakami
  • Patent number: 5962374
    Abstract: A process for preparing an oxide crystal by means of solution growth in the presence of a solvent is provided. The solvent includes a mixture of an oxide containing at least one member of those elements which constitute the oxide crystal, a halide containing at least one member of those elements which constitute the oxide crystal, and metallic silver.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: October 5, 1999
    Assignee: International Superconductivity Technology Center
    Inventors: Yuusuke Niiori, Yasuji Yamada, Junichi Kawashima, Izumi Hirabayashi
  • Patent number: 5958842
    Abstract: Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.
    Type: Grant
    Filed: February 28, 1996
    Date of Patent: September 28, 1999
    Assignee: The Regents of the Uniersity of California
    Inventor: Terry G. Holesinger
  • Patent number: 5958843
    Abstract: A bulk superconductor is produced by subjecting REBa.sub.2 Cu.sub.3 O.sub.y oxide to oxygen annealing after many holes have been formed in the oxide body.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: September 28, 1999
    Assignees: International Superconductivity Technology Center, Railway Technical Research Institute
    Inventors: Naomichi Sakai, Mikio Takahashi, Ken Nagashima, Masato Murakami
  • Patent number: 5945384
    Abstract: In order to produce tubular moldings of high-temperature superconducting material based on oxides of bismuth, calcium, strontium, copper and optionally lead, a homogeneous melt of the oxide mixture in a predefined stoichiometry having temperatures from 900 to 1300.degree. C. is made to flow into a casting zone. The casting zone, as a function of its internal diameter, rotates at from 200 to 1500 rpm about its axis which is inclined by at least 15.degree. with respect to the horizontal. The solidified molding is taken from the casting zone and annealed for from 4 to 150 hours at from 700 to 900.degree. C. in an oxygen-containing atmosphere.
    Type: Grant
    Filed: June 25, 1996
    Date of Patent: August 31, 1999
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Eberhard Preisler, Joachim Bock
  • Patent number: 5898021
    Abstract: A superconductive composite member, which has a core composed of an oxide ceramic material which is surrounded by an envelope, has an increased core density in order to achieve a higher critical current density. The increased core density is obtained during a hot-shaping step of the core material in the envelope, wherein the composite is heated to a temperature wherein the superconductor material is present in either a molten or a partially molten state.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: April 27, 1999
    Assignee: Vacuumschmelze GmbH
    Inventors: Johannes Tenbrink, Paul Puniska, Volker Gluecklich, Klaus Heine
  • Patent number: 5882536
    Abstract: A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: March 16, 1999
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Anand N. Iyer, Jiann Yuan Huang
  • Patent number: 5872081
    Abstract: A melt processing method for bulk or thick film fabrication of RE123 superconductor material includes the steps of using Nd in the RE123 to increase the recrystallization speed of the RE123, and using a heavy rare earth in the RE123 to establish the peritectic melting point of the RE123 somewhere below the melting point of silver. Within these requirements, the method essentially includes heating the RE123 above its peritectic melting point, and then cooling the resultant decomposed material to recrystallize the RE123. The heavy rare earths to be used for lowering the RE123 peritectic melting temperature include Lu, Yb, Tm or Er or mixtures thereof. The addition of RE211, silver and the use of a low oxygen partial pressure also contribute to a lowering of the melting point of the RE123. When using Nd to accelerate the processing time, the RE123 can include a first component of Nd.sub.1-z R.sub.z 123 and a second component of Nd.sub.1-y R.sub.y 211.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: February 16, 1999
    Assignees: General Atomics, Shimabun Co., Ltd.
    Inventor: Lawrence D. Woolf
  • Patent number: 5869431
    Abstract: A method of fabricating bulk superconducting material such as RBa.sub.2 Cu.sub.3 O.sub.7-.delta. where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate. The powder oxides of RBa.sub.2 Cu.sub.3 O.sub.7-.delta. or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta., where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 .ANG. and 2000 .ANG.. A construction prepared by the method is also disclosed.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: February 9, 1999
    Assignee: The University of Chicago
    Inventors: Boyd W. Veal, Arvydas Paulikas, Uthamalingam Balachandran, Wei Zhong
  • Patent number: 5869432
    Abstract: A bulk high temperature superconductor single crystal having the formula MBa.sub.2 Cu.sub.3 O.sub.7-x wherein M is selected from the group consisting of Y, Sm, Eu, Gd, Dy, Ho, Er, and Yb; and, x has a number value from about 0.1 to about 1.0; are produced by a novel process incorporating: i) starting powders produced by combustion spray pyrolysis, ii) a novel setter powder, and/or iii) a monitored isothermal growth process.
    Type: Grant
    Filed: December 26, 1996
    Date of Patent: February 9, 1999
    Assignee: The Trustees of Princeton University
    Inventors: Ilhan A. Aksay, Edward P. Vicenzi, David L. Milius, John S. Lettow
  • Patent number: 5856277
    Abstract: A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: January 5, 1999
    Assignee: Illinois Superconductor Corporation
    Inventors: Nan Chen, Kenneth C. Goretta, Stephen E. Dorris
  • Patent number: 5851956
    Abstract: A large oxide crystal of high quality is manufactured by increasing the speed of crystal growth without affecting crystal growth. A melt of BaO--CuO as a raw material put in a crucible is heated and melt in the presence of a solid phase precipitate of Y.sub.2 BaCuO.sub.5 and kept at a prescribed temperature. Thereafter, a seed crystal is pulled up while being rotated, with the seed crystal being in contact with the surface of the melt, whereby an oxide crystal having the structure of YBa.sub.2 Cu.sub.3 O.sub.7-x this method, an atmosphere for growing the oxide crystal has an oxygen partial pressure higher than that in an ambient atmosphere.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: December 22, 1998
    Assignees: Sumitomo Electric Industries, Ltd., Ishikawajima-Harima Heavy Industries Co., Ltd., International Superconductivity Technology Center
    Inventors: Yasuo Namikawa, Xin Yao, Masahiro Egami, Yuh Shiohara
  • Patent number: 5849668
    Abstract: An oxide superconductor which exhibits an uniform and high critical current density. Further, a method of manufacturing this oxide superconductor, namely, a RE--Ba--Cu--O oxide superconductor (RE is one or more kinds of rare earth elements including Y) by performing a treatment, which includes at least a burning process to be performed in a range of temperatures that are higher than a melting point of a raw material mixture containing a RE-compound raw material, Ba-compound raw material and a Cu-compound raw material, on the raw material mixture. This method further comprises a step of crushing the raw material mixture into particles and establishing the mean particle diameter of one or all of the raw materials as ranging from 50 to 80 .mu.m.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: December 15, 1998
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Kazuya Yamaguchi, Shuichi Kohayashi, Shuetsu Haseyama, Shuji Yoshizawa
  • Patent number: 5849672
    Abstract: Novel superconducting oxide material containing compound oxide having a composition represented by the formula:?(Tl.sub.1-x Bi.sub.x).sub.1-p .alpha..sub.p !.sub.q Sr.sub.y Ca.sub.z Cu.sub.v O.sub.win which ".alpha." is at least one element selected from a group consisting of In, Sn, Sb, Pb, Y and lanthanide elements and "x", "y", "z", "p", "q", "v" and "w" are numbers each satisfying respective range of 0.ltoreq.x.ltoreq.1.0, 0.5.ltoreq.y.ltoreq.4.0, 0.5.ltoreq.z.ltoreq.4.5, 0.ltoreq.p.ltoreq.0.6, 0.5.ltoreq..ltoreq.3.0, and 1.0.ltoreq.v.ltoreq.5.5.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: December 15, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Kengo Ohkura, Toshihiro Kotani
  • Patent number: 5846912
    Abstract: The present invention relate to textured YBa.sub.2 Cu.sub.3 O.sub.x (Y-123) superconductors and a process of preparing them by directional recrystallization of compacts fabricated from quenched YBCO powders at temperatures about 100.degree. C. below the peritectic temperature to provide a superconductor where more than 75% of the YBa.sub.2 Cu.sub.3 O.sub.x phase is obtained without any Y.sub.2 BaCuO.sub.5 .
    Type: Grant
    Filed: January 4, 1996
    Date of Patent: December 8, 1998
    Assignee: Lockheed Martin Energy Systems, Inc.
    Inventors: Venkat Selvamanickam, Amit Goyal, Donald M. Kroeger
  • Patent number: 5846910
    Abstract: This invention concerns a method for the production of an oxide superconducting tape material having a composition of Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, which method consists essentially of forming a sandwich structure comprising a layer formed of a superconducting powder consisting essentially of Bi, Sr, Ca, Cu, and O and having an essential structure of Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8 and silver sheet layers, the superconducting powder layer being interposed between the silver sheet layers, heating the sandwich structure at a temperature in the range of 810.degree.-910.degree. C. in an atmosphere consisting of oxygen and an inert gas and having an oxygen partial pressure in the range of 0-90%, thereby melting the superconducting powder layer, and then elevating the oxygen partial pressure of the atmosphere while retaining the same heating temperature, thereby crystallizing the molten superconducting powder layer.
    Type: Grant
    Filed: June 11, 1997
    Date of Patent: December 8, 1998
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Ryoji Funahashi, Ichiro Matsubara, Kazuo Ueno, Hiroshi Ishikawa
  • Patent number: 5821201
    Abstract: A (BiPb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (Bi223) superconductor with high J.sub.c, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi.sub.2 O.sub.3, PbO, SrCO.sub.3, CaCo.sub.3 and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840.degree. C. The partially synthesized powder is then milled for 1-4 hours before calcining further for another 50 hours at 855.degree. C. to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: October 13, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Nan Chen, Kenneth C. Goretta, Michael T. Lanagan
  • Patent number: 5814122
    Abstract: A hollow high temperature ceramic superconducting fiber (10, 100), a process for making the hollow fibers and an apparatus for carrying out the process are provided. The apparatus functions to simultaneously draw a molten superconducting material (16) and a molten glass material (18) into a hollow preform (25) which is heat treated to form a hollow superconducting fiber (10, 100) which is flexible and has a high electrical current carrying capacity. The glass cladding layer (14, 14') surrounds the hollow superconducting core (12).
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: September 29, 1998
    Assignee: Owens-Corning Fiberglas Technology, Inc.
    Inventor: Jianzhong Huang