Treating With High Pressure Oxygen Patents (Class 505/482)
-
Patent number: 8361930Abstract: The invention relates to a method for producing a high temperature superconductor (HTSC) from a strip including an upper side precursor layer and which, for continuous sintering of the precursor layer within a furnace in the presence of a fed-in reaction gas, is drawn across a support. A furnace for performing the method is also described.Type: GrantFiled: April 6, 2011Date of Patent: January 29, 2013Assignee: BASF SEInventor: Michael Baecker
-
Patent number: 8227019Abstract: The present invention provides a high-throughput system for the ex-situ formation of a superconducting thin film, such as rare-earth-barium-copper-oxide (REBCO), atop a continuous length of buffered metal substrate tape by heating a buffered metal substrate tape coated with precursors of REBCO These precursors, when heated and introduced to water vapor within a process chamber, decompose to form a functional superconducting thin film epitaxial to the buffer layer. A chamber such as a metalorganic chemical vapor deposition (MOCVD) reactor having showerhead and substrate heater assemblies designed for the creation of a long and wide deposition zone is well suited for use in the process the system. The chamber could be of cold-wall type where the walls are not heated or could of hot-wall type where the walls are heated.Type: GrantFiled: December 15, 2003Date of Patent: July 24, 2012Assignee: SuperPower Inc.Inventor: Venkat Selvamanickam
-
Patent number: 7902120Abstract: Superconductor wires or layers having improved properties and methods for making the same are described. The superconducting layer includes a rare earth element-alkaline earth element-transition metal oxide having an average stacking fault density that is greater than about 0.01 nm?1, wherein two or more rare earth cations form the rare earth element. To form the superconductor layer of the present invention, a layer having a rare earth element-alkaline earth element-transition metal oxide substantially in a first crystal structure can be provided to a substrate where two or more rare earth cations form the rare earth element. The layer can then be heated at a temperature that is greater than 550° C. under oxidizing conditions to form a high-temperature superconducting layer substantially in a second crystal structure.Type: GrantFiled: July 23, 2007Date of Patent: March 8, 2011Assignee: American Superconductor CorporationInventors: Martin W. Rupich, Wei Zhang, Yibing Huang, Xiaoping Li
-
Patent number: 7655601Abstract: A method for the enhanced melt-textured growth of superconducting crystals is disclosed for a sample having a first material capable of exhibiting superconducting properties. The sample is heated above a peritectic temperature of the first material, cooled below the peritectic temperature, and is subsequently subjected to a plurality of temperature spikes in which the sample is rapidly reheated above the peritectic temperature and recooled below the peritectic temperature to produce a superconducting crystalline structure substantially free of secondary nucleations. The resulting crystal is a superconducting crystalline structure comprising a plurality of bands formed in succession around a seed material. Each band has a non-uniform microstructure from an inner portion to an outer portion of the band.Type: GrantFiled: February 13, 2007Date of Patent: February 2, 2010Assignee: Praxair S.T. Technology, Inc.Inventor: Scott H. Streett
-
Patent number: 6797313Abstract: Superconductor reactors, methods and systems are disclosed.Type: GrantFiled: July 30, 2002Date of Patent: September 28, 2004Assignee: American Superconductor CorporationInventors: Leslie G. Fritzemeier, Darren T. Verebelyi, Martin W. Rupich, Wei Zhang, Qi Li, Xiaoping Li
-
Patent number: 6436876Abstract: A method for preparing a BSCCO-2223 oxide superconducting article includes annealing an oxide superconductor article comprised of BSCCO-2223 oxide superconductor at a temperature selected from the range of about 500° C.≦T≦787° C. and an annealing atmosphere having an oxygen pressure selected from within the region having a lower bound defined by the equation, PO2(lower)≧3.5×1010 exp(−32,000/T+273) and an upper bound defined by the equation, PO2(upper)≦1.1×1012 exp(−32,000/T+273). The article is annealed for a time sufficient to provide at least a 10% increase in critical current density as compared to the critical current density of the pre-anneal oxide superconductor article. An oxide superconductor having the formula Bi2−yPbySr2Ca2Cu3O10+x, where 0≦x≦1.5 and where 0≦y≦0.6 is obtained, the oxide superconductor characterized by a critical transition temperature of greater than 111.0 K, as determined by four point probe method.Type: GrantFiled: May 18, 2001Date of Patent: August 20, 2002Assignee: American Superconductor CorporationInventors: Alexander Otto, Gilbert N. Riley, Jr., William L. Carter
-
Publication number: 20020004461Abstract: A new type of high temperature superconductor is described which is based on cubic phase Li3P formed at high pressures. A method for creating Li3P in a cubic phase either by itself or with up to 10% of Li3N by molecular proportions is also presented. The synthesis of these superconductive compounds is described. Generally, a mixture of low pressure synthesized Li3N and Li3P is subjected to a combination of high pressure and high heat for a certain duration. The phases are monitored during synthesis with x-ray diffraction and mass-spectrometry. The resultant materials display superconducting transitions, TS, above 225 K and approaching room temperature.Type: ApplicationFiled: July 6, 2001Publication date: January 10, 2002Applicant: CeramOptec Industries, Inc.Inventors: Wolfgang Neuberger, Andrei A. Donchak, Victor B. Kalinin
-
Patent number: 6284713Abstract: The present invention includes a method for oxygenating oxide superconductive materials, and superconductive oxide materials made by said method. In broadest terms, the method of the present invention is based on an oxygenation strategy which uses temperatures higher than those typically used in the final stages of the oxygenation processes of the prior art. In the method of the present invention, higher oxygen chemical potentials are used to access higher temperatures to allow for higher oxygen diffusivity without a significant decrease in oxygen solubility.Type: GrantFiled: October 3, 2000Date of Patent: September 4, 2001Assignee: The Ohio State UniversityInventor: Kenneth H. Sandhage
-
Patent number: 6207619Abstract: A superconductor with the Bi 2223 high Tc phase is manufactured by mulitply deforming and annealing a structure composed of a material matrix and at least one core of a fabricated material of the superconductor material. At least during an initial segment of a cooling process following the final annealing, the oxygen partial pressure is lowered with decreasing temperature at least in a temperature range between 800° C. and 750° C. for stabilizing the 2223 phase. A rapid cooling to room temperature advantageously follows.Type: GrantFiled: December 22, 1999Date of Patent: March 27, 2001Assignee: Siemens AktiengesellschaftInventors: Bernhard Fischer, Jens Mueller
-
Patent number: 6153561Abstract: The present invention includes a method of oxygenating an oxide superconductive material having an initial oxygen content, the method comprising the steps: (a) obtaining an oxide superconductive material, the material having an initial oxygen content; and (b) placing the oxide superconductive material in contact an oxygen-containing media having an oxygen chemical potential greater than that of pure diatomic oxygen at 1 atmosphere pressure and at 300.degree. C., and raising the temperature of the oxide superconductive material to a temperature above about 400.degree. C., and maintaining the oxide superconductive material at the temperature and under the chemical potential of oxygen for sufficient time so as to alter the oxygen content of the oxide superconductive material from the initial oxygen content.Type: GrantFiled: September 13, 1996Date of Patent: November 28, 2000Assignee: The Ohio State UniversityInventor: Kenneth H. Sandhage
-
Patent number: 6121207Abstract: The invention provides certain novel metal oxide materials which exhibit superconductivity at elevated temperatures and/or which are useful in electrode, electrolyte, cell and sensor applications, or as electrochemical catalysts. The metal oxide materials are generally within the formulaR.sub.n+1-u-s A.sub.u M.sub.m+e Cu.sub.n 0.sub.w (1)where n.gtoreq.0 and n is an integer or a non-integer, 1.ltoreq.m.ltoreq.2, 0.ltoreq.s.ltoreq.0.4, 0.ltoreq.e.ltoreq.4, and 2n+(1/2)<w<(5/2)n+4, with the provisos that u is 2 for n.ltoreq.1, u is n+1 for 0.ltoreq.Type: GrantFiled: March 2, 1999Date of Patent: September 19, 2000Assignee: Industrial Research LimitedInventors: Jeffery L. Tallon, Robert G. Buckley, Murray R. Presland
-
Patent number: 5952268Abstract: The present invention relates to method of preparing a superconductor material consisting in preparing a precursor constituted by a powder of Ba.sub.2 Ca.sub.n-1 Cu.sub.n+1 O.sub.x or Ba.sub.2 Ca.sub.n-1 Cu.sub.n+1 O.sub.x where n is an integer greater than 1 and x is greater than 2n+2; in mixing said powder with silver oxide power, optionally in the presence of excess copper oxide, in a proportion of one mole of precursor for one to three moles of silver oxide; and in heating to high temperature and high pressure.Type: GrantFiled: July 23, 1996Date of Patent: September 14, 1999Assignee: AlcatelInventors: Miguel Angel Alario-Franco, Catherine Chaillout, Jean-Jacques Capponi, Jean-Louis Tholence, Benedicte Souletie
-
Patent number: 5883052Abstract: A method of preparing a superconducting oxide by combining the matalic elements of the oxide to form an alloy, folled by oxidation of the alloy to form the oxide. Superconducting oxide-metal composites are prepared in which a noble metal phase intimately mixed with the oxide phase results in improved mechanical properties. The superconducting oxides and oxide-metal composites are provided in a variety of useful forms.Type: GrantFiled: March 18, 1997Date of Patent: March 16, 1999Assignee: Massachusetts Institute of TechnologyInventors: Gregory J. Yurek, John B. VanderSande
-
Patent number: 5840659Abstract: In order to provide a Tl--Ba--Ca--Cu--O superconductive material which can obtain a stable superconducting state and a method of preparing the same, the oxide superconductive material is expressed in the following composition formula:Tl.sub.x Ba.sub.2 Ca.sub.y Cu.sub.3 O.sub.zwhere x, y and z are in relations satisfying 1.5.ltoreq.x.ltoreq.2.0, 2.0.ltoreq.y.ltoreq.2.5, x+y=4.0 and 9.0.ltoreq.z.ltoreq.11.0, and comprises tetragonal system superconducting phases having lattice constants of a=0.385 to 0.386 nm and c longer than 3.575 nm, to exhibit zero resistance under a temperature of at least 125 K, while the method comprises a step of mixing powder raw materials in blending ratios for satisfying the above composition formula, a step of sintering the as-formed mixed powder in an oxygen jet or in the atmosphere to obtain a sintered body, and a step of annealing the sintered body in a closed atmosphere at 700.degree. to 800.degree. C. for at least 10 hours.Type: GrantFiled: March 14, 1997Date of Patent: November 24, 1998Assignees: Sumitomo Electric Industries, Ltd., Ube Industries Ltd., Matsushita Electrical Industrial Co., Ltd., International Superconductivity Technology CenterInventors: Tetsuyuki Kaneko, Kazuyuki Hamada, Hisao Yamauchi, Seiji Adachi, Shoji Tanaka
-
Patent number: 5801126Abstract: The process for producing high-T.sub.c superconductors containing thallium, calcium, barium and copper, possibly also lead and/or strontium, provides for a thallium-free precursor to be produced in a first reaction step and this to be then mechanically triturated, subsequently heated to temperatures in the range from 700.degree. to 950.degree. C. and heat treated for a period of at least 3 hours. The mixture is then cooled to ambient temperature and ground again. Finally, it is heat treated at temperatures of from 400.degree. to 500.degree. C. in a stream of pure oxygen. The thallium-free precursor is then triturated with Tl.sub.2 O.sub.3, if desired shaped into a shaped part and then oxidatively fired in a flowing gas atmosphere.Type: GrantFiled: September 17, 1996Date of Patent: September 1, 1998Assignee: Hoechst AktiengesellschaftInventors: Marc Neubacher, Steffen Elschner, Christoph Lang, Christoph Teske, Hans Karl Mueller-Buschbaum
-
Patent number: 5798318Abstract: The present invention provides a (Bi,Pb)SCCO-2223 oxide superconductor composite which exhibits improved critical current density and critical current density retention in the presence of magnetic fields. Retention of critical current density in 0.1 T fields (77 K, .perp. ab plane) of greater than 35% is disclosed. Significant improvements in oxide superconductor wire current carrying capacity in a magnetic field are obtained by subjecting the oxide superconductor composite to a post-processing heat treatment which reduces the amount of lead in the (Bi,Pb)SCCO-2223 phase and forms a lead-rich non-superconducting phase. The heat treatment is carried out under conditions which localize the lead-rich phase at high energy sites in the composite.Type: GrantFiled: May 21, 1996Date of Patent: August 25, 1998Assignee: American Superconductor Corp.Inventors: Qi Li, William J. Michels, Ronald D. Parrella, Gilbert N. Riley, Jr., Mark D. Teplitsky, Steven Fleshler
-
Patent number: 5716907Abstract: The present invention is an oxide superconductor containing alkaline earth metal M (where M is at least one element of Ba, Sr, and Ca) and having a crystalline structure in which a portion based on two rock-salt structures including the alkaline earth metal M, oxygen, and chlorine, and a 2n-1 piece of infinite layer structure portion are alternately layered on each other, said 2n-1 piece of infinite layer structure portion having an atom layer including copper atoms and oxygen atoms in a ratio of 1 to 2 and of an atom layer including only M atoms layered on each other (where n is an integer of 1 or more and where copper atoms and oxygen atom are contained in a ratio of 1 to 2 if n is 1).Type: GrantFiled: March 20, 1996Date of Patent: February 10, 1998Assignees: International Superconductivity Technology Center, The Furukawa Electric Co., Ltd., Tohoku Electric PowerInventors: Tadashi Tatsuki, Seiji Adachi, Makoto Itoh, Toshiyuki Tamura, Changqin Jin, Xiao-Jing Wu, Hisao Yamauchi
-
Patent number: 5705457Abstract: The present invention provides an oxide superconductor which is expressed in the composition formula(Pb.sub.1-x-y M.sub.x (A1).sub.y)(A2).sub.2 (A3).sub.n-1 (Cu).sub.n (O).sub.2n+3+z(wherein 0.ltoreq.0.6, 0.ltoreq.y.ltoreq.0.6, x+y.ltoreq.0.6, n denotes integers of 1 or more, -0.6.ltoreq.z.ltoreq.0.5, M denotes Cu or Cd, and A1, A2 and A3 denote at least one element of Ba, Sr, and Ca, respectively) and which has a crystal structure stacking rock salt structure based portions and infinite layer structure portions, wherein the rock salt structure based portion has a structure that an atoms layer having 0.5-1.5 oxygen atoms, in case the total atoms number of Pb, M and A1 is one, and an atoms layer having one or less oxygen atoms per one A2 atom, are stacked and the infinite layer structure portion has a structure that an atoms layer having 2 oxygen atoms per one Cu atom and an atoms layer of A3 atoms only, are stacked.Type: GrantFiled: September 8, 1995Date of Patent: January 6, 1998Assignees: The Furukawa Electric Co., Ltd., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology CenterInventors: Toshiyuki Tamura, Seiji Adachi, Xiao-Jing Wu, Hisao Yamauchi
-
Patent number: 5677265Abstract: A process for the oxygenation of ceramic high T.sub.c superconductors is disclosed. The superconductor is formed from a sintered powdered ceramic. Microchannels are formed in the ceramic material by embedding in the powder a plurality of wires or fibers formed of a material which is thermally removable during the sintering process to leave thin, continuous, tubular channels. After sintering, the ceramic is exposed to oxygen in a high temperature, high pressure environment. The microchannels aid in the transport of oxygen into the interior of the material by providing passages along which the oxygen travels prior to diffusing into the material. The lengths of the diffusion paths in the material are thereby greatly shortened. In another embodiment, the channels are formed after sintering and prior to oxygenation by drilling, punching, or etching.Type: GrantFiled: March 3, 1995Date of Patent: October 14, 1997Assignee: Northeastern UniversityInventors: Bill C. Giessen, Robert S. Markiewicz, Bala Maheswaran, Thomas R. Gilbert
-
Patent number: 5670457Abstract: An oxide superconductor composed of Cu, O and at least one of Ba, Sr and Ca and including alternately arranged at least one oxygen-deficient perovskite structure section and at least one infinite layer structure section, wherein the perovskite structure section consists of two first atomic layers and a second atomic layer sandwiched between the first layers, and wherein the infinite layer structure section consists of alternately arranged, third and fourth atomic layers. Each of the first layers consists of O and an element M.sup.1 selected from Ba, Sr and Ca and has an atomic ratio O/M.sup.1 of 1 or less, while the second layer consists of O and Cu and has an atomic ratio O/Cu of 2 or less. Each of the third layers consists of O and Cu and has an atomic ratio O/Cu of 2, while each of the fourth layers consists of an element M.sup.2 selected from Ba, Sr and Ca. A superconductor having a superconducting critical temperature of over 100 K. may be produced by heat treatment at 800.degree.-1,200.degree.C.Type: GrantFiled: December 15, 1994Date of Patent: September 23, 1997Assignees: International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd.Inventors: Seiji Adachi, Changqin Jin, Xiao-Jing Wu, Hisao Yamauchi, Shoji Tanaka
-
Patent number: 5612291Abstract: A superconductive device for helping shield magnetic field comprises at least two members; a layer containing superconductive oxide over each of said members; means for connecting said members to form a substrate; and means for connecting said layers containing superconductive oxide along a joint in which said members are connected.Type: GrantFiled: April 20, 1994Date of Patent: March 18, 1997Assignee: NGK Insulators, Ltd.Inventors: Shoji Seike, Hideki Shimizu, Makoto Tani
-
Patent number: 5492886Abstract: Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.Type: GrantFiled: April 15, 1994Date of Patent: February 20, 1996Assignee: Regents of the University of CaliforniaInventor: Donald E. Morris
-
Patent number: 5472527Abstract: A method for forming unsegregated metal oxide-silver composites includes preparing a precursor alloy comprising silver and precursor elements of a desired metal oxide and oxidizing the alloy under conditions of high oxygen activity selected to permit diffusion of oxygen into silver while significantly restricting the diffusion of the precursor elements into silver, such that oxidation of the precursor elements to the metal oxide occurs before diffusion of the metallic elements into silver. Further processing of the metal oxide composite affords an oxide superconducting composite with a highly unsegregated microstructure.Type: GrantFiled: June 24, 1993Date of Patent: December 5, 1995Assignee: American Superconductor CorporationInventors: Alexander Otto, Lawrence J. Masur, Eric R. Podtburg, Kenneth H. Sandhage
-
Patent number: 5430008Abstract: Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof.Type: GrantFiled: October 28, 1991Date of Patent: July 4, 1995Assignee: The Regents of the University of CaliforniaInventor: Donald E. Morris
-
Patent number: 5374611Abstract: A high temperature superconducting material with the general formula GaSr.sub.2 Ln.sub.1-x MxCu.sub.2 O.sub.7.+-.w wherein Ln is selected from the group consisting of La, Ce, Pt, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y and M is selected from the group consisting of Ca and Sr, 0.2.ltoreq.x.ltoreq.0.4 and w is a small fraction of one. A method of preparing this high temperature superconducting material is provided which includes heating and cooling a mixture to produce a crystalline material which is subsequently fired, ground and annealed at high pressure and temperature in oxygen to establish superconductivity.Type: GrantFiled: October 1, 1992Date of Patent: December 20, 1994Assignees: The University of Chicago, Northwestern UniversityInventors: Bogdan Dabrowski, J. T. Vaughey, Kenneth R. Poeppelmeier
-
Patent number: 5348935Abstract: Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.Type: GrantFiled: May 22, 1992Date of Patent: September 20, 1994Assignee: The Regents of the University of CaliforniaInventor: Donald E. Morris
-
Patent number: 5334579Abstract: A process for producing a superconducting material comprising a compound oxide represented by the general formula:(Ba, Ca).sub.x (.alpha., Dy).sub.1-x Tl.sub.y Cu.sub.1-y O.sub.3-zwherein ".alpha." represents Y or La; the atomic ratio of Ca to Ba is between 1% and 90%; the atomic ratio of Dy to .alpha. is between 1% and 90%; x, y and z are within the ranges of 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, and 0.ltoreq.z<1 respectively; and the expression of (Ba, Ca) and (.alpha., Dy) means that the respective elements occupy predetermined sites in a crystal in a predetermined proportion. The process comprises preparing a material powder, compacting the material powder and then subjecting the resulting compact to a final sintering operation and is characterized in that the material powder is(A) a powder mixture composed of powders selected from a group comprising (i) powders of elemental Ba, Cu, Ca, .alpha., Dy and Tl and (ii) powders of compounds each containing at least one of said elements Ba, Cu, Ca, .Type: GrantFiled: December 31, 1992Date of Patent: August 2, 1994Assignee: Sumitomo Electric Industries, Ltd.Inventors: Hideo Itozaki, Saburo Tanaka, Nobuhiko Fujita, Shuji Yazu, Tetsuji Jodai