Precursor Of High Temperature (tc Greater Than 30 K) Superconductor Material Or Stock, Per Se, Or Process Of Producing The Precursor Patents (Class 505/510)
  • Patent number: 9034124
    Abstract: A metal laminated substrate for an oxide superconducting wire is manufactured such that a non-magnetic metal plate T1 having a thickness of not more than 0.2 mm and a metal foil T2 made of Cu alloy which is formed by cold rolling at a draft of not less than 90% and has a thickness of not more than 50 ?m is laminated to each other by room-temperature surface active bonding, after lamination, crystal of the metal foil is oriented by heat treatment at a temperature of not less than 150° C. and not more than 1000° C. and, thereafter, an epitaxial growth film T3 made of Ni or an Ni alloy having a thickness of not more than 10 ?m is laminated to the metal foil.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: May 19, 2015
    Assignees: TOYO KOHAN CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hironao Okayama, Akira Kaneko, Takeshi Kato, Masaya Konishi
  • Publication number: 20150119252
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A niobium/aluminum oxide/niobium trilayer may be formed and individual Josephson Junctions (JJs) formed. A protective cap may protect a JJ during fabrication. A hybrid dielectric may be formed. A superconductive integrated circuit may be formed using a subtractive patterning and/or additive patterning. A superconducting metal layer may be deposited by electroplating and/or polished by chemical-mechanical planarization. The thickness of an inner layer dielectric may be controlled by a deposition process. A substrate may include a base of silicon and top layer including aluminum oxide. Depositing of superconducting metal layer may be stopped or paused to allow cooling before completion. Multiple layers may be aligned by patterning an alignment marker in a superconducting metal layer.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 30, 2015
    Inventors: Eric Ladizinsky, Jeremy P. Hilton, Byong Hyop Oh, Paul I. Bunyk
  • Publication number: 20150111755
    Abstract: A superconducting wire has a length that is sufficiently longer than a conventional one, and a critical current density that is uniformly high over the entire length thereof. Density of the magnesium diboride core is 1.5 g/cm3 or higher. A void is present in an arbitrary longitudinal cross-section in the longitudinal direction of the superconducting wire, when a length of a line segment which connects the most distant two points in a closed curve forming the void is assumed to be L, among the voids with length L of 20 ?m or greater, the number of voids with an angle formed by the line segment and the axis in the longitudinal direction of the superconducting wire of 45° or greater is less than the number of voids with the angle formed by the line segment and the axis in the longitudinal direction of the superconducting wire of smaller than 45°.
    Type: Application
    Filed: April 25, 2013
    Publication date: April 23, 2015
    Inventors: Motomune Kodama, Kazuhide Tanaka, Junichi Shimoyama, Akiyasu Yamamoto
  • Publication number: 20150038334
    Abstract: A tape-shaped superconducting film-forming substrate is disclosed, which includes a film-forming face for forming a laminate including a superconducting layer thereon, a rear face that is a face at a side opposite to the film-forming face, a pair of end faces connected to the film-forming face and the rear face, and a pair of side faces connected to the film-forming face, the rear face, and the pair of end faces, in which each of the pair of side faces includes a spreading face that spreads toward an outer side in an in-plane direction of the film-forming face from an edge part of the film-forming face toward the rear face side. A superconducting wire and a superconducting wire manufacturing method are also disclosed.
    Type: Application
    Filed: February 6, 2013
    Publication date: February 5, 2015
    Inventors: Yoshinori Nagasu, Masaru Higuchi, Hisaki Sakamoto
  • Patent number: 8946126
    Abstract: A precursor material for the preparation of superconductors based on Bi2Sr2Ca1Cu2O8+? wherein the precursor material which is as close to equilibrium state as possible, i.e., has less than 5% in average 2201 intergrowths in the 2212 phase; in particular, the present invention relates to a precursor material, which is converted to the final conductor by partial melt processing, as well as to a process for the production of the precursor material and the use of the precursor material for preparing superconductors based on Bi2Sr2Ca1Cu2O8+?.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: February 3, 2015
    Assignee: Nexans
    Inventors: Joachim Bock, Jurgen Ehrenberg, Mark Rikel
  • Publication number: 20140378313
    Abstract: The present invention refers to a method for applying a smoothening layer on a band substrate for subsequent manufacturing a high temperature superconductor tape, wherein the method comprises the steps: (a) applying a liquid containing polysilazane on at least one side of the band substrate; and (b) heating the liquid containing polysilazane to a temperature?450° C. for depositing a layer on the band substrate which comprises silicon oxynitride (SiNxOy, wherein 0?x<0.6 and 1.0<y?2.0), and/or silicon-carbon-oxynitride (SiCxNyOz, 2·y<x?1.0, 0<y<0.2 and 1.0<z?2.0).
    Type: Application
    Filed: May 23, 2014
    Publication date: December 25, 2014
    Applicant: Theva Dünnschichttechnik GmbH
    Inventor: Werner Prusseit
  • Publication number: 20140342917
    Abstract: A method for manufacturing a superconducting wire includes the following steps. A laminate metal having a first metal layer and a Ni layer formed on the first metal layer is prepared. An intermediate layer (20) is formed on the Ni layer of the laminate metal. A superconducting layer (30) is formed on the intermediate layer (20). By subjecting the laminate metal to a heat treatment after at least either of the step of forming a intermediate layer (20) and the step of forming a superconducting layer (30), a nonmagnetic Ni alloy layer (12) is formed from the laminate metal.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Inventor: Hajime Ota
  • Patent number: 8865628
    Abstract: Provided is a coating solution where, upon producing a rare-earth superconductive composite metal oxide film by means of a coating-pyrolysis method, cracks are not generated in the heat treatment process for eliminating organic components, even when the thickness of the rare-earth superconductive film produced in a single coating is 500 nm or more, and without having to repeat the coating and annealing process. A solution for producing a rare-earth superconductive film which is made into a homogeneous solution by dissolving, in a solvent formed by adding a polyhydric alcohol to a univalent linear alcohol having a carbon number of 1 to 8 and/or water, a metal complex coordinated, relative to metal ions of a metallic species containing rare-earth elements, barium and copper, with pyridine and/or at least one type of tertiary amine, at least one type of carboxylic acid having a carbon number of 1 to 8, and, as needed, an acetylacetonato group.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: October 21, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Takaaki Manabe, Iwao Yamaguchi, Toshiya Kumagai, Mitsugu Sohma, Wakichi Kondou, Kenichi Tsukada
  • Publication number: 20140287929
    Abstract: A monofilament (1) for the production of a superconducting wire (20) has a powder core (3) that contains at least Sn and Cu, an inner tube (2), made of Nb or an alloy containing Nb, that encloses the powder core (3), and an outer tube (4) in which the inner tube (2) is arranged. The outer side of the inner tube (2) is in contact with the inner side of the outer tube (4) and the outer tube (4) is produced from Nb or from an alloy containing Nb. The outer tube is disposed in a cladding tube. The superconducting current carrying capacity of the superconducting wire is thereby improved.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 25, 2014
    Inventor: Manfred Thoener
  • Publication number: 20140221215
    Abstract: A precursor for a Nb3Sn superconductor wire to be manufactured by the internal diffusion method, includes a plurality of Nb-based single core wires, each of which includes a Nb-based core coated with a Cu-based coating including a Cu-based matrix, a plurality of Sn-based single core wires, each of which includes a Sn-based core coated with a Cu-based coating including a Cu-based matrix; and a cylindrical diffusion barrier including Ta or Nb, in which the plurality of Nb-based single core wires and the plurality of Sn-based single core wires are regularly disposed, wherein the plurality of Nb-based single core wires include Nb-based single core wires having a Cu/Nb ratio of 0.4 or more, wherein the Cu/Nb ratio is a cross sectional area ratio of the Cu-based coating to the Nb-based core.
    Type: Application
    Filed: September 9, 2013
    Publication date: August 7, 2014
    Applicant: SH Copper Products Co., Ltd.
    Inventors: Yoshihide Wadayama, Katsumi Ohata, Kazuhiko Nakagawa, Morio Kimura
  • Patent number: 8778841
    Abstract: A precursor for a Nb3Sn superconductor wire to be manufactured by the internal diffusion method. The precursor includes Nb-based single core wires, Sn-based single core wires, and a cylindrical diffusion barrier made of Ta or Nb. Each Nb-based single core wire includes a Nb-based core coated with a Cu-based coating made of a Cu-based matrix. Each Sn-based single core wire includes a Sn-based core coated with a Cu-based coating made of a Cu-based matrix. The Nb-based single core wires and the Sn-based single core wires are regularly disposed in the diffusion barrier. The Nb-based single core wires includes at least two kinds of Nb-based single core wires having different Cu/Nb ratios and the Cu/Nb ratio is a cross sectional area ratio of the Cu-based coating to the Nb-based core.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 15, 2014
    Assignee: SH Copper Products Co., Ltd.
    Inventors: Yoshihide Wadayama, Katsumi Ohata, Kazuhiko Nakagawa, Morio Kimura
  • Patent number: 8653005
    Abstract: This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: February 18, 2014
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Harold Wiesmann, Vyacheslav Solovyov
  • Publication number: 20140024533
    Abstract: An MgB2 superconducting wire excellent in critical current density property is supplied by using a crystalline boron powder which is low in costs and easy to obtain. For the wire, a precursor of the MgB2 superconducting wire is used, the precursor having a linear structure including a core region containing a magnesium powder and a boron powder, and a sheath region formed of a metal covering an outer circumferential portion of the core region. The boron powder is crystalline, and has a volume-mean particle size of 2 ?m or less.
    Type: Application
    Filed: January 23, 2013
    Publication date: January 23, 2014
    Applicants: HITACHI, LTD., THE UNIVERSITY OF TOKYO
    Inventors: The University of Tokyo, Hitachi, Ltd.
  • Patent number: 8626254
    Abstract: The invention relates to an assembly (1, 35, 71) of metal elements constituting a precursor for a superconductor. The assembly comprises at least one conductor element (5, 41, 73) adapted to provide a superconducting filament in the finished superconductor, and at least one doping element (7, 43, 75) providing a doping source for doping the conductor element. The invention also relates to a method suitable for producing a superconductor.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: January 7, 2014
    Assignee: Luvata Espoo Oy
    Inventor: Jukka Somerkoski
  • Patent number: 8586506
    Abstract: Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: November 19, 2013
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Raghu N. Bhattacharya, Sovannary Phok, Priscila Spagnol, Tapas Chaudhuri
  • Publication number: 20130053249
    Abstract: The present invention refers to obtaining a solution of metal-organic precursors with a maximum fluorine content of 10% using the solution previously described in patent ES2259919 B1 as the starting point. This modification enables carrying out the thermal treatment of superconducting decomposition layers (pyrolysis) and crystal growth in a single stage. In addition, the low fluorine content reduces the risks of toxicity and corrosion.
    Type: Application
    Filed: December 3, 2010
    Publication date: February 28, 2013
    Applicant: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
    Inventors: Susana Ricart Miró, Xavier Palmer Paricio, Alberto Pomar Barbeito, Teresa Puig Molina, Xavier Obradors Berenguer, Anna Palau Masoliver
  • Publication number: 20130035236
    Abstract: This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 7, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Harold Wiesmann, Vyacheslav Solovyov
  • Patent number: 8361931
    Abstract: A method for preparing yttrium barium copper oxide (“YBCO”; “Y-123”; YBa2Cu3O7-x) superconducting nanoparticles is disclosed. The YBCO superconducting nanoparticles are prepared via a solid-state reaction by a solid-state reaction of an yttrium precursor, a barium precursor, and a copper precursor. One or more of the precursors are metal chelate compounds having acetylacetone ligands, which are highly stable and have a high compatibility with the other precursors.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: January 29, 2013
    Inventors: Masoud Salavati-Niasari, Sima Alikhanzadeh-Arani
  • Publication number: 20120270738
    Abstract: Provided is a coating solution where, upon producing a rare-earth superconductive composite metal oxide film by means of a coating-pyrolysis method, cracks are not generated in the heat treatment process for eliminating organic components, even when the thickness of the rare-earth superconductive film produced in a single coating is 500 nm or more, and without having to repeat the coating and annealing process. A solution for producing a rare-earth superconductive film which is made into a homogeneous solution by dissolving, in a solvent formed by adding a polyhydric alcohol to a univalent linear alcohol having a carbon number of 1 to 8 and/or water, a metal complex coordinated, relative to metal ions of a metallic species containing rare-earth elements, barium and copper, with pyridine and/or at least one type of tertiary amine, at least one type of carboxylic acid having a carbon number of 1 to 8, and, as needed, an acetylacetonato group.
    Type: Application
    Filed: December 9, 2010
    Publication date: October 25, 2012
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Takaaki Manabe, Iwao Yamaguchi, Toshiya Kumagai, Mitsugu Sohma, Wakichi Kondou, Kenichi Tsukada
  • Publication number: 20120178630
    Abstract: Provided is a superconducting wire rod that is reduced in cost due to a thinner/simpler middle layer, without the properties of the superconducting wire rod (for example critical current properties) being negatively affected. A provided tape-shaped base material for superconducting wire rods comprises a diffusion preventing layer, which comprises an oxide of a group 4 (4A) element, formed on a substrate that contains iron, nickel, or chromium. Specifically, the diffusion preventing layer comprises TiO2, ZrO2, or HfO2.
    Type: Application
    Filed: October 26, 2010
    Publication date: July 12, 2012
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventor: Yoshikazu Okuno
  • Publication number: 20120149579
    Abstract: A precursor for a Nb3Sn superconductor wire to be manufactured by the internal diffusion method. The precursor includes Nb-based single core wires, Sn-based single core wires, and a cylindrical diffusion barrier made of Ta or Nb. Each Nb-based single core wire includes a Nb-based core coated with a Cu-based coating made of a Cu-based matrix. Each Sn-based single core wire includes a Sn-based core coated with a Cu-based coating made of a Cu-based matrix. The Nb-based single core wires and the Sn-based single core wires are regularly disposed in the diffusion barrier. The Nb-based single core wires includes at least two kinds of Nb-based single core wires having different Cu/Nb ratios and the Cu/Nb ratio is a cross sectional area ratio of the Cu-based coating to the Nb-based core.
    Type: Application
    Filed: September 23, 2011
    Publication date: June 14, 2012
    Applicant: HITACHI CABLE, LTD.
    Inventors: Yoshihide Wadayama, Katsumi Ohata, Kazuhiko Nakagawa, Morio Kimura
  • Publication number: 20120108437
    Abstract: A precursor for a Nb3Sn superconductor wire is configured to be manufactured by the internal Sn diffusion method. The precursor includes a Cu tube including a barrier layer at an inner surface thereof. The barrier layer includes a metal selected from the group consisting of Ta, Ta-alloy, Nb and Nb-alloy. A plurality of Sn single cores are disposed in the Cu tube. Each of the Sn single cores includes Sn or Sn-alloy. A plurality of Nb single cores are also disposed in the Cu tube. Each of the Nb single cores includes Nb or Nb-alloy. The Sn single cores and the Nb single cores are arranged in the Cu tube such that the Sn single cores are not adjacent to each other.
    Type: Application
    Filed: September 2, 2011
    Publication date: May 3, 2012
    Applicant: Hitachi Cable, Ltd.
    Inventors: Katsumi Ohata, Morio Kimura, Kazuhiko Nakagawa, Katsumi Miyashita
  • Publication number: 20120040840
    Abstract: [Problem] A metal laminated substrate for an oxide superconducting wire is provided at a low cost. The metal laminated substrate has high strength, and stable high biaxial orientation in the longitudinal direction. [Means for Resolution] A metal laminated substrate for an oxide superconducting wire is manufactured such that a non-magnetic metal plate T1 having a thickness of not more than 0.2 mm and a metal foil T2 made of Cu alloy which is formed by cold rolling at a draft of not less than 90% and has a thickness of not more than 50 ?m is laminated to each other by room-temperature surface active bonding, after lamination, crystal of the metal foil is oriented by heat treatment at a temperature of not less than 150° C. and not more than 1000° C. and, thereafter, an epitaxial growth film T3 made of Ni or an Ni alloy having a thickness of not more than 10 ?m is laminated to the metal foil.
    Type: Application
    Filed: November 11, 2009
    Publication date: February 16, 2012
    Inventors: Hironao Okayama, Akira Kaneko, Takeshi Kato, Masaya Konishi
  • Publication number: 20120035059
    Abstract: The invention relates to an assembly (1, 35, 71) of metal elements constituting a precursor for a superconductor. The assembly comprises at least one conductor element (5, 41, 73) adapted to provide a superconducting filament in the finished superconductor, and at least one doping element (7, 43, 75) providing a doping source for doping the conductor element. The invention also relates to a method suitable for producing a superconductor.
    Type: Application
    Filed: December 22, 2009
    Publication date: February 9, 2012
    Applicant: LUVATA ESPOO OY
    Inventor: Jukka Somerkoski
  • Patent number: 7985714
    Abstract: A precursor for fabricating a Nb3Sn superconducting wire by an internal Sn process includes one or a plurality of stabilizing copper portions collectively disposed in the center, each stabilizing copper portion being provided with a diffusion barrier layer in the periphery thereof, and a superconducting matrix portion disposed so as to surround the one or the plurality of stabilizing copper portions, the superconducting matrix portion including a Nb or Nb-based alloy core and a Sn or Sn-based alloy core embedded in a Cu or Cu-based alloy matrix.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: July 26, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroyuki Kato, Takashi Hase, Kyoji Zaitsu
  • Publication number: 20110136673
    Abstract: A precursor wire of an oxide superconducting wire includes a first sheath made of silver or silver alloy, a center portion in the first sheath, and a plurality of peripheral segments placed close to one another at the inside of the first sheath so as to surround the center portion. Each of the peripheral segments is formed as a monofilamentary segment that has an arch-shaped cross section and that includes a ribbon-shaped filament made of a precursor of an oxide superconductor and covered with a second sheath made of silver or silver alloy. The multiple peripheral segments are placed in a multilayer state in the form of concentric circles such that wide-width surfaces of the peripheral segments surround the center portion.
    Type: Application
    Filed: April 22, 2009
    Publication date: June 9, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Naoki Ayai
  • Patent number: 7863221
    Abstract: For producing the superconducting material MgB2, a shapeable master alloy containing Mg and B, as well as at least one additional constituent, an LiMgB alloy is.1 The process permits the production of shaped elements of MgB2, for example by forging, casting, drawing, etc.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: January 4, 2011
    Assignee: Eidenossische Technische Hochschule Zurich
    Inventors: Juan Matias Reinoso, Frank Ottinger, Michael Woerle, Reinhard Nesper
  • Publication number: 20100093546
    Abstract: Disclosed herein are superconducting composites, and preliminary products therefor, having a core comprising a superconducting phase, a first casing surrounding the core, and having an inner area abutting the core and having a first magnesium concentration and an outer area having a second magnesium concentration greater than the first magnesium concentration, wherein the second magnesium concentration is, on average, between 5 and 40 atomic percent. Desirably, the superconducting phase comprises a MgB2 phase. This arrangement allows for methods for producing the composites that reduce or eliminate subjecting the superconducting phase to mechanical stresses.
    Type: Application
    Filed: September 30, 2009
    Publication date: April 15, 2010
    Applicant: Bruker EAS GmbH
    Inventors: Klaus Schlenga, Andreas Szulczyk
  • Publication number: 20100093547
    Abstract: A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.
    Type: Application
    Filed: October 31, 2006
    Publication date: April 15, 2010
    Inventors: Stephen R. Foltyn, Quanxi Jia, Paul N. Arendt, Haiyan Wang
  • Publication number: 20100062945
    Abstract: An Nb3Sn wire rod having a high Jc value is manufactured using an Ag—Sn alloy. A composite rod including a plurality of Nb core materials incorporated in an Ag—Sn alloy matrix material having an Sn concentration of 9.35 to 22.85 at % is prepared. Next, the composite rod is extruded and/or wire drawn while carrying out process annealing of 350 to 490° C., followed by heat treatment at 500 to 900° C. to produce an Nb3Sn filament. Thus, an Nb3Sn extrafine multi-core superconducting wire is manufactured.
    Type: Application
    Filed: May 31, 2006
    Publication date: March 11, 2010
    Applicant: The University of Tokushima
    Inventor: Kiyoshi Inoue
  • Publication number: 20100004133
    Abstract: This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
    Type: Application
    Filed: February 26, 2008
    Publication date: January 7, 2010
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Harold Wiesmann, Vyacheslav Solovyov
  • Publication number: 20090258788
    Abstract: It is an object to provide a Nb-based rod material which is used for producing a Nb3Sn superconducting wire material and in which satisfactory workability in Nb or a Nb-based alloy can be achieved, and a method of producing a superconducting wire material which can exhibit satisfactory superconducting characteristics using the Nb-based rod material. The Nb-based rod material is produced by a step of casting a raw material of this rod material using a casting mold having a circular or substantially circular cross-sectional shape, and a step of forming a columnar or substantially columnar rod material by hot-working or cold-working the resulting product obtained by the casting with a working apparatus whose cross-sectional shape is a circular or substantially circular shape.
    Type: Application
    Filed: November 1, 2006
    Publication date: October 15, 2009
    Inventors: Takayoshi Miyazaki, Shigenobu Nanba, Kyoji Zaitsu
  • Publication number: 20090011941
    Abstract: There is provided a Nb3Sn superconducting wire having excellent superconducting properties, the wire being produced by a powder process, and a precursor of the Nb3Sn superconducting wire produced by a powder process, the precursor being capable of increasing the efficiency of the formation reaction of Nb3Sn even in a relatively low practical temperature range of about 600° C. to about 750° C. The precursor of the present invention is a precursor of a Nb3Sn superconducting wire produced by a powder process including filling a sheath containing at least Nb with a material powder containing at least Sn, subjecting the resulting sheath filled with the powder to diameter reduction to form a wire, and subjecting the resulting wire to heat treatment to form a superconducting layer at the interface between the sheath and the powder. The material powder contains a Cu component. The sheath has a structure in which a Nb or Nb-based-alloy portion is combined with a Cu or Cu-based-alloy portion.
    Type: Application
    Filed: March 6, 2007
    Publication date: January 8, 2009
    Inventors: Kyoji Zaitsu, Takayoshi Miyazaki
  • Publication number: 20080287303
    Abstract: A precursor for producing a Nb3Sn superconducting wire includes a bundle of single-element wires each including a Cu or Cu-based alloy matrix, Nb or Nb-based alloy filaments, at least one Sn or Sn-based alloy core, the Nb or Nb-based alloy filaments and at least one Sn or Sn-based alloy core being arranged in the Cu or Cu-based alloy matrix, an diffusion barrier layer around the periphery of the Cu or Cu-based alloy matrix, the inner diffusion barrier layer being composed of Nb or a Nb-based alloy, and a Cu or Cu-based alloy layer around the periphery of the diffusion barrier layer; an outer diffusion barrier layer around the periphery of the bundle of the single-element wires, the outer diffusion barrier layer being composed of Nb, a Nb-based alloy, Ta, a Ta-based alloy, or a combination thereof; and a stabilizing copper layer around the periphery of the outer diffusion barrier layer.
    Type: Application
    Filed: April 16, 2008
    Publication date: November 20, 2008
    Inventors: Hiroyuki Kato, Takashi Hase, Kyoji Zaitsu
  • Publication number: 20080167192
    Abstract: A precursor for fabricating a Nb3Sn superconducting wire by an internal Sn process includes one or a plurality of stabilizing copper portions collectively disposed in the center, each stabilizing copper portion being provided with a diffusion barrier layer in the periphery thereof, and a superconducting matrix portion disposed so as to surround the one or the plurality of stabilizing copper portions, the superconducting matrix portion including a Nb or Nb-based alloy core and a Sn or Sn-based alloy core embedded in a Cu or Cu-based alloy matrix.
    Type: Application
    Filed: September 21, 2007
    Publication date: July 10, 2008
    Inventors: Hiroyuki Kato, Takashi Hase, Kyoji Zaitsu
  • Patent number: 7338921
    Abstract: An electrode is steeped in a solution of Mg and B and a negative voltage is applied to the electrode so as to precipitate superconductive MgB2 on the electrode. Superconductive MgB2 is easily manufactured in various forms and at low costs without any special device.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: March 4, 2008
    Assignee: National Institute for Materials Science
    Inventors: Hideki Abe, Hideaki Kitazawa, Akiyuki Matsushita
  • Patent number: 6812191
    Abstract: Superconductive bodies composed of cuprate material having a very critical current density with outer magnetic fields of up to 5 tesla when the bodies have a content of zinc cations. The bodies can also be subjected to modified oxygen treatment. The preferred cuprate materials are YBCO material and bismuth oxide based on superconductive material such as “2212” or “2223” type superconductive material. The preferred bodies are molded bodies obtained by melt texturing and “powder-in-tube” bodies.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: November 2, 2004
    Assignee: Solvay Barium Strontium GmbH
    Inventors: Jai Won Park, Karl Koehler, Ferdinand Hardinghaus, Hans Gabel, Gernot Krabbes, Peter Schaetzle, Gudrun Stoever
  • Patent number: 6677278
    Abstract: An Oxide Precursor Powder from the Pb—Bi—Sr—Ca—Cu—O 2223 System can be produced by heat treating powder, produced using the Spray Pyrolysis Process as described in: GB2210605 or EP0681989 between 700° C. and 850° C. in an atmosphere containing between 0.1% and 21% O2. Heat Treatment of the pyrolysis powder under controlled conditions produces a powder with a particular phase composition, that is highly homogeneous and has a small particle size distribution, that is inherently more reactive than powders heat treated in the same way but produced using other processes.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: January 13, 2004
    Assignee: Merck Patent GmbH
    Inventors: Lee Woodall, Ru-Shi Liu, Ya-Wei Hsueh, Wolfgang Wilhelm Schmahl, Sebastian Raeth
  • Patent number: 6627582
    Abstract: A large superconductor intermediate of REBa2Cu3Ox system (where RE is one kind or a combination of rare earth elements including Y), characterized by a structure that oxide superconductors having non-superconductive phases finely dispersed in REBa2Cu3Ox phases (123 phases) of different peritectic temperatures (Tp) are laminated three-dimensionally in the order of Tp's, seed crystals mounted on the oxide superconductor layer having a highest Tp, and excluded phases included in at least the oxide superconductor having the high Tp.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: September 30, 2003
    Assignee: Nippon Steel Corporation
    Inventors: Mitsuru Sawamura, Mitsuru Morita
  • Patent number: 6562761
    Abstract: Methods for preparing thick film rare-earth Ba2Cu3O7-&dgr; (such as YBCO) superconductive layers, particularly including deposition of a precursor as a dispersion of solid-state materials, including a binder or a solvent or both constituents. The solid-state materials include oxides, fluorides, and acetates of yttrium, barium, and copper in the form of ultrafine particles.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: May 13, 2003
    Assignee: American Superconductor Corporation
    Inventors: Leslie G. Fritzemeier, Christopher A. Craven, Cornelis Leo Hans Thieme
  • Patent number: 6559103
    Abstract: A process is provided for preparing solid superconducting mixed-metal oxides whereby the superconductor can be formed into any predetermined shape by way of viscous sol precursors. The superconductors are also formed by this process into homogeneous phases.
    Type: Grant
    Filed: March 17, 1989
    Date of Patent: May 6, 2003
    Assignee: The Boeing Company
    Inventors: Brad Lee Kirkwood, Thomas S. Luhman, Ronald Roy Stephenson, Michael Strasik
  • Publication number: 20020193255
    Abstract: A reduced coefficient of friction, preferably created by ideal lubrication conditions, may advantageously be employed in the breakdown deformation of a precursor to a multifilamentary superconducting composite, particularly in combination with one or more high reduction breakdown drafts, to improve composite homogeneity and significantly increase the range of deformation conditions over which dimensional tolerances and Je may be optimized. Precursor composites made by this method exhibit reduced microhardness variability and fewer and less serious transverse filament defects than composites made by prior art methods. The method comprises the steps of: first, providing a precursor article comprising a metal matrix surrounding a plurality of filaments extending along the length of the article and comprising precursors to a desired superconducting ceramic; next, roll working the precursor article during a breakdown stage at a predetermined pressure and a coefficient of friction less than about 0.
    Type: Application
    Filed: April 16, 2002
    Publication date: December 19, 2002
    Inventors: Qi Li, Theodore S. Greene, Gilbert N. Riley, William J. Michels, William L. Carter
  • Publication number: 20020016265
    Abstract: A novel process of the production and processing of high quality, high Tc (Bi,Pb)SCCO superconductors starts with fabrication of a precursor article including selected intermediate phases with desired chemical and structural properties. The precursor fabrication includes mixing raw powders with a desired ratio of Bi:Pb:Sr:Ca:Cu elements and reacting the mixture under different selected reaction conditions that form a precursor powder with a dominant (Bi, Pb)SCCO 2212 phase and without Ca—Pb—O phase, wherein the 2212 phase may be the orthorhombic 2212 phase. The precursor article is then subjected to optimized reaction and mechanical deformation processes that lead to a reaction induced texturing and deformation induced texturing, respectively. A heating process is used to convert the precursor powder to the 2223 phase and subsequent deformation and annealing processes may be used to form a substantially single phase, highly textured (Bi, Pb)SCCO 2223 superconductor with high Jc.
    Type: Application
    Filed: September 21, 2001
    Publication date: February 7, 2002
    Inventors: Martin W. Rupich, William L. Carter, Qi Li, Alexander Otto, Gilbert Riley
  • Patent number: 6332967
    Abstract: Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: December 25, 2001
    Assignee: Midwest Research Institute
    Inventor: Raghu N. Bhattacharya
  • Patent number: 6295716
    Abstract: A multicomponent powder useful in the formation of BSCCO-2223 is provided comprised of orthorhombic BSCCO-2212 and alkaline earth cuprate, without formation of undesirable secondary phases such as alkaline earth bismuthates and alkaline earth plumbates. A method for the production of the multicomponent powder includes providing a mixture of raw materials comprising constituent metallic elements in a ratio corresponding to a superconducting BSCCO-2223 material and heating the mixture under conditions which form a dominant amount of the orthorhombic BSCCO phase and the alkaline earth cuprate phase while preventing formation of an undesirable secondary phase selected from the group of alkaline earth plumbates and alkaline earth bismuthates. A subsequent heating step converts the multicomponent powder into the BSCCO-2223 and subsequent deformation and annealing processes may be used to form a substantially single phase, highly textured (Bi,Pb)SCCO-2223 superconductor article.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: October 2, 2001
    Assignee: American Superconductor Corporation
    Inventors: Martin W. Rupich, William L. Carter, Qi Li, Alexander Otto, Gilbert Riley, Jr.
  • Patent number: 6219901
    Abstract: A composite for preparation of an oxide superconductor includes a primary alloy phase of constituent elements of a desired oxide superconductor; and a secondary phase comprising copper, the secondary phase supported by the primary alloy phase. The composite may additionally include a matrix material for supporting the primary alloy phase and second phase disposed therein. The composite is oxidized to form an oxide superconductor composite.
    Type: Grant
    Filed: November 6, 1996
    Date of Patent: April 24, 2001
    Assignee: American Superconductor Corporation
    Inventors: Eric R. Podtburg, Kenneth H. Sandhage, Alexander Otto, Lawrence J. Masur, Christopher A. Craven, Jeffrey D. Schreiber
  • Patent number: 6043198
    Abstract: The present invention relates to a process for preparing a high-T.sub.c superconductor as a precursor material for the oxide-powder-in-tube method, which involves mixing the oxides of the elements Bi, Sr, Ca and Cu and completely melting them at temperatures of .gtoreq.1000.degree. C., then casting the melt onto a substrate which is kept at room temperature, and disintegrating the cooled melt block and grinding it into a powder.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: March 28, 2000
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Marc Neubacher, Joachim Bock, Christoph Lang, Eberhard Preisler, Helga Weis
  • Patent number: 6038462
    Abstract: A multifilamentary superconducting composite article comprising multiple substantially electrically decoupled domains, each including one or more fine, preferably twisted filaments of a desired superconducting oxide material. In a preferred embodiment, the article comprises a matrix, which substantially comprises a noble metal, a conductive jacketing layer surrounding the matrix, a plurality of discrete filament decoupling layers, each comprising an insulating material, disposed within the matrix to separate the matrix into a plurality of substantially electrically decoupled domains; a plurality of filaments, each comprising a desired superconducting oxide, which are disposed within and essentially encapsulated by the matrix and chemically isolated thereby from the decoupling layers, each of the electrically decoupled domains containing at least one filament.
    Type: Grant
    Filed: May 22, 1997
    Date of Patent: March 14, 2000
    Assignee: American Superconductor Corporation
    Inventors: Gregory L. Snitchler, Gilbert N. Riley, Jr., Alexis P. Malozemoff, Craig J. Christopherson
  • Patent number: 5914297
    Abstract: An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.
    Type: Grant
    Filed: April 5, 1996
    Date of Patent: June 22, 1999
    Assignee: American Superconductor Corp
    Inventor: Eric R. Podtburg
  • Patent number: 5851957
    Abstract: A composite for preparation of an oxide superconductor includes a primary alloy phase of constituent elements of a desired oxide superconductor; and a secondary phase comprising copper, the secondary phase supported by the primary alloy phase. The composite may additionally include a matrix material for supporting the primary alloy phase and second phase disposed therein. The composite is oxidized to form an oxide superconductor composite.
    Type: Grant
    Filed: August 5, 1993
    Date of Patent: December 22, 1998
    Assignee: American Superconductor Corporation
    Inventors: Eric R. Podtburg, Kenneth H. Sandhage, Alexander Otto, Lawrence J. Masur, Christopher A. Craven, Jeffrey D. Schreiber