Microelectronic Device With Superconducting Conduction Line Patents (Class 505/703)
  • Patent number: 5061681
    Abstract: A now superconducting material comprising a compound oxide represented by the general formula:(Sr,.gamma.).sub.x (La,.delta.).sub.1-x .epsilon..sub.y Cu.sub.1-y O.sub.3-zin which".gamma." represents an element of IIa group of the periodic table except Sr, an atomic ratio of .gamma. to Sr being selected in a range between 1% and 90%,".delta." represents an element of IIIa group of the periodic except La, an atomic ratio of .delta. to La is selected in a range between 1% and 90%,".epsilon." represents a metal element of Vb group of the periodic table, x, y and z are numbers each satisfies ranges of 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, and 0.ltoreq.z<1 respectively, andthe expression of (Sr,.gamma.) and (La,.delta.) mean that the respective elements position predetermined sites in a crystal in a predetermined proportion.
    Type: Grant
    Filed: April 19, 1989
    Date of Patent: October 29, 1991
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideo Itozaki, Saburo Tanaka, Nobuhiko Fujita, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5061687
    Abstract: A laminated film comprising a thin film of single crystal YBa.sub.2 Cu.sub.3 O.sub.7-x having the (001) plane in the direction parallel with the film surface and a continuous insulating ultrathin layer of MgO which is formed on said superconductor film and has a thickness of not larger than 10.ANG. and the (001) plane in a direction parallel with the film surface is provided.
    Type: Grant
    Filed: November 29, 1989
    Date of Patent: October 29, 1991
    Assignees: Ube Industries, Ltd., Kanegafuchi Chemical Industry Co., Ltd., Nippon Steel Corporation, TDK Corporation, Tosoh Corporation, Toyo Boseki Kabushiki Kaisha, Nippon Mining Co., Ltd., NEC Corporation, Matsushita Electric Industrial Co., Ltd., Seisan Kaihatsu Kagaku Kenkyusho
    Inventors: Toshio Takada, Takahito Terashima, Kenji Iijima, Kazunuki Yamamoto, Kazuto Hirata
  • Patent number: 5059583
    Abstract: A superconducting film is disclosed which consists of a rare earth alkaline earth copper oxide having an R.sub.1 A.sub.2 C.sub.3 crystalline phase over an R.sub.2 A.sub.1 C.sub.1 crystalline phase.
    Type: Grant
    Filed: July 28, 1989
    Date of Patent: October 22, 1991
    Assignee: Eastman Kodak Company
    Inventors: Mark Lelental, John A. Agostinelli, Henry J. Romanofsky
  • Patent number: 5059582
    Abstract: A superconducting laminate having at least one layer of metal and at least one layer of superconducting material. The metal layer and the superconducting layer are bonded. The metal later may also include carbon fibers from various precursors. The superconductor may be a composite material. The invention also includes a method of making the laminates.
    Type: Grant
    Filed: March 22, 1989
    Date of Patent: October 22, 1991
    Assignee: The Research Foundation of State University of NY
    Inventor: Deborah D. L. Chung
  • Patent number: 5057484
    Abstract: A single crystal oxide superconductor and the method of producing the same. One face of a substrate is coated with an oxide superconductor for forming an oxide superconductor layer. Then, the oxide superconductor layer is heated so that the oxide superconductor has a single crystalline structure.
    Type: Grant
    Filed: May 2, 1988
    Date of Patent: October 15, 1991
    Assignee: Fujikura Ltd.
    Inventors: Takao Shiota, Hiroshi Hidaka, Koichi Takahashi, Masahiro Sato, Osamu Fukuda
  • Patent number: 5051397
    Abstract: The present invention provides a method for joining of high-temperature oxide superconductors per se or a high-temperature oxide superconductor and other conductive material through a very simple process. According to this method, the joining is carried out by using an alloy comprising 0.1%-90% by weight of at least one divalent metallic element and the balance as a brazing material and heating and melting the brazing material. The resulting joined body has a joint low in resistance. The divalent metallic element of the alloy is preferably an element of Group IIA or IIB of the Periodic Table or a transition metal.
    Type: Grant
    Filed: November 20, 1989
    Date of Patent: September 24, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Chie Sato, Masahiko Sakamoto, Hisanori Okamura, Takao Funamoto, Masahiro Ogihara
  • Patent number: 5049539
    Abstract: A ceramic superconductivity part, such as a wire 10, is produced through the partial oxidation of a specially formulated copper alloy in a core 12. The alloys contain low level quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperature, superconducting oxide phases are formed as a thin film 14.
    Type: Grant
    Filed: January 31, 1989
    Date of Patent: September 17, 1991
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: James L. Smialek
  • Patent number: 5047389
    Abstract: A substrate for supporting a ceramic superconductor comprises a metallic base member having a constituent oxide former which establishes an oxide layer on the surface of the substrate. A layer of ceramic superconducting material covers the substrate with the oxide layer between the metallic base member and the ceramic superconductor layer to inhibit the interdiffusion of respective constituent elements between the metallic base member and the ceramic layer. For applications requiring the transmission of electrical current through the ceramic layer over relatively extensive distances, the substrate can be formed as a wire.
    Type: Grant
    Filed: October 31, 1988
    Date of Patent: September 10, 1991
    Assignee: General Atomics
    Inventors: Lawrence D. Woolf, Frederick H. Elsner, William A. Raggio
  • Patent number: 5041417
    Abstract: Articles are disclosed in which an electrically conductive layer on a substrate exhibits a superconducting transistion temperature in excess of 90.degree. K. Conductive layers are disclosed comprised of a crystalline heavy pnictide mixed alkaline earth copper oxide. Processes of preparing these articles are disclosed in which a mixed oxide precursor composition is coated and heated to its thermal decomposition temperature to create an amorphous mixed metal oxide layer. The amorphous layer is then heated to its crystallization temperature.
    Type: Grant
    Filed: March 20, 1989
    Date of Patent: August 20, 1991
    Assignee: Eastman Kodak Company
    Inventors: John A. Agostinelli, Gustavo R. Paz-Pujalt, Arun K. Mehrotra, Liang-sun Hung
  • Patent number: 5039655
    Abstract: A thin film magnetic array memory affords relatively high packing densities while avoiding the problem of magnetic domain creep through the use of thin films of superconducting material disposed on the work lines of the memory. The superconducting films shunt magnetic fields generated by currents carried within the word lines and prevent these fields from adversely affecting adjacent memory cells in the array. By constraining the magnetic fields with the use of the superconducting films, the word lines can be packed close to one another in the array structure, thereby increasing the amount of information that can be stored in a unit area of the array.
    Type: Grant
    Filed: July 28, 1989
    Date of Patent: August 13, 1991
    Assignee: Ampex Corporation
    Inventor: Raghavan K. Pisharody
  • Patent number: 5030613
    Abstract: Superconducting Ba--Y--Cu--O ceramic thin film is epitaxially deposited on a crystal substrate of LaAlO.sub.3, LaGaO.sub.3, PrGaO.sub.3 and NdGaO.sub.3.
    Type: Grant
    Filed: August 15, 1988
    Date of Patent: July 9, 1991
    Assignee: Allied-Signal Inc.
    Inventor: Bruce H. Chai
  • Patent number: 5028583
    Abstract: Improvement in a superconducting thin film of compound oxide represented by the formula: LnBa.sub.2 Cu.sub.3 O.sub.7- .delta. (Ln is lanthanide) or (La.sub.1-x .alpha..sub.x).sub.2 CuO.sub.4 (.alpha. is Ba or Sr) deposited on a substrate or core made of MgO, SrTiO.sub.3 or ZrO.sub.2 by physical vapor deposition technique, the surface roughness R.sub.max (datum length=1,000 .mu.m) of the superconducting thin film being less than 0.2 .mu.m.
    Type: Grant
    Filed: December 20, 1988
    Date of Patent: July 2, 1991
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Saburo Tanaka, Hideo Itozaki, Kenjiro Higaki, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5026683
    Abstract: A superconducting wire and a process for fabricating such a wire. The present invention relates specifically to the fabrication of a wire using a ceramic superconducting material. Initially, a quantity of highly pure high temperature superconducting material is obtained. The superconducting material may be fabricated by any one of a number of known fabrication methods such as by aqueous coprecipitation, conventional sol gel techniques or solid state reaction processes.Once a ceramic superconducting material in particulate form is obtained, surface impurities on the particles are removed. One such surface cleaning procedure is known as "sputtering." Sputtering strips the surface atoms from the surface of the superconducting material, leaving only pure superconducting ceramic.The superconductive ceramic produced according to the procedure outlined above is then used in the formation of a superconducting wire.
    Type: Grant
    Filed: October 27, 1988
    Date of Patent: June 25, 1991
    Assignee: General Atomics
    Inventor: Tihiro Ohkawa
  • Patent number: 5019551
    Abstract: In a superconducting contact structure between an oxide superconductor and a metal superconductor, the oxide superconductor has a recess in a surface which is in contact with the metal superconductor.
    Type: Grant
    Filed: September 6, 1988
    Date of Patent: May 28, 1991
    Assignee: NEC Corporation
    Inventor: Mutsuo Hidaka
  • Patent number: 5017551
    Abstract: A circuit element is disclosed comprised of a substrate and an electrically conductive layer located on the substrate. The electrically conductive layer is comprised of a crystalline rare earth alkaline earth copper oxide. The substrate is formed of a material which increases the electrical resistance of the conductive layer when in contact with the rare earth alkaline earth copper oxide during crystallization of the latter to an electrically conductive form. A barrier layer is interposed between the electrically conductive layer and the substrate. The barrier layer contains magnesium, a group IVA metal, or a platinum group metal, either in an elemental state or in the form of an oxide or silicide.
    Type: Grant
    Filed: March 30, 1989
    Date of Patent: May 21, 1991
    Assignee: Eastman Kodak Company
    Inventors: John A. Agostinelli, Jose M. Mir, Gustavo R. Paz-Pujalt, Mark Lelental, Ralph A. Nicholas, III
  • Patent number: 5011820
    Abstract: A process for supplying a current consumer with current from an accumulator for electrical energy, in which electrical energy pulses of very short duration each are supplied to the current consumer from a superconducting accumulator (2) made with superconductors (8) of very small diameter or very small layer thickness. The superconductors (8) are preferably high-temperature superconductors.
    Type: Grant
    Filed: July 20, 1989
    Date of Patent: April 30, 1991
    Assignee: Heidelberg Motor GmbH Gesellschaft fur Energiekonverter
    Inventors: Peter Ehrhart, Andreas Grundel, Gotz Heidelberg, Wener Weck
  • Patent number: 5012319
    Abstract: Integrated electronic assemblies according to the invention, typically semiconductor IC chips, comprise an air gap transmission line. The line has high propagation speed and low dispersion, and can be readily manufactured. Various embodiments of the inventive transmission line are disclosed. In all cases the semiconductor substrate is etched so as to remove at least a substantial portion of the semiconductor material under and/or adjacent to the conductor line or lines. Insulator material (e.g., SiO.sub.2) serves, inter alia, to support the conductor.
    Type: Grant
    Filed: May 14, 1990
    Date of Patent: April 30, 1991
    Assignee: AT&T Bell Laboratories
    Inventors: Douglas R. Dykaar, Anthony F. J. Levi
  • Patent number: 5006507
    Abstract: A ceramic superconductor comprises a substantially nonmagnetic preannealed nickel-based alloy substrate which supports a ceramic superconductor. The substrate may include aluminum to strengthen the substrate and make it less magnetic. The substrate is substantially devoid of minority constitutent oxide shell formers and the ceramic is formed on the substrate by sintering superconductor grains at temperatures above 1000.degree. C. to enhance densification of the ceramic.
    Type: Grant
    Filed: April 14, 1989
    Date of Patent: April 9, 1991
    Assignee: General Atomics
    Inventors: Lawrence D. Woolf, Frederick H. Elsner, William A. Raggio
  • Patent number: 4997813
    Abstract: Improvement in a superconducting thin film of a superconducting compound oxide containing thallium (T1) deposited on a substrate, characterized in that the superconducting thin film is deposited on {110} plane of a single crystal of magnesium oxide (MgO).
    Type: Grant
    Filed: June 19, 1989
    Date of Patent: March 5, 1991
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenjiro Higaki, Keizo Harada, Naoji Fujimori, Hideo Itozaki, Shuji Yazu
  • Patent number: 4997808
    Abstract: A combination is disclosed comprising a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between said ceramic oxide surface and ambient air, a passivant polymer.
    Type: Grant
    Filed: December 27, 1988
    Date of Patent: March 5, 1991
    Assignee: Eastman Kodak Company
    Inventors: Dilip K. Chatterjee, Arun K. Mehrotra, Jose M. Mir
  • Patent number: 4997812
    Abstract: An Ytrium Barium Copper Oxide-based thick-film paste is disclosed, which when deposited on an alumina substrate is superconducting above the termperature of liquid nitrogen and substantially free of mechanical defects such as cracking or peeling. A method of applying the paste, including the curing process, insures that the YBC superconductor is boned to the substrate.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: March 5, 1991
    Assignee: Motorola, Inc.
    Inventor: Rong F. Huang
  • Patent number: 4996190
    Abstract: Improvement in a superconducting thin film of a superconducting compound oxide containing bismuth (Bi) deposited on a substrate, characterized in that the superconducting thin film is deposited on {110} plane of a single crystal of magnesium oxide (MgO).
    Type: Grant
    Filed: June 19, 1989
    Date of Patent: February 26, 1991
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenjiro Higaki, Keizo Harada, Naoji Fujimori, Hideo Itozaki, Shuji Yazu
  • Patent number: 4990487
    Abstract: The disclosed superconductive optoelectronic device has a substrate, a photoconductive gate region formed on the substrate, and a source region and a drain region formed on the substrate at opposite sides of the gate region so as to face toward each other across the gate region. The source region and the drain region are made of a superconductive material. The gate region is made of such superconductive photoconductive-material, which reveals photoconductivity at a temperature below the transition temperature of the above superconductive material and has a similar general chemical formula to that of the above superconductive material except that concentrations of constituent elements are different. Also disclosed are superconductive optoelectronic devices formed of an organized integration of the above superconductive optoelectronic devices to develop a new field of "Superconductive Opto-Electronics".
    Type: Grant
    Filed: March 7, 1989
    Date of Patent: February 5, 1991
    Assignee: The University of Tokyo
    Inventor: Taizo Masumi
  • Patent number: 4990491
    Abstract: This invention is a superconductor having a generally substoichiometric oxygen, nickel oxide insulation between superconduction strands. The superconductor is to have an operating temperature below 250 degrees kelvin, and has multiple superconductors, with a cladding of nickel on the strands, and an adherent coating of nickel oxide formed on the outer surface of the cladding. The nickel oxide has stoichiometric or less than stoichiometric oxygen (but not greater than stoichiometric oxygen) to be electrically insulating at the operating temperature of the superconductor. Thus high thermal conductivity strand insulation capable of withstanding strand to strand voltages of greater than 50 volts is provided to substantially eliminate coupling currents between the strands, and nickel oxide having areas of semiconducting due to containing more than stoichiometric oxygen is avoided.
    Type: Grant
    Filed: June 29, 1988
    Date of Patent: February 5, 1991
    Assignee: Westinghouse Electric Corp.
    Inventors: George R. Wagner, Adolphus Patterson
  • Patent number: 4990492
    Abstract: A method for manufacturing a stress controlled wire comprises the step of twisting superconductor fibers together into a bundle of fibers. A plurality of bundles are then twisted together and disposed within the lumen of a tube and the lumen is flooded with solder which is allowed to harden. The tube and its contents are subsequently heated as they are wound upon a drum to melt the solder and allow realignment of the superconductor fibers within the solder. The subsequent solidification of solder after the tube is wound onto the drum provides an unstressed support for the fiber bundles.
    Type: Grant
    Filed: January 3, 1989
    Date of Patent: February 5, 1991
    Assignee: General Atomics
    Inventors: Richard L. Creedon, Yen-Hwa L. Hsu
  • Patent number: 4988674
    Abstract: A flexible electrically conductive article is disclosed comprised of an organic film, a conductive crystalline cuprate layer, and a release layer that together form a flexible electrically conductive assembly. The article is prepared by forming a conductive cuprate layer on a refractory substrate with the release interposed. After the cuprate layer is formed, the organic film is bonded to it, permitting the cuprate layer to be stripped intact from the substrate with the organic film. A crystal growth accelerating agent can be associated with the cuprate layer during its formation to minimize the heat energy required for crystallization.
    Type: Grant
    Filed: February 9, 1989
    Date of Patent: January 29, 1991
    Assignee: Eastman Kodak Company
    Inventors: Jose M. Mir, Liang-sun Hung
  • Patent number: 4980339
    Abstract: A superconductor structure of very high performance is realized by forming a crystalline coating on a substrate of semiconductor, etc. and epitaxially depositing a crystalline superconductor film of good quality on this crystalline coating. Especially, CaF.sub.2 crystal and ZrO.sub.2 crystal of CaF.sub.2 crystal structure have latice constants which match well with the substrate such as Si, GaAs, etc. and the superconductor. The crystalline coating may be a perovskite material such as BaTiO.sub.3 when the superconductor is a perovskite material.
    Type: Grant
    Filed: July 25, 1988
    Date of Patent: December 25, 1990
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kentaro Setsune, Takeshi Kamada, Hideaki Adachi, Kiyotaka Wasa, Takashi Hirao, Osamu Yamazaki, Hidetaka Higashino
  • Patent number: 4968664
    Abstract: A superconductive ceramic thin film-formed single-crystal wafer comprising a single-crystal wafer, an intermediate ceramic thin film formed on a surface of the single-crystal wafer, and a superconductive ceramic thin film formed on the intermediate ceramic thin film. The intermediate ceramic thin film comprises, as a main phase, a crystalline phase having a composition by atomic ratio of Bi.sub.2 Sr.sub.2 Ca.sub.x O.sub.y (provided that x: 1 to 2; and y: 6 to 7), and the superconductive ceramic thin film comprises, as a main phase, a crystalline phase having a composition by atomic ratio selected from the group consisting of Bi.sub.2 Sr.sub.2 Ca.sub.1 Cu.sub.2 O.sub.8 and Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10. Alternatively, the intermediate ceramic thin film comprises, as a main phase, a crystalline phase having a composition by atomic ratio selected from the group consisting of Tl.sub.1 Ba.sub.2 Ca.sub.s O.sub.t (provided that s: 1 to 2; and t: 4.5 to 5.5) and Tl.sub.2 Ba.sub.2 Ca.sub.v O.sub.
    Type: Grant
    Filed: August 9, 1989
    Date of Patent: November 6, 1990
    Assignee: Mitsubishi Metal Corporation
    Inventors: Tadashi Sugihara, Takuo Takeshita
  • Patent number: 4966885
    Abstract: A method for fabricating thin smooth films of a planar metal oxide superconductor is disclosed. Fabrication of the superconductor film comprises depositing, on a substrate, a film of the planar metal oxide superconductor having a thickness greater than desired, and thinning at least a portion of the superconductor film to the desired thickness. In a particular embodiment of the method, thinning comprises exposing the superconductor film to a low energy ion beam directed at grazing incidence to the superconductor surface. Thin superconductor films fabricated in accordance with this method typically have substantially smooth surfaces and can have relatively low RF loss. These films can be advantageously used, inter alia, in RF striplines, microwave cavities and waveguides, bolometers, SQUIDs, and other Josephson junction devices.
    Type: Grant
    Filed: August 25, 1989
    Date of Patent: October 30, 1990
    Assignee: AT&T Bell Laboratories
    Inventor: Arthur F. Hebard
  • Patent number: 4965247
    Abstract: A superconducting coil comprising a support (1,10) and at least one ring-shaped and/or spiral turn (2) of superconductor which is composed of superconducting compound oxide and is supported on a surface of said support.
    Type: Grant
    Filed: July 5, 1988
    Date of Patent: October 23, 1990
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masanori Nishiguchi
  • Patent number: 4960751
    Abstract: An electric circuit is provided on a semiconductor substrate with a superconducting film. The surfaces being in contact with the superconducting film are made of heat-resistant non-oxide insulating materials so that the performance of the superconducting film is not degraded.
    Type: Grant
    Filed: March 29, 1988
    Date of Patent: October 2, 1990
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shumpei Yamazaki
  • Patent number: 4959346
    Abstract: A composite is produced comprised of Y--Ba--Cu--O superconductive film having a zero resistance transition temperature of at least about 38 K, a zirconium dioxide film and a substrate wherein the zirconium dioxide film is intermediate the superconductive film and the substrate.
    Type: Grant
    Filed: May 22, 1989
    Date of Patent: September 25, 1990
    Assignee: General Electric Company
    Inventors: Antonio Mogro-Campero, Larry G. Turner
  • Patent number: 4954480
    Abstract: A multi-layer superconducting circuit substrate, including insulating layers, and interconnection patterns of a superconductive ceramic material located between the insulating layers, the patterns of the superconductive ceramic material being connected via through-holes of the superconductive ceramic material, is provided. The patterns of the superconductive ceramic material are preferably encapsulated with a metal of gold, silver, platinum or an alloy thereof.
    Type: Grant
    Filed: April 27, 1988
    Date of Patent: September 4, 1990
    Assignee: Fujitsu Limited
    Inventors: Yoshihiko Imanaka, Takato Machi, Kazunori Yamanaka, Hiromitsu Yokoyama, Nobuo Kamehara, Koichi Niwa
  • Patent number: 4954481
    Abstract: Superconductor-polymer composite materials comprise a matrix formed of a rmoplastic polymer and a superconductor powder dispersed in the matrix. The superconductor powder preferably has a composition RBa.sub.2 Cu.sub.3 O.sub.7-x wherein R is a rare earth metal and x is less than or equal to 1. The thermoplastic polymer matrix comprises a vinylidene fluoride homopolymer or copolymer. The composite materials may be formed as shaped products, sheets or films.
    Type: Grant
    Filed: December 29, 1988
    Date of Patent: September 4, 1990
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Aime S. DeReggi, Chwan-Kang Chiang, George T. Davis
  • Patent number: 4948779
    Abstract: Superconductive thin layer of YBa.sub.2 Cu.sub.3 O.sub.7-.delta. in which reactions with the substrate are prevented in that at least the surface of the substrate consists of a compound having such a composition that in the Y.sub.2 O.sub.3 -BaO-CuO phase diagram it is situated on a segregation line with YBa.sub.2 Cu.sub.3 O.sub.7-.delta. as shown in FIG. 1.
    Type: Grant
    Filed: July 26, 1988
    Date of Patent: August 14, 1990
    Assignee: U.S. Philips Corporation
    Inventors: Wilhelmus C. Keur, Cornelis A. H. A. Mutsaers, Henricus A. M. Van Hal
  • Patent number: 4942142
    Abstract: An outer surface of a superconducting thin film of compound oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-.delta. deposited on a substrate such as MgO and SrTiO.sub.3 is protected with a protective layer which is composed of polymer compound such as polyimide, silicon resin or epoxy resin.
    Type: Grant
    Filed: July 27, 1988
    Date of Patent: July 17, 1990
    Assignee: Sumitomo Electric Industries Ltd.
    Inventors: Hideo Itozaki, Saburo Tanaka, Nobuhiko Fujita, Shuji Yazu, Tetsuji Jodai
  • Patent number: 4940693
    Abstract: The use of a highly stable, lattice-matched barrier layer grown epitaxially on a suitable substrate, and permitting the subsequent epitaxial growth of a thin high-temperature superconducting film with optimized properties.
    Type: Grant
    Filed: July 28, 1988
    Date of Patent: July 10, 1990
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joel R. Shappirio, Thomas R. Aucoin, John J. Finnegan
  • Patent number: 4929597
    Abstract: A superconductor according to the present invention contains an internal stress absorbing substance of a copper oxide and/or a barium oxide distributed over the superconductive oxide, so that the superconductor is free from cracks due to thermal stresses produced in a heat treatment.
    Type: Grant
    Filed: March 27, 1989
    Date of Patent: May 29, 1990
    Assignee: Mitsubishi Metal Corporation
    Inventors: Takuo Takeshita, Tadashi Sugihara, Shuichi Fujino