Elemental Metal Or Boron, Or Alloyed Metal Patents (Class 508/150)
  • Patent number: 5877128
    Abstract: This invention discloses novel catalyzed lubricant additives and catalyzed lubricant systems, which contain one or more catalysts, along with optional other additives, wherein the catalysts serve to accelerate the rate and increase the yield of the lubricant bonding reactions between the catalyzed lubricants and the wear surfaces being lubricated.
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: March 2, 1999
    Assignee: Platinum Research Organization Ltd.
    Inventor: F. Conrad Greer
  • Patent number: 5863872
    Abstract: A lubricant composition is disclosed which comprises, a triglyceride oil lubricant and an oil soluble copper compound antioxidant. The oil soluble copper compounds are particularly effective antioxidants for triglycerides. The lubricant composition can include soluble zinc compounds which reduce wear and/or soluble antimony compounds which reduce wear and can function as adjuvant antioxidants reducing the amount of oil soluble copper required. Preferred zinc and antimony compounds are zinc dithiophosphate antiwear/antioxidant, and antimony dialkyldithiocarbamate antioxidant adjuvant.
    Type: Grant
    Filed: August 25, 1997
    Date of Patent: January 26, 1999
    Assignee: Renewable Lubricants, Inc.
    Inventor: William W. Garmier
  • Patent number: 5863870
    Abstract: An iron or copper based metal powder useful for plasma deposition of a coating that has a dry coefficient of friction 0.75 or less and readily conducts heat through the coating. The powder comprises (a) H.sub.2 O atomized and annealed particles consisting essentially of (by weight) carbon 0.15-0.85%, oxygen 0.1-0.45%, an air hardening agent selected from manganese and nickel of 0.1-06.5%, and the remainder iron or copper, with at least 90% of the particles having oxygen and iron or copper combined in the lowest atomic oxygen form for an oxide of such metal.A method of making anti-friction iron powder that is economical, selectively produces FeO and promotes fine flowable particles. The method comprises (a) steam atomization of a molten steel that excludes other oxygen, the steel containing carbon up to 0.4% by weight to produce a collection of comminuted particles, and (b) annealing the particles in an air atmosphere for a period of time of 0.25-2.0 hours in a temperature range of 800.degree.-1400.degree. F.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: January 26, 1999
    Assignee: Ford Global Technologies, Inc.
    Inventors: V. Durga Nageswar Rao, Robert Alan Rose, David Alan Yeager, Carlo Alberto Fucinari
  • Patent number: 5773394
    Abstract: An electrically conducting polymer thickened grease composition containing1) a lubricating base oil,2) a polymer thickener,3) an electrically conducting component,4) optional further additives, is provided.The polymeric thickener is a mixture of (1) a (co- or homo-)polymer of propylene with a weight average molecular weight >200,000 and (2) a (co- or homo-)polymer of propylene with a weight average molecular weight <100,000. The electrically conducting component is preferably a metal containing additives, an anti-static agents or an electrically conducting solid. The grease composition can conduct electricity through the parts of a roller bearing, not only under static conditions, but also during use. This makes the greases especially suited for use in roller bearings with rotating electrical contacts. The grease can further reduce or prevent the build-up of static electricity and spark formation in roller bearings.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: June 30, 1998
    Assignee: SKF Industrial Trading & Development Company B.V.
    Inventors: George Tin Yau Wan, Dick Meijer
  • Patent number: 5736493
    Abstract: A lubricant composition is disclosed which comprises, a triglyceride oil lubricant and an oil soluble copper compound antioxidant. The oil soluble copper compounds are particularly effective antioxidants for triglycerides. The lubricant composition can include soluble zinc compounds which reduce wear and/or soluble antimony compounds which reduce wear and can function as adjuvant antioxidants reducing the amount of oil soluble copper required. Preferred zinc and antimony compounds are zinc dithiophosphate antiwear/antioxidant, and antimony dialkyldithiocarbamate antioxidant adjuvant.
    Type: Grant
    Filed: May 15, 1996
    Date of Patent: April 7, 1998
    Assignee: Renewable Lubricants, Inc.
    Inventor: William W. Garmier
  • Patent number: 5663124
    Abstract: An iron or copper based metal powder useful for plasma deposition of a coating that has a dry coefficient of friction 0.75 or less and readily conducts heat through the coating. The powder comprises (a) H.sub.2 O atomized and annealed particles consisting essentially of (by weight) carbon 0.15-85%, oxygen 0.1-0.45%, an air hardening agent selected from manganese and nickel of 0.1-6.5%, and the remainder iron or copper, with at least 90% of the particles having oxygen and iron or copper combined in the lowest atomic oxygen form for an oxide of such metal.A method of making anti-friction iron powder that is economical, selectively produces FeO and promotes fine flowable particles. The method comprises (a) steam atomization of a molten steel that excludes other oxygen, the steel containing carbon up to 0.4% by weight to produce a collection of comminuted particles, and (b) annealing the particles in an air atmosphere for a period of time of 0.25-2.0 hours in a temperature range of 800.degree.-1400.degree. F.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: September 2, 1997
    Assignee: Ford Global Technologies, Inc.
    Inventors: V. Durga Nageswar Rao, Robert Alan Rose, David Alan Yeager, Carlo Alberto Fucinari
  • Patent number: 5589443
    Abstract: A rock bit grease composition is prepared by combining synthetic polymer lubricant basestocks comprising a first ethylene-alphaolefin polymer having an average molecular weight in the range of from 3,500 to 4,000, and a polyisobutylene polymer to form a first master. A metal complex soap base thickener is prepared by combining a synthetic polymer lubricant basestocks comprising a second ethylene-alphaolefin having an average molecular weight in the range of from 400 to 800, with an alkali-metal or alkaline-earth metal hydroxide, and at least one fatty acid. A preferred fatty acid is a blend of a first fatty acid having in the range of from 15 to 20 carbon atoms, and a second fatty acid having in the range of from 5 to 12 carbon atoms. The first master and metal complex soap base thickener are mixed together in desired proportions.
    Type: Grant
    Filed: December 21, 1995
    Date of Patent: December 31, 1996
    Assignee: Smith International, Inc.
    Inventors: Robert M. Denton, Zhigang Fang
  • Patent number: 5584943
    Abstract: A lubricant and surface conditioner for formed metal surfaces, particularly beverage containers, reduces the coefficient of static friction of said metal surfaces and enables drying said metal surfaces at a lower temperature. An aqueous composition for forming the conditioner by contact with metal surfaces includes a water-soluble organic material selected from a phosphate ester, alcohol, fatty acid including mono-, di-, tri-, and polyacids; fatty acid derivatives such as salts, hydroxy acids, amides, esters, ethers and derivatives thereof; and mixtures thereof and at least one of the elements selected from zirconium, titanium, cerium, aluminum, iron, tin, vanadium, tantalum, niobium, molybdenum, tungsten, and hafnium in metallic or ionic form. In order to avoid formation of sludge in the aqueous lubricant and surface conditioner forming composition, the composition should contain as little as possible of materials containing phenanthrene rings, such as conventional surfactants made by ethoxylating rosin.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: December 17, 1996
    Assignee: Henkel Corporation
    Inventors: Richard D. Banaszak, Timm L. Kelly, Gary L. Rochfort