Cellular Product Derived From A Phenol, Phenol Ether, Or Inorganic Phenolate Reactant Patents (Class 521/180)
  • Patent number: 8481788
    Abstract: The present invention aims to provide a method for producing a polyalkylene oxide, which is capable of improving reduction in reactivity of a double metal cyanide complex catalyst in the case that a low molecular weight initiator is used, and producing the polyalkylene oxide with high productivity at low cost. The method for producing a polyalkylene oxide comprises carrying out a ring-opening addition reaction of an alkylene oxide with an initiator having at least one hydroxy group and having a molecular weight of not more than 300 per hydroxy group in the presence of a double metal cyanide complex catalyst in an organic solvent, wherein the organic solvent is used in an amount of 500 to 1,500 parts by weight relative to 100 parts by weight of the alkylene oxide used at the start of the reaction.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 9, 2013
    Assignee: Kaneka Corporation
    Inventors: Hidetoshi Odaka, Takuya Maeda, Kiyotaka Bito, Michihide Homma
  • Publication number: 20130164629
    Abstract: A polyimide blend nanofiber and its use in battery separator are disclosed. The polyimide blend nanofiber is made of two kinds of polyimide precursors by high pressure electrostatic spinning and then high temperature imidization processing, wherein one of the polyimide precursor does not melt under high temperature ,and the other is meltable at a temperature of 300-400° C. The polyimide blend nanofiber of present invention has high temperature-resistance, high chemical stability, high porosity, good mechanical strength and good permeability, and can be applied as battery separator.
    Type: Application
    Filed: September 30, 2010
    Publication date: June 27, 2013
    Applicant: JIANGXI ADVANCE NANOFIBER S&T CO., LTD.
    Inventors: Haoqing Hou, Chuyun Cheng, Shuiliang Chen, Xiaoping Zhou, Xiaoyi Lv, Ping He, Xiaoming Kuang, Jinsheng Ren
  • Publication number: 20130158147
    Abstract: Disclosed are random copoly(phosphonate carbonate)s with the high molecular weight and narrow molecular weight distribution exhibiting a superior combination of properties compared to prior art.
    Type: Application
    Filed: February 11, 2013
    Publication date: June 20, 2013
    Applicants: BAYER MATERIAL SCIENCE AG, FRX POLYMERS, INC.
    Inventors: FRX Polymers, Inc., Bayer Material Science AG
  • Publication number: 20130116354
    Abstract: Methods are disclosed for making liquid crystalline polymer (LCP) foams and foam structures of various shapes and forms. LCP foams of the invention have a high compression strength suitable for high performance energy-absorption and energy-impact applications and devices.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Aashish Rohatgi, Raymond S. Addleman, Bradley J. Busche
  • Patent number: 8436065
    Abstract: An aerogel including a benzoxazine moiety-containing polybenzoxazine polymer is provided, wherein the aerogel comprises a reaction product of an aryl alcohol compound having at least two hydroxyl groups and an amine compound having at least two amine groups.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Woo Hwang, Myung-Dong Cho, Sang-Ho Park, Kwang-Hee Kim
  • Publication number: 20130108852
    Abstract: A polyetherimide composition comprising a polyetherimide manufactured by reaction of an alkali metal salt of a dihydroxy aromatic compound with a bis(halophthalimide) composition comprising, based on the weight of the bis(halophthalimide) composition, at least 15 wt. % of a 3,3?-bis(halophthalimide) of the formula from more than 17 wt. % to less than 85 wt. % of a 4,3?-bis(halophthalimide) of the formula from more than 0 to less than 27 wt.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Matthew L. KUHLMAN, Gurulingamurthy M. HARALUR
  • Publication number: 20130108851
    Abstract: A polyetherimide manufactured by reaction of an alkali metal salt of a dihydroxy aromatic compound of the formula MO—Z—OM wherein M is an alkali metal salt and Z is an aromatic C6-24 monocyclic or polycyclic moiety optionally substituted with 1 to 6 C1-8 alkyl groups, 1 to 8 halogen atoms, or a combination thereof, with a bis(halophthalimide) composition comprising, based on the weight of the bis(halophthalimide) composition, from more than 45 to less than 75 weight percent of a 3,3?-bis(halophthalimide) of the formula less than 10 weight percent of a 3,4?-bis(halophthalimide) of the formula and from more than 45 to less than 75 weight percent of a (4,4?-bis(halophthalimide) of the formula
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Matthew L. Kuhlman, Gurulingamurthy M. Haralur
  • Publication number: 20130072589
    Abstract: A phenolic foam is made by foaming and curing a foamable phenolic resin composition that comprises a phenolic resin, a blowing agent, an acid catalyst and an inorganic filler. The blowing agent comprises an aliphatic hydrocarbon containing from 1 to 8 carbon atoms and the inorganic filler is at least one selected from a metal hydroxide, a metal oxide, a metal carbonate and a metal powder. The phenolic foam has a pH of 5 or more. The phenolic foam has a higher pH value compared with conventional phenolic foam and reduces corrosion risk when in contact with metallic materials. The phenolic foam maintains excellent long-term stable thermal insulation performance, low water uptake and fire resistance performance and by using a hydrocarbon blowing agent, does not harm the environment as an ozone depleting or global warming material.
    Type: Application
    Filed: June 1, 2012
    Publication date: March 21, 2013
    Applicant: KINGSPAN HOLDINGS (IRL) LIMITED
    Inventors: Vincent Coppock, Ruud Zeggelaar, Hiroo Takahashi, Toshiyuki Kato
  • Publication number: 20130072590
    Abstract: A phenolic foam is made by foaming and curing a foamable phenolic resin composition that comprises a phenolic resin, a blowing agent, an acid catalyst and an inorganic filler. The blowing agent comprises a blend of chlorinated aliphatic hydrocarbon containing 2 to 5 carbon atoms and an aliphatic hydrocarbon containing from 3 to 6 carbon atoms mixed in a ratio of 60/40 to 5/5 parts by weight. The inorganic filler is at least one selected from a metal hydroxide, a metal oxide, a metal carbonate and a metal powder. The phenolic foam has a pH of 5 or more and a water uptake less than 1 kg/m2. A phenolic foam with a higher pH value compared with conventional phenolic foam reduces corrosion risk when in contact with metallic materials. The phenolic foam maintains excellent long-term stable thermal insulation performance, low water uptake and fire resistance performance and by using the said blowing agent, does not harm the environment as an ozone or global warming depleting material.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 21, 2013
    Applicant: KINGSPAN HOLDINGS (IRL) LIMITED
    Inventors: Vincent Coppock, Ruud Zeggelaar, Hiroo Takahashi, Toshiyuki Kato
  • Publication number: 20130047844
    Abstract: A method for preparing a polymeric material includes: providing a polymeric matrix having at least one polymer and at least one porogen; and degrading the at least one porogen at a temperature T?1.1 Tg, where Tg is a glass transition temperature of the polymeric matrix. The degrading step includes exposing the polymeric matrix to thermal degradation, chemical degradation, electrical degradation and/or radiation degradation, wherein the polymeric material has a permeability at least 1.2 times a permeability of the polymeric matrix for a gas, and a selectivity of the polymeric material is at least 0.35 times a selectivity of the polymeric matrix for a gas pair. The method preferably provides gas separation membranes that exceed Robeson's upper bound relationship for at least one gas separation pair. Novel polymeric materials, gas separation membranes and fluid component separation methods are also described.
    Type: Application
    Filed: May 13, 2010
    Publication date: February 28, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Shiying Zheng, Lloyd M. Robeson, M. Keith Murphy, Jeffrey R. Quay
  • Patent number: 8378054
    Abstract: A process for preparing polyaryl ethers in which a polycondensation of the monomer building blocks is carried out using microwave irradiation leads to thermoplastic molding compositions having improved color properties.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: February 19, 2013
    Assignee: BASF SE
    Inventors: Martin Weber, Volker Warzelhan, Faissal-Ali El-Toufaili, Andreas Greiner, Heiner Stange, Seema Agrarwal
  • Publication number: 20130041059
    Abstract: Disclosed is a curable composition comprising a linear hydrolyzable silyl group-containing polymer and a branched hydrolyzable silyl group-containing polymer in the weight ratio of 1:9 to 9:1 and having a specific weight of less than 1.15.
    Type: Application
    Filed: February 23, 2011
    Publication date: February 14, 2013
    Applicant: Giken Kabushiki Kaisha
    Inventors: Tomoyuki Torii, Kohei Yamada, Yoshimitsu Nakayama, Masahiro Ito
  • Patent number: 8309256
    Abstract: Provided is a microporous film formed of a thermoplastic resin composition comprising 100 parts by mass of (a) a polyolefin resin and from 5 to 90 parts by mass of (b) a polyphenylene ether resin; the microporous film having a sea-island structure with the polyolefin resin as a sea portion and with the polyphenylene ether resin as an island portion and having a air permeability of from 10 sec/100 cc to 5000 sec/100 cc. The microporous film does not break easily even at high temperatures and has good heat resistance.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: November 13, 2012
    Assignee: Asahi Kasei E-materials Corporation
    Inventors: Kentaro Kikuchi, Shunichiro I
  • Patent number: 8298465
    Abstract: Provided is a microporous film which is made of a thermoplastic resin composition comprising (a) 100 parts by mass of a polypropylene resin and (b) 5 to 90 parts by mass of a polyphenylene ether resin, and which has a sea island structure comprising a sea portion comprising the polypropylene resin as a principal component and an island portion comprising the polyphenylene ether resin as a principal component, wherein pores are formed at an interface between the sea portion and the island portion and within the sea portion.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: October 30, 2012
    Assignee: Asahi Kasei E-Materials Corporation
    Inventors: Kentaro Kikuchi, Hidetoshi Masugi
  • Patent number: 8277719
    Abstract: A process for the preparation of thermoplastic auxetic foams comprising the steps of: a) taking conventional thermoplastic foam; b) subjecting said foam to at least one process cycle wherein the foam is biaxially compressed and heated; c) optionally subjecting the foam to at least one process cycle wherein the biaxial compression is removed and the foam mechanically agitated prior to reapplying biaxial compression and heating; d) cooling said foam to a temperature below the softening temperature of said foam; and e) removing said compression and heat.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: October 2, 2012
    Assignee: Auxetic Technologies Ltd.
    Inventors: Andrew Alderson, Kim Lesley Alderson, Philip John Davies, Gillian Mary Smart
  • Publication number: 20120190764
    Abstract: According to the present invention, an aromatic polysulfone resin is offered which is suitable as film material, especially in porous membranes. The aromatic polysulfone resin of the present invention has a reduced viscosity of 0.55-0.65 dL/g, and preferably 0.58-0.62 dL/g, number average molecular weight (Mn) of 22000 or more, and preferably 23500 or more, and a value of the ratio of weight average molecular weight (Mw) relative to number average molecular weight (Mn) of 2.54 or less, and preferably 2.50 or less.
    Type: Application
    Filed: September 14, 2010
    Publication date: July 26, 2012
    Inventors: Yusaku Kohinata, Hiroshi Harada
  • Publication number: 20120158127
    Abstract: Absorbable polyurethanes, polyamides and polyester urethanes prepared from at least one compound selected from: or the corresponding diamines or diisocyanates thereof, wherein each X independently represents —CH2COO—, —CH(CH3)COO—, —CH2CH2OCH2COO—, —CH2CH2CH2CH2CH2COO—, —(CH2)yCOO— where y is 2 to 4 or 6 to 24, or —(CH2CH2O)z?CH2COO— where z? is 2 to 24; each Y represents —COCH2O—, —COCH(CH3)O—, —COCH2OCH2CH2O—, —COCH2CH2CH2CH2CH2O—, —CO(CH2)mO— where m is 2 to 4 or 6 to 24, or —COCH2O(CH2CH2O)n— where n is 2 to 24; R? is hydrogen, benzyl or straight-chained or branched alkyl; p is 1 to 4; and Rn represents one or more members selected from H, alkoxy, benzyloxy, aldehyde, halogen, carboxylic acid and —NO2, which is attached directly to an aromatic ring or attached through an aliphatic chain. Absorbable polymers prepared from these compounds are useful for drug delivery, tissue engineering, tissue adhesives, adhesion prevention and other implantable medical devices.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 21, 2012
    Applicant: BEZWADA BIOMEDICAL, LLC
    Inventor: Rao S. Bezwada
  • Publication number: 20120149796
    Abstract: The present invention relates to a process for the production of low-halogen-content polybiphenyl sulfone polymers, to the resultant polybiphenyl sulfone polymers, to polybiphenyl sulfone polymers having less than 400 ppm content of polymer-bonded halogen, to thermoplastic molding compositions comprising these polybiphenyl sulfone polymers, and to their use for the production of moldings, of fibers, of films, of membranes, or of foams.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 14, 2012
    Applicant: BASF SE
    Inventors: Martin Weber, Christian Maletzko, Gerhard Lange, Jörg Erbes, Matthias Dietrich, Nicolas Inchaurrondo, Christoph Sigwart
  • Publication number: 20120108693
    Abstract: The present invention relates to polyarylene ether block copolymers according to the general formula A-K-X-K-A, where —X— is a polyarylene ether segment with number-average molar mass of at least 5000 g/mol, and A— is a segment of the general structure R2NH—(R1—NH—CO—Ar—CO—NH)n—R1—NH—, in which R1 is a linear or branched alkylene group having from 2 to 12 carbon atoms and Ar is an arylene group having from 6 to 18 carbon atoms, and R2 is selected from aryloyl, alkyloyl, and H, and in which the number average of n is from 1 to 3, and there is a coupling group K of the structure —CO—Ar3—CO— linking each A to X, in which Ar3 is an aromatic group having from 6 to 18 carbon atoms. The present invention also relates to a process for the production of the polyarylene ether block copolymers of the invention, to polymer compositions comprising the polyarylene ether block copolymers of the invention, and also to the use thereof for the production of moldings, of films, of fibers, or of foams.
    Type: Application
    Filed: May 31, 2010
    Publication date: May 3, 2012
    Applicant: BASF SE
    Inventors: Cecile Gibon, Martin Weber, Reinoud J. Gaymans, Ranimol Stephen
  • Patent number: 8143335
    Abstract: An adhesive composition for use in the manufacture of wood-based boards, wherein the adhesive composition is foamable and comprises a resin, a filler and a foaming agent without any cationic acrylamide copolymer. According to the invention, the adhesive composition contains 40-80 wt % resin, 5-30 wt % filler, 0-40 wt % solvent, and 0.1-10 wt % foaming agent, which has been selected from organic and/or inorganic surface-active sulfate, sulfonate, phosphate or phosphonate compounds or their derivatives or mixtures.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: March 27, 2012
    Assignee: Momentive Specialty Chemicals Inc.
    Inventor: Jouni Rainio
  • Publication number: 20120068115
    Abstract: Disclosed are random copoly(phosphonate carbonate)s with the high molecular weight and narrow molecular weight distribution exhibiting a superior combination of properties compared to prior art.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicants: BAYER MATERIAL SCIENCE AG, FRX POLYMERS, INC.
    Inventors: Dieter FREITAG, Pin GO, Lawino KAGUMBA, Stephan KONRAD, Helmut-Werner HEUER, Berit KRAUTER, Pieter OOMS, Michael PREIN, Johann RECHNER
  • Patent number: 8124663
    Abstract: The invention relates to the surprising and unexpected discovery that a sub-group of phenolic resins (i.e., those which are substantially completely free of ether moieties) is particularly advantageous to confer load building properties to an isocyanate-based foam (e.g., a polyurethane foam). Indeed, its possible to utilize the sub-group of phenolic resins to partially or fully displace copolymer polyols conventionally used to confer load building characteristics to isocyanate-based polymer foams. Further, the invention relates to the surprising and unexpected discovery that a sub-group of phenolic resins (i.e., those which are substantially completely free of ether moieties) is particularly advantageous to confer energy absorption properties in an isocyanate-based foam.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: February 28, 2012
    Assignee: Proprietect L.P.
    Inventors: Askar Karami, George Ng, Le Tang
  • Publication number: 20120045788
    Abstract: A pipette tip or tube containing chromatographic media contained and held in place in said tube by using low melting point porous polymer particles. Such pipette tips or tubes can be used for sample preparation, filtration and synthesis of small molecules and biomolecules.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 23, 2012
    Inventors: Ashok K. Shukla, Mukta M. Shukla
  • Patent number: 8119700
    Abstract: Disclosed is an organic aerogel including a polymer obtained from reaction an aryl alcohol compound, an aldehyde compound, and a polyol compound, a composition for forming the same, and a method of preparing the same.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: February 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ho Park, Myung-Dung Cho, Kwang-Hee Kim, Sung-Woo Hwang
  • Publication number: 20120029106
    Abstract: The present invention relates to a process for the production of low-chlorine-content polybiphenyl sulfone polymers, to the polybiphenyl sulfone polymers obtainable in this way, to polybiphenyl sulfone polymers with less than 800 ppm content of organically bonded chlorine, to thermoplastic molding compositions and moldings, fibers, films, membranes, or foams comprising the polybiphenyl sulfone polymers mentioned, and also to their use for the production of moldings, of fibers, of films, of membranes, or of foams.
    Type: Application
    Filed: March 30, 2010
    Publication date: February 2, 2012
    Applicant: BASF SE
    Inventors: Martin Weber, Christian Maletzko, Gerhard Lange, Jörg Erbes, Matthias Dietrich, Nicholas Inchaurrondo
  • Patent number: 8101672
    Abstract: The invention pertains to azeotrope-like compositions of 1,1,2,3,3-pentafluoropropene (HFC-1225yc) and any one of 1,1,1,2-tetrafluoropropene (HFC-1234yf) or the Z-isomer of 1,1,1,2,3-pentafluoropropene (HFC-1225yeZ), and uses thereof, including use in refrigerant compositions, refrigeration systems, blowing agent compositions, and aerosol propellants.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: January 24, 2012
    Assignee: Honeywell International Inc.
    Inventors: Ryan J. Hulse, Hang T. Pham, Rajiv R. Singh
  • Publication number: 20110281771
    Abstract: The present invention provides synthetic membranes which are suitable as a human skin substitute for the investigation of transdermal diffusion of candidate pharmaceutical and cosmetic compounds. The membranes according to the present invention exhibit human skin-like permeability properties with respect to the diffusion of a wide range of compounds having widely different physico-chemical properties.
    Type: Application
    Filed: April 4, 2011
    Publication date: November 17, 2011
    Applicant: Millipore Corporation
    Inventors: Elena Chernokalskaya, Vivek Joshi, Mark Kavonian, Dave Brewster
  • Publication number: 20110269857
    Abstract: Disclosed is a polymer derived from polyamic acid or a polyimide. The polymer derived from polyamic acid or a polyimide includes picopores, and the polyamic acid and the polyimide include a repeating unit obtained from an aromatic diamine including at least one ortho-positioned functional group with respect to an amine group and a dianhydride.
    Type: Application
    Filed: October 9, 2009
    Publication date: November 3, 2011
    Applicant: Industry-University Cooperation Foundation, HANYANG UNIVERSITY
    Inventors: Young Moo Lee, Ho-Bum Park, Chul-Ho Jung, Sang-Hoon Han
  • Publication number: 20110257073
    Abstract: A method of making a fluorinated ether includes combining, in a polar aprotic solvent: a fluorinated alcohol represented by the formula X—Rf1CH2OH, and a fluorinated sulfonate ester represented by the formula Rf2CH2OS(?O)2Rf3, and base; and obtaining a fluorinated ether represented by the formula Y—Rf1CH2OCH2Rf2—Y. Rf1 is selected from perfluorinated C1-C10 alkylene groups having from 1 to 10 carbon atoms and partially fluorinated C1-C10 alkylene groups, and derivatives thereof having catenated heteroatom(s). X represents H, F, or an HOCH2— group. Rf2 is selected from perfluorinated C1-C10 alkyl groups and partially fluorinated C1-C10 alkyl groups, and derivatives thereof having catenated heteroatom(s). Rf3 is a C1-C4 alkyl group. Y represents H, F, or an Rf2CH2OCH2— group. A variant method, useful for preparing symmetric fluorinated ethers, is also disclosed. The present disclosure also provides fluorinated ethers preparable according to the methods.
    Type: Application
    Filed: June 27, 2011
    Publication date: October 20, 2011
    Inventors: Richard M. Flynn, Michael J. Bulinski, Michael G. Costello
  • Publication number: 20110245362
    Abstract: An aerogel including a benzoxazine moiety-containing polybenzoxazine polymer is provided, wherein the aerogel comprises a reaction product of an aryl alcohol compound having at least two hydroxyl groups and an amine compound having at least two amine groups.
    Type: Application
    Filed: September 27, 2010
    Publication date: October 6, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-Woo HWANG, Myung-Dong CHO, Sang-Ho PARK, Kwang-Hee KIM
  • Patent number: 8026292
    Abstract: The present invention concerns a polycyanurate foam with a structural element A and either terminal amino groups and/or at least one of the following structural elements B, C, or D: wherein the foam has closed pores that contain carbon dioxide. This foam can be produced in that a substance is worked into the starting material for the polycyanurate that releases water or alcohol approximately at the start of polymerization either spontaneously or thermally or catalytically induced. The water/alcohol reacts with free cyanate groups under cleavage of CO2. The resulting amino groups can react further in the polymerization.
    Type: Grant
    Filed: August 24, 2008
    Date of Patent: September 27, 2011
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Siegfried Vieth, Monika Bauer
  • Publication number: 20110190409
    Abstract: A polymer of formula (I): where: n is an integer from 10 to 5,000; m is an integer from 10 to 5,000; Ar1 and Ar3 are the same or different and are residues derived from a tetra-hydroxy aromatic monomer, the tetra-hydroxy aromatic monomer being wherein R is the same or different and is H or a C1-C8 alkyl, C2-C8 alkenyl or C3-C8 cycloalkyl group; and, Ar2 and Ar4 are the same or different and are residues derived from a tetra-halogenated aromatic monomer, the tetra-halogenated aromatic monomer being wherein X is F, Cl or Br, and R1 and R2 are the same or different and are wherein y is an integer from 1 to 8; with the proviso that when Ar1 is the same as Ar3 and Ar2 is the same as Ar4, R1 and R2 are not both —CN is useful as a material for gas separation, vapor separation, adsorbents or catalysis.
    Type: Application
    Filed: October 16, 2009
    Publication date: August 4, 2011
    Inventors: Naiying Du, Michael D. Guiver, Gilles P. Robertson
  • Publication number: 20110174728
    Abstract: The invention provides modified polysulfones substituted in one or more of the phenyl rings by functional groups and membranes composed of the modified polysulfones. Also provided are methods for the preparation of monodispersed nanoporous polymeric membranes. The membranes are useful for reverse osmosis, nanofiltration, and ultrafiltration, particularly for purification of water.
    Type: Application
    Filed: August 20, 2008
    Publication date: July 21, 2011
    Applicant: TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
    Inventors: Moris S. Eisen, Raphael Semiat, Natalia Vainrot
  • Patent number: 7977451
    Abstract: Membranes for use in methods and apparatuses for hemodialysis and hemofiltration are composed of at least one membrane comprising a polyarylethernitrile having structural units of formula 1, 2, 3 and 4 wherein Z is a direct bond, O, S, CH2, SO, SO2, CO, RPO, CH2, alkenyl, alkynyl, a C1-C12 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical or a combination thereof; R is a C6-12 aromatic radical or a C1-12 aliphatic radical; R1 and R2 are independently H, halo, nitro, a C1-C12 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical, or a combination thereof; a is 0, 1, 2 or 3; b is 0, 1, 2, 3 or 4; m and n are independently 0 or 1; and Q and Z are different.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: July 12, 2011
    Assignee: General Electric Company
    Inventors: Daniel Steiger, Gary William Yeager, Yanshi Zhang
  • Publication number: 20110039060
    Abstract: A method for making a composite panel, wherein the composite panel has a honeycomb core sandwiched between a pair of facing sheets, includes the steps of (a) coating the interior walls of the cells with a unexpanded thermo-expandable material; (b) bonding a pair of facing sheets to the opposite sides of the honeycomb core; and (c) heating the honeycomb core while the honeycomb core is sandwiched between the pair of facing sheets with sufficient heat to cause the thermo-expandable material to expand and to substantially fill the cells.
    Type: Application
    Filed: October 26, 2010
    Publication date: February 17, 2011
    Inventors: Hongbin Shen, Phu Nguyen, Matthew Lowry
  • Patent number: 7842379
    Abstract: Polymeric foams having nanocellular morphology are formed from a polymeric material having structural units derived from 2-hydrocarbyl-3,3-bis(hydroxyphenyl)phthalimidine compound. The foams include a plurality of cells having an average diameter of less than 1 micron. Processes for forming the foams include melting a polymeric material having structural units derived from 2-hydrocarbyl-3,3-bis(hydroxyphenyl)phthalimidine compounds; diffusing a blowing agent into the polymeric material to form a mixture; nucleating bubbles in the mixture is at a sufficient temperature and pressure to enable the production of cells having an average diameter of less than 1 micron; stabilizing the cells; and forming the mixture into a desired shape.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: November 30, 2010
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Chinniah Thiagarajan, Gautam Chatterjee, Ravi Sriraman, Santhosh Kumar Rajendran, Anand Vaidyalingam
  • Publication number: 20100273005
    Abstract: The present invention relates to heat-curing epoxy resin compositions, which are characterized by high impact strength, good storage stability, and a low curing temperature. The epoxy resin compositions are suitable for use as a construction shell adhesive and for producing structural foams. They can already be cured in so-called bottom-baking conditions. Furthermore, it has been found that the use of an accelerator of the formula (Ia) or (Ib) results in an increase of the impact strength of heat-curing epoxy resin compositions.
    Type: Application
    Filed: November 14, 2008
    Publication date: October 28, 2010
    Applicant: SIKA TECHNOLOGY AG
    Inventors: Andreas Kramer, Jurgen Finter, Karsten Frick, Urs Rheinegger, Jan Olaf Schulenburg
  • Publication number: 20100144914
    Abstract: To provide a crosslinkable fluorinated aromatic prepolymer which is capable of forming a cured product having a low relative permittivity, high heat resistance, low birefringence and high flexibility, and its uses.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 10, 2010
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Shunsuke YOKOTSUKA, Masahiro ITO, Kaori TSURUOKA
  • Patent number: 7718751
    Abstract: The present invention concerns a pre-mix for a syntactic phenolic foam composition; a syntactic phenolic foam composition; and a process for preparing the syntactic phenolic foam composition. The pre-mix comprises thermally expandable and/or expanded thermoplastic microspheres, the microspheres comprising a thermoplastic polymer shell made of a homopolymer or copolymer of 100 to 25, for example 93 to 40, parts by weight of a nitrile-containing, ethylenically unsaturated monomer, or a mixture thereof; and 0 to 75, for example 7 to 60, parts by weight of a non-nitrile-containing, ethylenically unsaturated monomer, or a mixture thereof; and a propellant, or a mixture thereof, trapped within the thermoplastic polymer shell; and one of either a highly reactive phenolic resole resin capable of fully crosslinking at temperatures between 15° C. and 60° C.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: May 18, 2010
    Assignee: Pyro Technologies Limited
    Inventor: Murray Orpin
  • Publication number: 20100035058
    Abstract: A method is provided for making mesoporous resin. It comprises: (a) providing a nucleophilic component which comprises a phenolic compound or a phenol condensation prepolymer optionally with one or more modifying reagents selected from hydroquinone, resorcinol, urea, aromatic amines and heteroaromatic amines; (b) dissolving the nucleophilic component in a pore former selected from the group consisting of a diol, a diol ether, a cyclic ester, a substituted cyclic ester, a substituted linear amide, a substituted cyclic amide, an amino alcohol and a mixture of any of the above with water, together with at least one electrophilic cross-linking agent selected from the group consisting of formaldehyde, paraformaldehyde, furfural and hexamethylene tetramine; and (c) condensing the nucleophilic component and the electrophilic cross-linking agent in the presence of the pore former to form a porous resin. The resin may be formed in situ by pouring the partially cross-linked resin into hot oil.
    Type: Application
    Filed: July 1, 2009
    Publication date: February 11, 2010
    Inventors: Stephen Robert Tennison, Oleksundr Prokopovych Kozynchenko, Volodymyr Vasyljovych Strelko, Andrew John Blackburn
  • Publication number: 20090270005
    Abstract: This invention relates to a foamable resol type phenolic resin forming material comprising a liquid resol type phenolic resin, a foaming agent, a foam stabilizer, an additive and an acid curing agent, said additive containing a nitrogen-containing bridged cyclic compound and said foam stabilizer containing a chlorinated aliphatic hydrocarbon compound having 2 to 5 carbon atoms, and a phenolic resin foam product obtained by foaming and curing this forming material.
    Type: Application
    Filed: September 5, 2006
    Publication date: October 29, 2009
    Applicant: KINGSPAN HOLDING (IRL) LIMITED
    Inventors: Hiroo Takahashi, Toshiyuki Kato, Takashi Nonaka, Vincent Coppock, Ruud Zeggelaar
  • Patent number: 7582721
    Abstract: In a preparation of random polyoxadiazole copolymer by reaction of a mixture of oleum, hydrazine sulfate, terephthalic acid, and isophthalic acid, the improvement requires the addition of oleum in more than one step.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: September 1, 2009
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Kiu-Seung Lee, Harry Lee Smith, Jr.
  • Publication number: 20090206512
    Abstract: The present invention provides an improved syntactic foam plug for plug assist thermoforming wherein such plug is composed of a thermoplastic material having a relatively high melting and/or glass transition temperature. Accordingly, the subject invention encompasses diminishing or removing the undesirable characteristics of thermoset syntactic plugs while increasing the ease by which these articles may be constructed for a given use, by forming such plugs from syntactic foams containing thermoplastics.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 20, 2009
    Inventors: Richard W. Campbell, Noel J. Tessier
  • Publication number: 20090137693
    Abstract: A carbon foam article useful for, inter alia, composite tooling or other high temperature applications, which includes a carbon foam having a ratio of compressive strength to density of at least about 7000 psi/g/cc.
    Type: Application
    Filed: February 4, 2009
    Publication date: May 28, 2009
    Inventors: Douglas J. Miller, Irwin C. Lewis, Robert A. Mercuri
  • Publication number: 20090130420
    Abstract: Polymeric foams having nanocellular morphology are formed from a polymeric material having structural units derived from 2-hydrocarbyl-3,3-bis(hydroxyphenyl)phthalimidine compound. The foams include a plurality of cells having an average diameter of less than 1 micron. Processes for forming the foams include melting a polymeric material having structural units derived from 2-hydrocarbyl-3,3-bis(hydroxyphenyl)phthalimidine compounds; diffusing a blowing agent into the polymeric material to form a mixture; nucleating bubbles in the mixture is at a sufficient temperature and pressure to enable the production of cells having an average diameter of less than 1 micron; stabilizing the cells; and forming the mixture into a desired shape.
    Type: Application
    Filed: July 5, 2007
    Publication date: May 21, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Chinniah Thiagarajan, Gautam Chatterjee, Ravi Sriraman, Santhosh Kumar Rajendran, Anand Vaidyalingam
  • Patent number: 7528216
    Abstract: In a preparation of random polyoxadiazole copolymer by reaction of a mixture of oleum, hydrazine sulfate, terephthalic acid, and isophthalic acid, the improvement requires the addition of oleum in more than one step.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: May 5, 2009
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Kiu-Seung Lee, Harry Lee Smith, Jr.
  • Publication number: 20080287560
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, containing nano-graphite as a process additive for improving the physical properties of foam products.
    Type: Application
    Filed: July 5, 2006
    Publication date: November 20, 2008
    Inventors: Roland R. Loh, Mark E. Polasky, Joseph P. Rynd, Yadollah Delaviz, Manoj K. Choudhary, Bharat Patel
  • Publication number: 20080255260
    Abstract: A composition including an effective amount of trans-1,3,3,3-tetrafluoropropene component combined with an effective amount of an alcohol selected from the group of methanol, ethanol, propanol, isopropanol, tert-butanol, isobutanol, 2-ethyl hexanol and any combination thereof, where the composition has azeotropic properties.
    Type: Application
    Filed: April 16, 2007
    Publication date: October 16, 2008
    Inventors: Jim M. Bowman, David J. Williams, Rajiv R. Singh, Hang T. Pham, Justin L. Becker
  • Publication number: 20080182474
    Abstract: The present invention relates to a foamed phenol resin body, which is useful as an oil absorbent, which is an absorbent of oil and hydrophobic liquid and a production method thereof, and relates to a method of producing an oil-absorbable foamed body, which may be simply produced, may absorb large amounts of oil even when used in small amounts, and may be formed into various foam products, such as mats, foam or rolls, depending on the types of spilled oil, in order to facilitate the absorption of oil. The present invention further relates to a foamed body produced using the method, and to a foam product using the foamed body. Accordingly, the oil absorbent of the present invention may be easily produced, and has numerous pores formed therein to facilitate the absorption of oil.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 31, 2008
    Inventors: Kwang Soo Kim, Ik Soo Kim, Hwang Gyu Ryu, Sang Hyeon Park, Young Jin Cheon
  • Patent number: 7368502
    Abstract: A dihydroxyphenyl cross-linked macromolecular network is provided that is useful in artificial tissue and tissue engineering applications, such as artificial or synthetic cartilage. The network is made by first providing a polyamine or polycarboxylate macromolecule (having a plurality of amine or carboxylic acid groups respectively attached along the length of the molecule), reacting this macromolecule with a hydroxyphenyl compound having a free carboxylic acid group in the case of a polyamine or a free primary amine group in the case of a polycarboxylate, and substituting the hydroxyphenyl compound onto the macromolecule via a carbodiimide-mediated reaction pathway to provide a hydroxyphenyl-substituted macromolecule. This macromolecule is then linked to other such macromolecules via an enzyme catalyzed dimerization reaction between two hydroxyphenyl groups attached respectively to different macromolecules under metabolic conditions of temperature and pH.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: May 6, 2008
    Assignee: The Cleveland Clinic Foundation
    Inventors: Anthony Calabro, Richard A. Gross, Aniq B. Darr