Treated With Sulfur-containing Material Patents (Class 521/33)
  • Patent number: 7919565
    Abstract: A composition having a sulfonated block copolymer which is solid and non-dispersible in water having at least two polymer end blocks A, at least one polymer interior block B, and at least one polymer block D. Each A block is a segment of one or more polymerized para-substituted styrene monomers, each B block contains segments of one or more vinyl aromatic monomers selected from polymerized (i) unsubstituted styrene monomers, (ii) ortho-substituted styrene monomers, (iii) meta-substituted styrene monomers, (iv) alpha-methylstyrene, (v) 1,1-diphenylethylene, (vi) 1,2-diphenylethylene and (vii) mixtures thereof, and each D block having a glass transition temperature of less than 20° C. and a number average molecular weight of between 1,000 and 50,000 Adhesives, coatings and membranes are formed from the composition. Various articles are formed with the composition including films, fibers, fabrics, laminates, and absorbent cores.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: April 5, 2011
    Assignee: Kraton Polymers U.S. LLC
    Inventors: Carl Lesley Willis, Dale Lee Handlin, Jr., Scott Russell Trenor, Brian Douglas Mather
  • Patent number: 7910248
    Abstract: An aromatic-polyether-type ion conductive polymer membrane having improved mechanical strength is provided. An aromatic-polyether-type ion-conductive ultrahigh molecular weight polymer having an ion exchange capacity of 0.1 meq/g or higher and a structure comprising an aromatic-polyether-type ultrahigh molecular weight polymer in which an acid group introduced, said aromatic-polyether-type ultrahigh molecular weight polymer having at least one structural unit selected from those represented by the following formulas (1) and (2) and the sum of the number a of the structural unit of the formula (1) and the number b of the structural unit of the formula (2) being 2 or larger: Ar1—Om—Ar1??(1) Ar2—On—Ar2??(2).
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: March 22, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toru Onodera, Shigeru Sasaki
  • Publication number: 20110033773
    Abstract: A proton exchange membrane comprising modified hyper-branched polymer is disclosed. The proton exchange membrane includes 85-90 wt % of sulfonated tetrafluorethylene copolymer and 15-10 wt % of modified hyper-branched polymer. The modified hyper-branched polymer comprises the bismaleimide (BMI)-based hyper-branched polymer, and parts of the chain ends of the hyper-branched polymer are sulfonated by the sulfonic compound. Also, the modified hyper-branched polymer and sulfonated tetrafluorethylene copolymer are interpenetrated to form an interpenetrating polymer. Furthermore, the modification step could be performed before or after forming the interpenetrating polymer. For example, the sulfonation is proceeded after forming the interpenetrating polymer. Alternatively, the sulfonation of the hyper-branched polymer could be proceeded before the formation of the interpenetrating polymer.
    Type: Application
    Filed: November 23, 2009
    Publication date: February 10, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chung-Liang Chang, Ya-Ting Hsu, Jing-Pin Pan
  • Patent number: 7879971
    Abstract: A multiblock copolymer includes a polysulfone repeating unit, a sulfonated polysulfone repeating unit, a polydialkylsiloxane repeating unit and an ethylenic unsaturated group at a terminal of the multiblock copolymer. Also provided are a method of preparing the multiblock copolymer, a polymer electrolyte membrane prepared from the multiblock copolymer, a method of preparing the polymer electrolyte membrane, and a fuel cell including the polymer electrolyte membrane. The polymer electrolyte membrane that has a high ionic conductivity and good mechanical properties and minimizes crossover of methanol can be manufactured at low cost. In addition, the structure of the multiblock copolymer can be varied to increase selectivity to a solvent used in a polymer electrolyte membrane.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: February 1, 2011
    Assignee: Samsung SDI, Co., Ltd.
    Inventors: Hae-kyoung Kim, Won-mok Lee, Hyuk Chang, Jin Chul Jung, Sam Dae Park, Yun Ju Chang
  • Publication number: 20100324159
    Abstract: Embodiments of the present invention are directed to porous resins for solid phase extractions. The resins feature at least one hydrophobic component, at least one hydrophilic component and at least one ion exchange functional group. The resins exhibit superior wetting and ion exchange performance.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 23, 2010
    Applicant: Waters Technologies Corporation
    Inventors: Peter Jeng Jong LEE, John E. O'Gara
  • Patent number: 7829603
    Abstract: A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, —OM, NH2, —N(M)SO2R2F, and C(M)(SO2R2F)2, wherein M comprises H, an alkali cation, or ammonium; R2F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: November 9, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Zhen-Yu Yang, Mark Gerrit Roelofs
  • Publication number: 20100273901
    Abstract: The present invention pertains to products and processes relating to sulfonating molecules, including nucleic acids, amino acids, peptides, polypeptides, oligomers, polymers, and copolymers. The disclosed process allows for a uniform and controlled level of sulfonating molecules. The sulfonated molecules produced by the disclosed process exhibit a high degree of uniform sulfonation as well as improved properties.
    Type: Application
    Filed: May 9, 2008
    Publication date: October 28, 2010
    Applicants: AEGIS BIOSCIENCES LLC, DAIS ANALYTIC CORPORATION
    Inventors: Scott G. Ehrenberg, Liwei Cao, David Vachon, Kevin Coppola, James Balog
  • Patent number: 7811453
    Abstract: An object of the present invention is to provide a hydrophilic polymer microparticle which shows reduced swelling in an aqueous medium and has an excellent dispersibility in an aqueous medium, a filler for ion-exchange liquid chromatography which can effectively suppress non-specific adsorption of protein and the like, a method for analyzing glycosylated hemoglobin using the filler for ion-exchange liquid chromatography, a method for production of a filler for ion-exchange liquid chromatography that can maintain suppressive effects on swelling, non-specific adsorption and the like for a long period of time, a filler for ion-exchange liquid chromatography produced by the method for production of a filler for ion-exchange liquid chromatography, and a filler for ion-exchange liquid chromatography for glycosylated hemoglobin analysis.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: October 12, 2010
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Takuya Yotani, Makoto Takahara
  • Patent number: 7803846
    Abstract: The objective of the invention is to solve the problems of conventional polymer electrolyte membranes, including small ion-exchange capacity and low oxidation and methanol resistance. A polymer film substrate is irradiated with ?-rays, electron beams or other radiations to perform multi-graft polymerization with functional monomers and then the polymer film substrate containing the grafted molecular chains or the graft molecular chains into which sulfonic acid groups have been introduced is crosslinked by irradiation to produce a polymer electrolyte membrane that has outstanding oxidation resistance, dimensional stability, electrical conductivity and methanol resistance and which can be controlled in ion-exchange capacity over a wide range.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: September 28, 2010
    Assignees: Japan Atomic Energy Agency, Nitto Denko Corporation
    Inventors: Masaru Yoshida, Masaharu Asano, Tetsuya Yamaki, Soji Nishiyama, Toshimitsu Tachibana, Yozo Nagai
  • Patent number: 7790314
    Abstract: A membrane electrode assembly for a fuel cell is described. The materials for the membrane electrode assembly are formed from sulfonated polymers. A polymer dispersion ink containing the sulfonated polymer and a mixture of solvents is used to form the electrodes on the exchange membrane. The dispersion ink allows for the electrodes to be formed directly on the exchange membrane without significantly dissolving the exchange membrane.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 7, 2010
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: James E. McGrath, Michael Hickner
  • Patent number: 7759453
    Abstract: A multiblock copolymer includes a polysulfone repeating unit, a sulfonated polysulfone repeating unit and an ethylenic unsaturated group at a terminal of the multiblock copolymer. Also provided are a method of preparing the multiblock copolymer, a polymer electrolyte membrane prepared from the multiblock copolymer, a method of preparing the polymer electrolyte membrane, and a fuel cell including the polymer electrolyte membrane. The polymer electrolyte membrane that has a high ionic conductivity and good mechanical properties and minimizes crossover of methanol can be manufactured at low cost. In addition, the structure of the multiblock copolymer can be varied to increase selectivity to a solvent used in a polymer electrolyte membrane.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: July 20, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hae-kyoung Kim, Won-mok Lee, Jin-chul Jung, Hyuk Chang, Sam-dae Park, Yoon-ju Chang
  • Patent number: 7737190
    Abstract: A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: June 15, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Mark Gerrit Roelofs, Zhen-Yu Yang, Amy Qi Han, legal representative
  • Patent number: 7659319
    Abstract: Proton conducting membranes are made of sulfonated films comprising poly(arylene sulfide), an olefinic polymer, and an elastomer. They are used in PEM fuel cells operating at temperatures above 95° C., or at low relative humidity. According to methods of the invention, sulfonated poly(phenylene sulfide) (SPPS) films are provided with a wide range of physical properties, which depend in part on the ion exchange capacity of the films. In particular, the degree or level of sulfonation can be tailored by adjusting reaction conditions such as temperature and time.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: February 9, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Timothy J. Fuller, Beba T. Dobulis
  • Publication number: 20100029914
    Abstract: To provide a medium suitable for high speed/high resolution, rich in hydrophilicity and resistant to a high concentration aqueous alkaline solution. A medium comprising crosslinked polymer particles containing from 20 to 95 mol % of repeating units derived from a (meth)acryloyl monomer represented by the formula (1): wherein R2 is a hydrogen atom or a C1-4 alkyl group, R1 is —NR3—R4-R5 or —O—R4-R5, R3 is a hydrogen atom or a C1-4 alkyl group, R4 is a C6-15 alkylene group containing an alicyclic ring or a C4-8 linear alkylene group, and R5 is a halogen atom, an alcoholic OH group, an amino group, a glycidyl group or an epoxy group.
    Type: Application
    Filed: June 8, 2006
    Publication date: February 4, 2010
    Applicant: TOSOH CORPORATION
    Inventors: Katsuo Komiya, Yuji Kubo, Masazumi Hasegawa, Sanae Hasegawa
  • Patent number: 7625955
    Abstract: A porous article which is formed from a polymeric material, in which characteristics of the surface of the article provided by the polymeric material are modified by having grafted to it chains of polymerized vinyl monomer units, in which the chains each comprise a number of units of a first vinyl monomer and include a unit of a second vinyl monomer which is different from the first vinyl monomer. Preferably, the ratio of the number of units of the first vinyl monomer in each chain to the number of units of the second vinyl monomer is not more than about 60. When the number of second vinyl monomer units in each chain is one, the mean number of first vinyl monomer units in each chain will be not more than 60.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: December 1, 2009
    Assignee: Freudenberg Nonwovens LP
    Inventors: Giovanni Gentilcore, Tracy Hoar
  • Patent number: 7615300
    Abstract: New thermally and chemically stable sulfonic acid-containing polymers are synthesized via post-sulfonation of aromatic polymers. These new polymers provide unique benefits to proton exchange membrane fuel cell technology (“PEMFC”). As a sulfonic acid moiety can be easily installed into an aromatic ring via electrophilic sulfonation, even in the presence of an electron-withdrawing substituent such as —F, rigid polymers consisting of aromatic rings at either the side chain or main chain can be prepared with a wide range of substituents and flexibility in properties. Novel synthetic procedures are provided for synthesis of the polymers.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: November 10, 2009
    Assignee: The Board of Regents University and Community College System of Nevada on Behalf of the University of Nevada
    Inventor: Chulsung Bae
  • Patent number: 7608187
    Abstract: The present invention relates to method of manufacturing a sulphonate-functionalized (S-functionalized) cation exchanger, which method comprises reacting olefinic groups with bisulphite in the presence of at least one amine oxide, such as N-methyl morpholine oxide (NMO). The olefinic groups of the carrier may be allyl groups; which may be provided on extenders such as polyhydroxyfunctional polymers. In one embodiment, the carrier is made of agarose with improved flow pressure properties.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: October 27, 2009
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Andreas Axen, Gunnar Glad, Henrik Ihre, Anders Larsson, Nils Norrman
  • Publication number: 20090156798
    Abstract: Strongly acidic cation exchangers with high mechanical, osmotic and oxidation stability can be prepared by sulfonating bead polymers formed from one or more vinylaromatic monomer(s), one or more crosslinker(s) and from 0.2 to 20% by weight of one or more vinyl ethers and/or vinyl esters.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 18, 2009
    Applicant: LANXESS DEUTSCHLAND GMBH
    Inventors: Pierre Vanhoorne, Hans-Jurgen Wedemeyer
  • Patent number: 7544764
    Abstract: A membrane electrode assembly for a fuel cell is described. The materials for the membrane electrode assembly are formed from sulfonated polymers. A polymer dispersion ink containing the sulfonated polymer and a mixture of solvents is used to form the electrodes on the exchange membrane. The dispersion ink allows for the electrodes to be formed directly on the exchange membrane without significantly dissolving the exchange membrane.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: June 9, 2009
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: James E. McGrath, Michael Hickner
  • Publication number: 20090124714
    Abstract: The present invention relates to a method for producing a porous resin particle having a functional group X, the method including: dissolving a radical polymerizable aromatic monovinyl monomer and a radical polymerizable aromatic divinyl monomer together with a polymerization initiator in an organic solvent to prepare a monomer solution, dispersing the monomer solution in water in the presence of a dispersion stabilizer to obtain a suspension polymerization reaction mixture, and performing a suspension copolymerization while adding, when 0 to 80% of the entire polymerization time of the suspension copolymerization is passed, a mercapto compound represented by the formula (I): HS—R—X??(I) in which R represents an alkylene group having a carbon number of 2 to 12, and the functional group X represents a functional group selected from a hydroxy group and a primary amino group, to the suspension polymerization reaction mixture; and the porous resin particle obtained by the method.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 14, 2009
    Applicant: NITTO DENKO CORPORATION
    Inventors: Tatsuya KONISHI, Kenjiro MORI
  • Publication number: 20090118382
    Abstract: The invention relates to ion-exchange materials comprising a hydrophobic support resin having grafted side chains, wherein the side chains have a surfactant-type structure and comprise ion-exchange groups, and the ion-exchange material is obtainable by radical grafting of the side chains using a radical initiator containing at least one peroxide group. By means of the surfactant-type structure and the specific radical initiator, a regiospecific and particularly uniform arrangement of the side chains on the support resin is achieved which in addition enables outstanding and uniform hydration of the ion-exchange groups. This is expressed, in particular, in improved signal asymmetries for bromide and nitrate.
    Type: Application
    Filed: April 4, 2007
    Publication date: May 7, 2009
    Applicant: METROHM AG
    Inventors: Michael Raskop, Andreas Seubert, Andreas Grimm
  • Patent number: 7485227
    Abstract: The present invention relates to polymer films and a polymer membrane having an improved mechanical property profile produced therefrom, to a process for producing them and to their use. The polymer films, polymer membranes and separation membranes of the invention are produced from selected polymer raw materials and have excellent chemical, thermal. and mechanical properties as are required for use as polymer electrolyte membranes (PEMs) in PEM fuel cells or in apparatuses for the filtration and/or separation of gases and/or liquids or for reverse osmosis.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: February 3, 2009
    Assignee: BASF Fuel Cell GmbH
    Inventors: Joachim Kiefer, Oemer Uensal, Jochen Baurmeister, Frauke Jordt
  • Patent number: 7473714
    Abstract: A family of polymers having pendent sulfonate moieties connected to polymeric main chain phenyl groups are described. These polymers are prepared by the steps of polymerization (using a monomer with a phenyl with an alkoxy substitution), deportation by converting the alkoxy to a hydroxyl, and functionalization of the polymer with a pendant sulfonate group. As an example, sulfonated poly(arylene ether sulfone) copolymers with pendent sulfonic acid groups are synthesized by the direct copolymerization of methoxy-containing poly(arylene ether sulfone)s, then converting the methoxy groups to the reactive hydroxyl form, and finally functionalizing the hydroxyl form with proton-conducting sites through nucleophilic substitution. The family of polymers may have application in proton exchange membranes and in other applications.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: January 6, 2009
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Brian R. Einsla, James E. McGrath
  • Patent number: 7435498
    Abstract: A method is provided for making a crosslinked polymer electrolyte, typically in the form of a membrane for use as a polymer electrolyte membrane in an electrolytic cell such as a fuel cell, by trimerization of nitrile groups contained on groups pendant from the polymer. The resulting polymer electrolyte membrane comprises a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise sulfonic acid groups, and crosslinks comprising trivalent groups according to the formula: The first pendent groups are typically according to the formula: —R1—SO3H, where R1 is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms, most typically —O—CF2—CF2—CF2—CF2—SO3H or —O—CF2—CF(CF3)—O—CF2—CF2—SO3H.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: October 14, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. Yandrasits, Steven J. Hamrock, Werner M. Grootaert, Miguel A. Guerra, Naiyong Jing
  • Patent number: 7368505
    Abstract: This invention relates to methods of making graft copolymers, and articles having such graft copolymers. The methods may provide better control than in radicalization or photoinitiated polymerization techniques. For example, a graft copolymer can be prepared by reacting an alkoxide ion with a polymer. The alkoxide, in turn, can be provided by any suitable technique, for example, by reacting an alcohol with a base. In some embodiments of the invention, the graft copolymers may be a normally hydrophobic polymer, such as a polysulfone, that has been made more hydrophilic due to the attachment of hydrophilic side groups such as polyethylene glycol or polypropylene glycol. The copolymers of the invention have many uses, for example, in films or porous membranes.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: May 6, 2008
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Jane Y. Park, Metin H. Acar, Ariya Akthakul
  • Patent number: 7361729
    Abstract: Sulfonated polymers are made by the direct polymerization of a sulfonated monomer to form the sulfonated polymers. The types of sulfonated polymers may include polysulfones or polyimides. The sulfonated polymers can be formed into membranes that may be used in proton exchange membrane fuel cells or as ion exchange membranes. The membranes formed from the sulfonated polymers exhibit improved properties over that of Nafion®. A heteropoly acid may be added to the sulfonated polymer to form a nanocomposite membrane in which the heteropoly acid is highly dispersed. The addition of a heteropoly acid to the sulfonated polymer increases the thermal stability of the membrane, enhances the conductivity above 100° C., and reduces the water uptake of the membrane.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: April 22, 2008
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: James E. McGrath, Michael Hickner, Feng Wang, Yu-Seung Kim
  • Patent number: 7320754
    Abstract: The invention relates to a method of preparing multi-modal anion-exchange ligands, which comprises providing a cyclic three-functional scaffold comprising an amine, a carbonyl and a thiol; optionally derivatisation of the amine of the scaffold to provide an anion-exchanging group and/or to protect the amine; and aminolysis to open up the derivative by adding a reagent comprising an amine coupled to a residue R in order to add said amine to the carbonyl carbon of the opened scaffold. The scaffold is advantageously homocysteine thiolactone. In one embodiment, the method comprises an additional step of immobilising the opened scaffold to a base matrix to provide a separation medium, such as a chromatography medium.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: January 22, 2008
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Ulrika Carlsson, Jean-Luc Maloisel, Nicolas Thevenin
  • Patent number: 7307127
    Abstract: A block copolymer composition AB is provided that has pendent groups —RZ extending from the A copolymer on at least 70 mol % of the A monomers, where R and Z are each an ionic species. The composition is included in a semipermeable membrane for use in a direct methanol fuel cell. Also described are articles of protective apparel comprising the composition which advantageously has barrier properties as well as superior water vapor transport properties.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: December 11, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: Eugene Napadensky, Yossef A. Elabd, Dawn M. Crawford, James M. Sloan
  • Patent number: 7294685
    Abstract: A polyphosphazene derivative and an aromatic ring compound are bonded to one another to obtain an intermediate product. Subsequently, anhydrous sulfuric acid is added in such an amount that the molar ratio is 2 to 8 with respect to a repeating unit of the intermediate product. Further, SO3 and the intermediate product are reacted with each other to sulfonate the intermediate product. The sulfonation is performed under a condition in which the temperature range is ?20 to 0° C. and the total time is 5 to 30 hours. Accordingly, a sulfonated polyphosphazene derivative is obtained, in which the number average molecular weight is not less than 25,000 and the ion exchange capacity exceeds 3.0 mmol/g.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: November 13, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventor: Hiroshi Akita
  • Patent number: 7265159
    Abstract: Process for preparing monodisperse weakly basic or optionally strongly basic anion exchangers of the poly(meth)acrylamide type, the ion exchangers themselves and their use.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: September 4, 2007
    Assignee: Bayer Aktiengesellschaft
    Inventors: Reinhold Klipper, Olaf Halle, Claudia Schmid, Wolfgang Podszun, Rüdiger Seidel, Hans-Karl Soest
  • Publication number: 20070185221
    Abstract: An article is sulfonated by forming a sulfonating gas composition containing a gaseous sulfur-containing compound provided from a gas source. The gas source may utilize a chemical feed stock that includes a precursor sulfur-containing compound. The article is then contacted with the sulfur-containing gas until a surface treatment is effected. Next, the article is then optionally contacted with a gaseous neutralization composition, and then a liquid neutralization composition. In another sulfonation method, a first test sample is sulfonated and then analyzed by inductively coupled plasma analysis and X-ray fluorescence spectroscopy. A calibration relationship between the two spectroscopic techniques is determined with the inductively coupled plasma atomic spectroscopic value taken as the accurate value. In subsequent sulfonation runs, test samples are included and monitored by X-ray fluorescence.
    Type: Application
    Filed: February 7, 2007
    Publication date: August 9, 2007
    Applicant: SULFO TECHNOLOGIES, LLC
    Inventors: Charles H. Winter, Dwayne Back, Elena Sebe
  • Patent number: 7232520
    Abstract: Embodiments of the present invention are directed to porous resins for solid phase extractions. The resins feature at least one hydrophobic component, at least one hydrophilic component and at least one ion exchange functional group. The resins exhibit superior wetting and ion exchange performance.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: June 19, 2007
    Assignee: Waters Investments Limited
    Inventors: Peter Jeng Jong Lee, John E. O'Gara
  • Patent number: 7229553
    Abstract: Method for producing a membrane made of bridged polymer and a fuel cell. The present invention relates to a membrane comprising a bridged polymer which is produced by a selected process. The membrane of the invention displays a significantly improved fracture toughness (elongation at break/tensile strength) with virtually unchanged swelling behavior. The membranes of the invention are suitable for producing membrane-electrode units for fuel cells.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: June 12, 2007
    Assignee: PEMEAS GmbH
    Inventors: Oemer Uensal, Joachim Kiefer
  • Patent number: 7094469
    Abstract: A porous or non-porous polymeric substrate having its surface modified with an immobilized fluorocarbon such as perfluorocarbon, polymeric composition is provided. The immobilized fluorocarbon is formed from a monomer having formula: [T—SO2Y—SO2T?]?M+ in which —T and T? are identical or different and comprise an organic radical bearing at least one active polymerization function such as an unsaturation or a ring that can be opened; —M+ comprises an inorganic cation.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: August 22, 2006
    Assignee: Mykrolis Corporation
    Inventor: Wilson Moya
  • Patent number: 7077964
    Abstract: The present invention relates to a process for preparing novel, monodisperse ion exchangers having chelating functional groups, and their use for adsorbing metal compounds, in particular, heavy metal compounds and noble metal compounds, and also for extracting alkaline-earth metals from saline solutions from alkali metal chloride electrolysis.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: July 18, 2006
    Assignee: Bayer Aktiengesellschaft
    Inventors: Reinhold Klipper, Werner Strüver, Ulrich Schnegg, Bruno Hees, Bernhard Lehmann, Holger Lütjens
  • Patent number: 7071240
    Abstract: A method for preparing synthetic polymerized resins for ion exchange, namely, carboxylic cationites, which are suitable as sorbents for preparative separation and purification of biologically active compounds by low pressure liquid chromatography (LPLC). The directional polymerization conditions enable such cationites to be prepared with polymeric structures which can be used for the separation of macromolecules, such as proteins, with high molecular mass from various microbiological raw materials and physiological liquids. Depending upon the embodiment of the method of manufacture according to the present invention, the resultant carboxylic cationites are obtained in one of three forms: a swollen block, if no pre-polymerization or dispersion stages are performed; and, if such stages are performed, depending upon the dispersion conditions, the resultant structures can be either irregular particles or spherical granules.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: July 4, 2006
    Assignee: Polygran Ltd.
    Inventor: Karina Rozhetsky
  • Patent number: 7067059
    Abstract: The present invention relates to a method of generating a separation medium comprising mixed mode cation-exchanger ligands coupled to a base matrix, which method comprises to provide a scaffold comprising a functional group and exhibiting a cyclic core structure; derivatise the scaffold with a reagent comprising a reactive group coupled to a residue R by reacting the functional group of the scaffold with said reactive group; open the cyclic structure of the resulting derivative; and react the product with a base matrix comprising a reactive group. The scaffold presents at least two functionalities; one sulphur-comprising group for coupling to the base matrix and one group that can be transformed into an ionic group.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: June 27, 2006
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Jean-Luc Maloisel, Nicolas Thevenin
  • Patent number: 7037950
    Abstract: A trifluorostyrene and substituted vinyl compound based partially fluorinated copolymer, an ionic conductive polymer membrane including the same, and a fuel cell adopting the ionic conductive polymer membrane, wherein the partially fluorinated copolymer has formula (1): where each of R1, R2 and R3 is F, H or CH3; X is a hydroxy group or a trifluoromethyl group; m is an integer greater than zero; n is an integer greater than zero; and p, q and r are zero or integers greater than zero.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: May 2, 2006
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Hae-kyoung Kim
  • Patent number: 6924318
    Abstract: A process for producing a bipolar membrane is described in which a cationic membrane undergoes a treatment with a salt from a group 8 metal, an anionic membrane undergoes a treatment with a salt of a transition metal not belonging to group 8, and then the two membranes are conjoined and, before and/or after having been conjoined, the membranes are brought into contact with a treatment solution selected from alkaline aqueous solutions, aqueous metal sulphate solutions and aqueous metal sulphite solutions.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: August 2, 2005
    Assignee: SOLVAY (Societe Anonyme)
    Inventors: Ellenio Mischi, Davide Mantione, Alessandra Pastacaldi, Luc Botte
  • Patent number: 6924317
    Abstract: The present invention relates to a process for producing monodisperse anion-exchanger gels with high stability, purity and coarse particle size greater than 800 ?m starting from a monodisperse bead polymer with a swelling index of from 2.5 to 7.5 and more than one subsequent feed procedure without any separation between the polymerization steps and then modifying to give the anion exchanger.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: August 2, 2005
    Assignee: Bayer Aktiengesellschaft
    Inventors: Lothar Feistel, Gerold Schade, Hubertus Mittag
  • Patent number: 6919382
    Abstract: The invention provides novel solid supports comprising dihydroxyalkyl aminoalkyl and dihydroxyalkylaminobenzyl groups, and methods for making and using them. The supports are particularly useful for immobilizing and derivatizing functionalized boronic acids for use in solid phase synthesis, such as those used in combinatorial chemistries. The compositions and methods of the invention are also useful as scavenger solid supports, e.g., in solution-phase parallel synthesis of small molecule libraries, and for use in resin-to-resin transfer reactions via phase transfer of solid supported boronic acids under both aqueous and anhydrous conditions. The methods of the invention provide convergent solid-phase synthesis of symmetrically or unsymmetrically functionalized compounds, such as biphenyl compounds. Also provided are synthesizer devices, e.g., semiautomated parallel synthesizers.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: July 19, 2005
    Assignee: The Governors of the University of Alberta
    Inventor: Dennis G. Hall
  • Patent number: 6914084
    Abstract: Membranes comprising sulfonated polyether ketone and another polymer, process for their production, and their use, Membranes comprising from 30 to 99.5% by weight of a sulfonated, strictly alternating polyether ketone (A) having repeat units of the formula (I) —Ar—O—Ar?—CO—, where Ar and Ar?, independently of one another, are bivalent aromatic radicals, with an ion exchange capacity of from 1.3 to 4.0 meq of —SO3H/g of polymer and from 0.5 to 70% by weight of a partially fluorinated, nonfluorinated or perfluorinated polymer (B) are described. The membranes may be used in fuel cells.
    Type: Grant
    Filed: September 18, 1999
    Date of Patent: July 5, 2005
    Assignee: Celanese Ventures GmbH
    Inventors: Thomas Soczka-Guth, Christoph Padberg, Georg Frank
  • Patent number: 6844371
    Abstract: An object of the present invention is to provide a separation functional material having more excellent adsorptive separation performance than previously. In order to attain this object, separation functional materials of the present invention are characterized in that they are formed by introducing a polymer side chain derived from a p-haloalkylstyrene onto the backbone of an organic polymer base and introducing a functional group onto the polymer side chain.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: January 18, 2005
    Assignee: Ebara Corporation
    Inventors: Makoto Komatsu, Kazuyoshi Takeda, Kunio Fujiwara, Takeshi Takai
  • Patent number: 6790553
    Abstract: A method for producing a bridged polymer membrane includes the steps of: obtaining a liquid medium comprising a basic polymer having an amino group in a repeating unit, a bridging agent, and a solvent; shaping the liquid medium into a membrane configuration to obtain the shaped membrane; and bridging the basic polymer by the bridging agent in the shaped membrane. A fuel cell has the bridged polymer membrane. The mechanical strength of the polymer electrolyte membrane is improved.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: September 14, 2004
    Assignee: Celanese Ventures GmbH
    Inventor: Tetsu Yamamoto
  • Patent number: 6784213
    Abstract: An improved process for preparing strong acid cation exchange resins by sulfonation of wet crosslinked copolymer in the absence of organic swelling solvents is disclosed. This process involves dewatering a crosslinked poly(vinylaromatic) copolymer to selected residual moisture levels of 3 to 35%, followed by non-solvent sulfonation, to provide strong acid cation exchange resins having enhanced physical stability and that are free of chlorinated-solvent contaminants.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: August 31, 2004
    Assignee: Rohm and Haas Company
    Inventors: William Douglas Rohrbach, Bruce Maurice Rosenbaum
  • Patent number: 6774150
    Abstract: A trifluorostyrene and substituted vinyl compound based partially fluorinated copolymer, an ionic conductive polymer membrane including the same, and a fuel cell adopting the ionic conductive polymer membrane, wherein the partially fluorinated copolymer has formula (1): where each of R1, R2 and R3 is F, H or CH3; X is a hydroxy group or a trifluoromethyl group; m is an integer greater than zero; n is an integer greater than zero; and p, q and r are zero or integers greater than zero.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: August 10, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hae-Kyoung Kim
  • Patent number: 6765027
    Abstract: Ion-exchange materials comprising a polymeric backbone and a plurality of pendent styrenic or fluoridated styrenic macromonomers covalently bonded thereto, wherein the plurality of pendent styrenic or fluorinated styrenic macromonomers comprise a uniform number of styrenic or fluoridated styrenic monomer repeat units, and wherein predominantly all of the styrenic or fluoridated styrenic monomer repeat units have at least one charged group. Processes for making such material, as well as products related thereto, are also disclosed. In a representative embodiment, the ion-exchange material is utilized as a proton-exchange membrane (PEM) for use in a PEM fuel cell.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: July 20, 2004
    Assignee: Ballard Power Systems Inc.
    Inventors: Steven Holdcroft, Jianfu Ding, Carmen Chuy, Charles Stone, Anne E Morrison
  • Patent number: 6759442
    Abstract: An object of the present invention is to provide a packing material for solid phase extraction, ensuring excellent recovery of not only a hydrophobic substance but also an ionic substance by having hydrophobicity and an ion exchange group at the same time, and a solid phase extraction method, a packing apparatus, and a method for treating a sample, using the packing apparatus. A packing material for solid phase extraction of the present invention is a particle obtained by copolymerizing a hydrophobic monomer (A) and a hydrophilic monomer (B) and introducing thereinto an ion exchange group, in which the ion exchange group is introduced without impairing the hydrophobic site. The present invention also provides a solid phase extraction method, a packing apparatus for solid phase extraction and a method for treating a sample, using the packing material.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 6, 2004
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Ryuji Takahashi, Hiroshi Suzuki
  • Patent number: 6750259
    Abstract: The invention relates to a process for preparing gel-type cation exchangers of high stability by sulfonation of crosslinked (meth)acrylic ester-containing bead polymers with sulfuric acid having a concentration of 90 to 95% in the absence of a swelling agent.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: June 15, 2004
    Assignees: Bayer Aktiengesellschaft, Sybron Chemicals, Inc.
    Inventors: George L. Dimotsis, Wolfgang Podszun, Reinhold Klipper
  • Patent number: 6740684
    Abstract: A strong-acid cation exchange resin in acid form is contacted with an alkylcarhamoyl alkylthioester in the presence of water for producing a strong-acid cation exchange resin comprising a plurality of acid groups being partially neutralized with a mercaptoalkylamine. The produced partially neutralized cation exchange resin is useful as a catalyst in a process of producing a bisphienol by reaction of a phenolic compound with a carhonyl compound.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: May 25, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Mihail Paliuras, Damian M. Feord, Johann-Wilhelm Frey