Involving Inert Gas, Steam, Nitrogen Gas, Or Carbon Dioxide Patents (Class 522/915)
  • Patent number: 7291655
    Abstract: A polymerization process with elevated productivity using a coordination catalyst, wherein electromagnetic radiation is applied during polymerization. The irradiation of light greatly increases the activity of the coordination catalyst.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: November 6, 2007
    Assignee: Borealis Technology Oy
    Inventors: Karl-Heinz Reichert, Annette Wittebrock, Kalle Kallio
  • Patent number: 7115673
    Abstract: The present photosensitive resin composition 2 comprises a polyamic acid resin 4, a photosensitive agent, a dispersible compound 3 dispersible in the polyamic acid resin 4, and a solvent. The porous resin is obtained by removing the solvent from the photosensitive resin composition 2 to form a composition in which the dispersible compound 3 is dispersed in the polyamic acid resin 4, removing the dispersible compound to make the composition porous, and curing the porous photosensitive resin composition. The porous resin enables forming a fine circuit pattern and has a low dielectric constant and, when used as an insulating layer of a circuit board, brings about improved high frequency characteristics.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: October 3, 2006
    Assignee: Nitto Denko Corporation
    Inventors: Amane Mochizuki, Takahiro Fukuoka, Mitsuhiro Kanada, Takayuki Yamamoto, Tomohiro Taruno
  • Patent number: 6126776
    Abstract: A method of modifying the surface of a solid polymer substrate comprising the steps of a) generating radicals on the substrate surface by subjecting it to a gas plasma or by subjecting it to UV light, and b) treating the surface with a vapor of a monomer or a monomer mixture comprising cyano acrylate and/or isocyanate, where step b) starts before step a), simultaneously with step a), under step a), or follows immediately after step a), and a polymer substrate modified accordingly; a method of binding an organic binder material to a surface of a solid polymer substrate comprising the steps of modifying the surface of the substrate by said method, and bringing the organic material in contact with the surface of the substrate, and a polymer bonded to an organic material by the last mentioned method.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: October 3, 2000
    Assignee: NKT Research Center A/S
    Inventors: Kristian Glejb.o slashed.l, Bj.o slashed.rn Winther-Jensen
  • Patent number: 5591785
    Abstract: Disclosed is a normally solid, high molecular weight, gel-free, amorphous to predominantly crystalline, propylene polymer characterized by high melt strength due to strain hardening which is believed to be caused by free-end long chain branches of the molecular chains forming the polymer.Also disclosed is a process for making the polymer by high energy radiation of a normally solid, high molecular weight, linear, propylene polymer in a reduced active oxygen environment, maintaining the irradiated material in such environment for a specific period of time, and then deactivating free radicals in the material.Further disclosed is the use of the strain hardening polymer in extensional flow operations such as, for example, extrusion coating, film production, and thermoforming.
    Type: Grant
    Filed: March 23, 1995
    Date of Patent: January 7, 1997
    Assignee: Montell North America Inc.
    Inventors: B. Joseph Scheve, John W. Mayfield, Anthony J. DeNicola, Jr.
  • Patent number: 5554668
    Abstract: Disclosed is a normally solid, high molecular weight, gel-free, amorphous to predominantly crystalline, propylene polymer characterized by high melt strength due to strain hardening which is believed to be caused by free-end long chain branches of the molecular chains forming the polymer.Also disclosed is a process for making the polymer by high energy radiation of a normally solid, high molecular weight, linear, propylene polymer in a reduced active oxygen environment, maintaining the irradiated material in such environment for a specific period of time, and then deactivating free radicals in the material.Further disclosed is the use of the strain hardening polymer in extensional flow operations such as, for example, extrusion coating, film production, and thermoforming.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: September 10, 1996
    Assignee: Montell North America Inc.
    Inventors: B. Joseph Scheve, John W. Mayfield, Anthony J. DeNicola, Jr.
  • Patent number: 5543471
    Abstract: A medical implant made of polymeric material having an increased oxidation resistance is formed by a method including the steps of placing a resin powder in a sealed container. A substantial portion of the oxygen is removed from the sealed container by either a vacuum, an oxygen absorbent or by flushing with inert gas. The container is then repressurized with a gas such as nitrogen, argon, helium or neon so that long term storage may be possible. On use, the resin is transferred to a forming device which both melts and forms the resin in an oxygen reduced atmosphere to produce a polymeric raw material such as a rod or bar stock. The medical implant is then formed from this raw material annealed and sealed in an air-tight package in an oxygen reduced atmosphere. The implant is then radiation sterilized and thereafter annealed in the package for a predetermined time and temperature sufficient to form cross-links between any free radicals in neighboring polymeric chains.
    Type: Grant
    Filed: March 15, 1995
    Date of Patent: August 6, 1996
    Assignee: Howmedica Inc.
    Inventors: Deh-Chuan Sun, Casper F. Stark
  • Patent number: 5486357
    Abstract: Internal polymeric surfaces of medical devices are provided that have enhanced biocompatibility properties. The internal polymeric surface presents an anti-thrombogenic, fibrinolytic or thrombolytic interface with body fluids such as blood flowing through medical device tubing during implantation for medical procedures. The biocompatibility enhancing agent is secured to the polymeric substrate by a spacer molecule which is covalently bound to the internal polymeric surface which had been subjected to radiofrequency plasma treatment with a low pressure plasma medium of water vapor, oxygen or combination of water vapor and oxygen gas.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: January 23, 1996
    Assignee: Cordis Corporation
    Inventor: Pallassana V. Narayanan
  • Patent number: 5409696
    Abstract: Polymeric surfaces of medical devices or components of medical devices are provided that have enhanced biocompatibility properties. The polymeric surface presents an anti-thrombogenic, fibrinolytic or thrombolytic interface with body fluids such as blood during implant ation or medical procedures. The biocompatibility enhancing agent is secured to the polymeric substrate by a spacer molecule which is covalently bound to the polymeric substrate which had been subjected to radiofrequency plasma treatment with a water vapor medium.
    Type: Grant
    Filed: November 22, 1993
    Date of Patent: April 25, 1995
    Assignee: Cordis Corporation
    Inventors: Pallassana V. Narayanan, Kimberly D. Stanley
  • Patent number: 5290548
    Abstract: A method for modifying the plastic surface of an article adapted for contacting living tissue by the gamma or electron beam irradiation induced chemical graft coating thereon of:(1) a neutral or ionic water-soluble, hydrophilic vinylic monomer or salt thereof;(2) a mixture of at least two of said monomers, or(3) a mixture of (1) or (2) with up to about 50%, by weight, based on the total monomer weight, of a member selected from the group consisting of N-vinylpyrrolidone, 2-hydroxyethyl-methacrylate, and mixtures thereof; so as to form a hydrophilic graft polymer coating on the surface.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: March 1, 1994
    Assignee: University of Florida
    Inventors: Eugene P. Goldberg, Ali Yahiaoui, Khalid Mentak
  • Patent number: 5244654
    Abstract: Internal polymeric surfaces of medical devices are provided that have enhanced biocompatibility properties. The internal polymeric surface presents an anti-thrombogenic, fibrinolytic or thrombolytic interface with body fluids such as blood flowing through medical device tubing during implantation for medical procedures. The biocompatibility enhancing agent is secured to the polymeric substrate by a spacer molecule which is covalently bound to the internal polymeric surface which had been subjected to radiofrequency plasma treatment with a low pressure plasma medium of water vapor, oxygen or combination of water vapor and oxygen gas.
    Type: Grant
    Filed: June 25, 1991
    Date of Patent: September 14, 1993
    Assignee: Cordis Corporation
    Inventor: Pallassana V. Narayanan
  • Patent number: 5126381
    Abstract: A process and apparatus are disclosed for producing polymerized beads containing actives such as perfumes and pesticides, by forming droplets from a solution of monomers and the actives. The solution is subjected to ultraviolet light to initiate polymerization. The droplets are caused to fall through a reaction vessel as polymerization continues so as to polymerize substantially spherical beads containing the actives. In one embodiment, the droplets are irradiated as they fall through the reaction vessel. In a second embodiment, the solution is irradiated prior to droplet formation and the fall. The beads are collected and can be cured if necessary. The process is preferably performed in an inert gas environment which most preferably is nitrogen. A nitrogen stream can serve as a carrier for the monomers and active ingredients. The nitrogen environment is maintained in the reaction vessel, and in the curing structure, if present.
    Type: Grant
    Filed: December 19, 1988
    Date of Patent: June 30, 1992
    Assignee: Dow Corning Corporation
    Inventor: Cristina Liscomb
  • Patent number: 5077083
    Abstract: Ultraviolet curable compositions useful for coating electrical devices are formed from an epoxy functional compound, a silanol functional compound, and a cationic photoinitiator. Ultraviolet radiation curable composition formed from an epoxy resin, a silanol functional compound, a carbonol functional polyether polysiloxane, and a cationic photoinitiator are useful as coatings.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: December 31, 1991
    Assignee: Dow Corning Corporation
    Inventors: Michael A. Lutz, Allen B. Puder, William E. Willy, Leon D. Crossman
  • Patent number: 5047446
    Abstract: Disclosed is a method of treating a free-radical-containing, optionally room-temperature-aged, irradiated, normally solid high-molecular-weight, semi-crystalline propylene polymer material at about from 40.degree. C. to 110.degree. C. for at least about 10 minutes before being exposed to the higher temperatures that deactivate the residual free radicals therein. Treatment of the polymer at the intermediate temperature causes recombination, and better utilization, of free radicals with the production of more long-chain branching. A two-stage fluid bed process, with a first stage at the intermediate temperature for radical recombination and a second radical-deactivation stage at a higher temperature, is preferred.
    Type: Grant
    Filed: July 22, 1988
    Date of Patent: September 10, 1991
    Assignee: Himont Incorporated
    Inventor: Anthony J. DeNicola, Jr.
  • Patent number: 5017458
    Abstract: The method for production of a graft copolymer according to the present invention includes the step of adding to a base polymer capable of forming first radicals when irradiated with radiation an additive capable of combining with said first radicals to form second radicals stable against oxygen, the step of irradiating said base polymer containing the additive with radiation, and the step of introducing a monomer under an atmosphere free from oxygen, thereby to graft copolymerize said irradiated base polymer and said monomer.
    Type: Grant
    Filed: May 22, 1989
    Date of Patent: May 21, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Yasunari Soda, Kozo Mochiji, Hiroaki Oizumi, Takeshi Kimura
  • Patent number: 4971895
    Abstract: A photopolymer layer is used as a radiation transparent phototool replacing a light blocking phototool in the photographic process of producing solder mask layers on printed wiring boards. Various simplification and energy reducing steps are introduced with off-contact photoprinting of patterns on liquid photopolymers having special characteristics that permit the polymerization of patterned outer skin areas partly through the thickness thereof with a controlled amount of radiation energy. This creates an in-situ surrogate phototool that permits further polymerization throughout the thickness of the layer with controlled quantities of unpatterned radiation energy. Photodiscrimination is provided by changes of photosensitivity in the layer transparent to radiation rather than by opaque imaging. Thus a first low energy photoflash through an off-contact phototool with uncollimated radiation creates on a liquid photopolymer surface two contrasting patterned areas of liquid polymer and polymerized skin.
    Type: Grant
    Filed: July 26, 1989
    Date of Patent: November 20, 1990
    Inventor: Donald F. Sullivan
  • Patent number: 4593050
    Abstract: Fluorinated polymer surfaces are provided by a process in which ultraviolet radiation is used to assist the surface fluorination reaction.
    Type: Grant
    Filed: July 25, 1983
    Date of Patent: June 3, 1986
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert E. Cohen, George C. Corbin, Raymond F. Baddour
  • Patent number: RE39000
    Abstract: A method of modifying the surface of a solid polymer substrate comprising the steps of a) generating radicals on the substrate surface by subjecting it to a gas plasma or by subjecting it to UV light, and b) treating the surface with a vapor of a monomer or a monomer mixture comprising cyano acrylate and/or isocyanate, where step b) starts before step a), simultaneously with step a), under step a), or follows immediately after step a), and a polymer substrate modified accordingly; a method of binding an organic binder material to a surface of a solid polymer substrate comprising the steps of modifying the surface of the substrate by said method, and bringing the organic material in contact with the surface of the substrate, and a polymer bonded to an organic material by the last mentioned method.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: March 7, 2006
    Assignee: NKT Research A/S
    Inventors: Kristian Glejbol, Bjorn Winther-Jensen