Elemental Metal Dnrm Patents (Class 524/439)
  • Patent number: 10497849
    Abstract: A thermoelectric composite includes a plurality of particles comprising a crosslinked polymer having a heat deflection temperature greater than or equal to 200° F. and a segregated network comprising a first filler material which is disposed between the particles to produce a thermoelectric response in response to application of a voltage difference or temperature difference across the thermoelectric composite. The first filler material includes a carbon material, a metal, a metal disposed on a carbon material, or a combination thereof. A process for preparing a thermoelectric article includes combining a first filler material and a plurality of particles comprising a polymer to form a composition and molding the composition to form a thermoelectric article, wherein the thermoelectric article is configured to produce a thermoelectric response in response to application of a voltage difference or temperature difference across the article.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: December 3, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sayantan Roy, David Peter Gerrard, Oleksandr V. Kuznetsov
  • Patent number: 10494467
    Abstract: A copolymer rubber includes, based on a total amount of 100% by weight of all monomer units, ?,?-ethylenically unsaturated nitrile units, conjugated diene units, and ?,?-ethylenically unsaturated monocarboxylic acid monoester units selected from the group consisting of methoxyethyl (meth)acrylates, and polyethylene glycol (meth)acrylates. The rubber has a glass transition temperature lower than ?20° C., an oil swelling of not more than 20 vol %, and provides a balance of good low-temperature stability and oil resistance.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: December 3, 2019
    Assignee: ARLANXEO DEUTSCHLAND GMBH
    Inventors: Werner Obrecht, Hiyam Salem, Susanna Lieber, Irene Moll, Andreas Kaiser
  • Patent number: 10400079
    Abstract: To provide a fluorinated resin composition which is capable of forming a resin film excellent in moist heat resistance and solar reflectance. The fluorinated resin composition comprises composite particles, a fluorinated polymer and a liquid medium, wherein the composite particles are a composite having a part or whole of the surface of aluminum particles coated with at least one member selected from the group consisting of an acrylic resin and silica; the total coating amount of the acrylic resin and silica is from 6 to 25 parts by mass per 100 parts by mass of the aluminum particles; and the water surface diffusion area is from 14,000 to 27,000 cm2/g.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: September 3, 2019
    Assignee: AGC Inc.
    Inventor: Hiroshi Aruga
  • Patent number: 10385181
    Abstract: A body having a lubricant reservoir is described, comprising: a porous polymeric body; and a lubricating liquid, said lubricating liquid occupying the pores to provide a lubricated porous surface having a lubricant reservoir and a lubricant overlayer over the polymer surface. Also described herein is a system for use in the formation of a low-adhesion and low-friction surface includes a flowable precursor composition comprising a prepolymer and a curing agent, said composition capable of application as a coating over a large surface area; a lubricating liquid that is capable of forming a coating with the hardened precursor composition, wherein the lubricating liquid and hardened polymer together form a coating of lubricating liquid stabilized on and in the hardened polymer; and instructions for applying the precursor composition onto a surface for the purpose of obtaining a low-adhesion and low-friction surface.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 20, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Michael Aizenberg, Philseok Kim, Alex Vena
  • Patent number: 10331160
    Abstract: An operating element for a domestic appliance includes a main body which is made of a material comprised of plastic and a filler admixed to the plastic. The filler has a thermal conductivity which is higher than a thermal conductivity of the plastic. The filler can be present in particle form, e.g. as spheres, grains, fibers or as powder.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: June 25, 2019
    Assignee: BSH Hausgeräte GmbH
    Inventors: Stéphane Clauss, Martin Oberhomburg
  • Patent number: 10155667
    Abstract: A system, process and related sintered article are provided. The process includes supporting a piece of inorganic material with a pressurized gas and sintering the piece of inorganic material while supported by the pressurized gas by heating the piece of inorganic material to a temperature at or above a sintering temperature of the inorganic material such that the inorganic material is at least partially sintered forming the sintered article. The inorganic material is not in contact with a solid support during sintering. The sintered article, such as a ceramic article, is thin, has high surface quality, and/or has large surface areas.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: December 18, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Michael Edward Badding, William Joseph Bouton, Douglas Edward Brackley, Lanrik Wayne Kester, Thomas Dale Ketcham, Eric Lee Miller, Cameron Wayne Tanner, James William Zimmermann
  • Patent number: 10131761
    Abstract: The invention provides a glittering resin composition which includes: a polycarbonate resin that contains structural units derived from a dihydroxy compound having the portion represented by the following general formula (1) as a part of the structure thereof; and glittering particles in an amount of 0.1 parts by weight or more and 10 parts by weight or less per 100 parts by weight of the polycarbonate resin, wherein the glittering particles are inorganic particles (excluding metal particles) coated with a metal or a metal oxide or are metal particles: provided that a case where the portion represented by general formula (1) is a part of —CH2—O—H is excluded.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 20, 2018
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Masashi Yokogi, Taku Kitade, Toshiaki Ebitani
  • Patent number: 9937555
    Abstract: The present invention provides a silver powder that has an appropriate viscosity range at the time of paste production, can be easily kneaded, and prevents flake occurrence. The silver powder has a dibutyl phthalate absorption amount, measured by a method of JIS-K6217-4, of 7.0 to 9.5 ml/100 g, and has an oil absorption profile at the time of measurement of the absorption amount, having two peaks, or one peak having a half width of not more than 1.5 ml/100 g.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: April 10, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Kawakami, Akihiro Murakami, Toshiaki Terao, Isao Kaneko
  • Patent number: 9884476
    Abstract: A method for manufacture of at least one component of a field device for determining or monitoring a process variable, wherein the field device is applied in automation technology and is manufactured from at least one material.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: February 6, 2018
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Joachim Albert, Detlev Wittmer, Marc Baret, Thomas Uehlin, Dietmar Spanke, Benjamin Mack
  • Patent number: 9831008
    Abstract: The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: November 28, 2017
    Assignee: The Regents of the University of California
    Inventors: Kevin C. See, Jeffrey J. Urban, Rachel A. Segalman, Nelson E. Coates, Shannon K. Yee
  • Patent number: 9822228
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: November 21, 2017
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Nobuyuki Arai, Norimitsu Natsume, Kenichi Yoshioka, Junko Kawasaki, Hiroshi Takezaki
  • Patent number: 9791797
    Abstract: A toner composition including a toner particle having a surface, wherein the toner particle comprises at least one toner resin; a metallic pigment bonded to the surface of the toner particle; and an insulative surface additive disposed over the metallic pigment.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: October 17, 2017
    Assignee: Xerox Corporation
    Inventors: Varun Sambhy, Juan A. Morales Tirado, Kirk L. Stamp
  • Patent number: 9702679
    Abstract: A frangible projectile includes a sintered mass of a plurality of copper or copper alloy plated iron or iron alloy core particles.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: July 11, 2017
    Assignee: OLIN CORPORATION
    Inventors: Greg A. Smith, Victor D. Levin
  • Patent number: 9660166
    Abstract: A thermoelectric conversion element (1) having, on a substrate (12), a first electrode (13), a thermoelectric conversion layer (14), and a second electrode 15, wherein a nano conductive material and a low band gap material are contained in the thermoelectric conversion layer (14); an article for thermoelectric power generation and a power supply for a sensor using the thermoelectric conversion element (1); and a thermoelectric conversion material containing the nano conductive material and the low band gap material.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 23, 2017
    Assignee: FUJIFILM Corporation
    Inventors: Ryo Nishio, Ryo Hamasaki, Kimiatsu Nomura, Yoichi Maruyama
  • Patent number: 9658711
    Abstract: A touch panel module includes a substrate, a sensor layer disposed on the substrate, a first glue layer disposed on the sensor layer and an anti-electromagnetic interference layer disposed on the first glue layer. The touch panel module with anti-electromagnetic interference can be formed independently, and may be combined with other electronic device to form a touch device, thereby reducing the thickness of the touch device and simplifying the process steps.
    Type: Grant
    Filed: December 6, 2015
    Date of Patent: May 23, 2017
    Assignee: TPK Touch Solutions (Xiamen) Inc.
    Inventors: Yuh-Wen Lee, Jen-Chang Liu, Jiangqiang Zhuang, Tsung-Ke Chiu
  • Patent number: 9595654
    Abstract: A thermoelectric composite includes a plurality of particles comprising a crosslinked polymer having a heat deflection temperature greater than or equal to 200° F. and a segregated network comprising a first filler material which is disposed between the particles to produce a thermoelectric response in response to application of a voltage difference or temperature difference across the thermoelectric composite. The first filler material includes a carbon material, a metal, a metal disposed on a carbon material, or a combination thereof. A process for preparing a thermoelectric article includes combining a first filler material and a plurality of particles comprising a polymer to form a composition and molding the composition to form a thermoelectric article, wherein the thermoelectric article is configured to produce a thermoelectric response in response to application of a voltage difference or temperature difference across the article.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: March 14, 2017
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Sayantan Roy, David Peter Gerrard, Oleksandr V. Kuznetsov
  • Patent number: 9520336
    Abstract: A method of improving the thermal performance of a hybrid assembly which comprises a first die, a second die, and indium bonds which bond and electrically interconnect the first die to the second die. A heat sink plate on which the hybrid assembly is to be mounted is provided. A plurality of indium bumps are deposited on the plate where the assembly is to be mounted. The bottom side of the hybrid assembly is then pressed onto the indium bumps to affix the assembly to the plate. The heat sink plate constrains the lateral coefficient of thermal expansion (CTE) of the second die such that the CTEs of the first and second dies match more closely than they would if the hybrid assembly was not mounted directly to a heat sink plate using indium bumps. The heat sink plate preferably comprises copper tungsten (CuW) or a diamond-metal composite.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: December 13, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Majid Zandian, Donald E. Cooper, Lisa L. Fischer, Victor Gil, Gerard Sullivan
  • Patent number: 9461228
    Abstract: The present invention provides a thermoelectric conversion material excellent in thermoelectric performance and flexibility and capable of being produced in a simplified manner and at a low cost, and a method for producing the material. The thermoelectric conversion material has, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles and a conductive polymer, and the method for producing a thermoelectric conversion material includes a step of applying the thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles and a conductive polymer onto the support and drying it to forma thin film thereon.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 4, 2016
    Assignees: LINTEC CORPORATION, KYUSHU INSTITUTE OF TECHNOLOGY
    Inventors: Kunihisa Kato, Tsuyoshi Mutou, Koji Miyazaki
  • Patent number: 9437346
    Abstract: A semiconductor device connected using an anisotropic conductive adhesive composition, the anisotropic conductive adhesive composition including a thermosetting polymerization initiator; and tetrahydrofurfuryl (meth)acrylate or furfuryl (meth)acrylate, wherein the tetrahydrofurfuryl (meth)acrylate or furfuryl (meth)acrylate is present in the composition in an amount of 1 wt % to 25 wt %, based on the total weight of the composition in terms of solid content.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: September 6, 2016
    Assignee: CHEIL INDUSTRIES, INC.
    Inventors: Kyoung Hun Shin, Do Hyun Park, Hyun Joo Seo, Young Ju Shin, Kyu Bong Kim, Woo Jun Lim
  • Patent number: 9431593
    Abstract: The present invention provides a thermoelectric conversion material capable of being produced in a simplified manner and at a low cost and excellent in thermoelectric conversion characteristics and flexibility, and provides a method for producing the material. The thermoelectric conversion material has, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an ionic liquid. The method for producing a thermoelectric conversion material having, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an ionic liquid comprises a step of applying a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an ionic liquid onto a support and drying it to form a thin film thereon, and a step of annealing the thin film.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 30, 2016
    Assignee: LINTEC CORPORATION
    Inventors: Kunihisa Kato, Tsuyoshi Mutou, Takeshi Kondo
  • Patent number: 9376561
    Abstract: Described herein are polymer compositions comprising at least one inorganic salt comprising a cation selected from the group consisting of alkali metals, alkaline earth metals and aluminum, and an anion selected from the group consisting of chloride, sulfate, nitrate, phosphate, acetate and formate, in a concentration of 100 to 5000 mg/kg, based on the composition, and wherein the salt is present in the composition exclusively in dissolved form or in the form of amorphous and/or crystalline inclusions having a size of not more than 60 ?m. Compositions of the present invention are distinguished by an improved surface after heat-moisture storage and are suitable in particular for the production of moldings with a high gloss finish that demand a class A surface, which have optionally been subjected, in whole or in part, to a further surface treatment step involving e.g. lacquering, in-mold decoration, or metallization by vacuum deposition or galvanization.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: June 28, 2016
    Assignee: BAYER MATERIALSCIENCE AG
    Inventors: Andreas Seidel, Eckhard Wenz, Hans-Juergen Klankers, Birgit Derfuss, Hans-Jurgen Thiem, Sven Hobeika, Ingmar Hermsdorfer
  • Patent number: 9296906
    Abstract: Disclosed is a metallic pigment composition which can provide, when used in a coating composition, an ink composition or the like, in particular, a water-based coating, a water-based ink or the like, a coating film having a high storage stability, a good adhesiveness, a good chemical resistance and a good color tone. Specifically disclosed is a metallic pigment composition which comprises at least one kind of compound selected from a heteropolyanion compound and a mixed-ligand heteropolyanion compound, an organic oligomer or polymer, and metal grains.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: March 29, 2016
    Assignee: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Kazuko Nakajima, Kaoru Ueyanagi
  • Patent number: 9272333
    Abstract: A method of making a porous sintered body includes a formation step S102 where a sintering compound which contains a binder and a sinterable powder material is into a predetermined shape; a degreasing steps S103, S104 and S105 where the binder is removed from a formed body obtained in the formation step; and a sintering step S108 where a degreased body after the degreasing step is sintered into a sintered body. The binder contains a component which drains at a temperature higher than a draining temperature of the pore formation material drains. The pore formation material is drained in the degreasing step, with part of the binder remaining un-drained. The present invention enables to manufacture porous sintered bodies which are highly porous, and highly accurate in shape and dimensions. The present invention also enables to manufacture porous sintered bodies which offer functionalities not available before.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: March 1, 2016
    Assignee: TAISEI KOGYO CO., LTD.
    Inventors: Shigeo Tanaka, Shinji Ishida, Kazuaki Nishiyabu
  • Patent number: 9249303
    Abstract: A thermoplastic elastomer compound is disclosed having a high latent heat of fusion, indicative of a large thermal capacity. Use of thermal capacity agents, particularly linear paraffin waxes used in replacement of conventional plasticizer oils, contributes the thermal capacity advantages. Selection of the particular thermal capacity agent can provide an ability to engineer the amount of thermal capacity and the transition temperature in which that thermal capacity can be utilized as absorption or release of heat. The compound experiences a solid-solid phase transition whenever the thermal capacity agent melts into liquid form in the compound.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: February 2, 2016
    Assignee: PolyOne Corporation
    Inventor: Liang Xu
  • Patent number: 9243138
    Abstract: Propylene random copolymer composition containing (A) 60-80 wt % of a copolymer of propylene and from 0.1 to 2 wt % of units derived from ethylene; and (B) 20-40 wt % of a copolymer of propylene and from 7 to 15 wt % of units derived from ethylene. The composition has a total ethylene content of from 3 to 4.5 wt % and a melt flow rate value according to ISO 1133 (230° C., 2.16 kg) of from 10 to 120 g/100 min. Cast films, sheets, or injection molded or injection stretch blow molded articles made from the above composition are also disclosed.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 26, 2016
    Assignee: INEOS MANUFACTURING BELGIUM NV
    Inventors: Gaetane Hallot, Jean-Marc Roland Ghislain Vion
  • Patent number: 9235076
    Abstract: A touch panel module includes a substrate, a sensor layer disposed on the substrate, a first glue layer disposed on the sensor layer and an anti-electromagnetic interference layer disposed on the first glue layer. The touch panel module with anti-electromagnetic interference can be formed independently, and may be combined with other electronic device to form a touch device, thereby reducing the thickness of the touch device and simplifying the process steps.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: January 12, 2016
    Assignee: TPK Touch Solutions (Xiamen) Inc.
    Inventors: Yuh-Wen Lee, Jen-Chang Liu, Jiangqiang Zhuang, Tsung-Ke Chiu
  • Patent number: 9162927
    Abstract: A process for producing a metallic or ceramic shaped body from a thermoplastic material comprising A) 40 to 65% inorganic sinterable powder A B) 35 to 60% binder B1) 50 to 95% polyoxymethylene homo- or copolymers; B2) 5 to 50% of a polymer dissolved or dispersed in B1) with a particle size of less than 1 ?m, and C) 0 to 5% by volume of a dispersing aid, by injection molding or extrusion to give a green body, removing the binder and sintering, which comprises removing the binder by a) treating the molding with a solvent which extracts the binder component B2) from the molding and in which the binder component B1) is insoluble, b) removing the solvent from the molding by drying, and c) treating the molding in an acid-containing atmosphere is described.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: October 20, 2015
    Assignee: BASF SE
    Inventors: Johan ter Maat, Martin Blömacher, Hans Wohlfromm
  • Patent number: 9091425
    Abstract: The invention provides a heat-conducting and heat-dissipating nano-material, a method for preparation thereof and a heat-dissipating system. The method comprises the following steps: i) mixing a complex formed by a high molecular material and a substance having heat conduction and heat dissipation properties with tert-butyl acetate and 4-Chlorobenzotrifluoride, wherein the complex is of nano scale in particle size; and ii) placing a mixture obtained from step i) into water and stirring the mixture in water for a period of time to afford the heat-conducting and heat-dissipating material. Application of the heat-conducting and heat-dissipating material in a heat-dissipating system of LED light may simplify the manufacturing process, save raw materials used and reduce weight and size of heat sink of the heat-dissipating system.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: July 28, 2015
    Assignee: Green Formula Limited
    Inventors: King Sun Juy, Man Wah Hui
  • Patent number: 9028943
    Abstract: A method is described for improving the processability and surface appearance of products containing plastic recovered from waste plastic material mixtures.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: May 12, 2015
    Assignee: MBA Polymers, Inc.
    Inventors: Ronald C. Rau, Brian L. Riise, Gary Christopher Stevens, Henryk Herman
  • Patent number: 9029473
    Abstract: Disclosed are polyvalent macromolecules, compositions comprising the macromolecules, and methods of use. The polyvalent macromolecules have a polymer backbone and pendent groups attached to the polymer backbone. Some or all of the pendent groups have optionally a linker, a surface-seeking group capable of binding strongly to a metal surface, and a spectroscopically detectable chromophore detectable.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 12, 2015
    Assignee: University of Strathclyde
    Inventors: Peter Cormack, Duncan Graham, Aaron Hernandez-Santana, Arun Prasath Ramaswamy, William Ewen Smith
  • Publication number: 20150102485
    Abstract: A non-conductive material layer, selected from a non-conductive film and a non-conductive polymer paste, and containing a dispersion of zinc (Zn) particles is disclosed, together with semiconductor packages including the non-conductive material layer. The non-conductive material layer contains zinc (Zn) particles having an average particle diameter of about 1 nm to about 200 nm in a non-conductive polymer base material of a film type, and a semiconductor package includes the non-conductive film. By using the non-conductive film and/or the non-conductive paste containing the zinc dispersion, e a semiconductor package having excellent electric connection properties and high reliability may be manufactured through simple processes at low manufacturing costs.
    Type: Application
    Filed: May 28, 2014
    Publication date: April 16, 2015
    Applicants: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, Samsung Electronics Co., Ltd.
    Inventors: Un-byoung Kang, Kyung-wook Paik, Tae-Je Cho, Young-kun Jee, Sun-kyoung Seo, Yong-won Choi, Ji-won Shin
  • Patent number: 9000068
    Abstract: The invention relates to metallic effect pigments with coating, comprising a platelet-shaped substrate, where the coating comprises at least one hybrid inorganic/organic layer, the hybrid layer having at least partly an inorganic network that has one or more inorganic oxide components, and having at least one organic component, the organic component being at least partly an organic oligomer and/or polymer which is covalently bonded at least partly to the inorganic network via one or more organic network formers. The invention further relates to a method of producing these metallic effect pigments, and to their use.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: April 7, 2015
    Assignee: Eckart GmbH
    Inventors: Stefan Trummer, Frank Henglein, Mariel Brauer
  • Patent number: 9000083
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: April 7, 2015
    Assignee: NanoGram Corporation
    Inventor: Nobuyuki Kambe
  • Publication number: 20150093570
    Abstract: An antistatic pressure sensitive adhesive composition, useful in electronic and optical display applications, comprising an antistatic agent and a first block copolymer comprising at least two hard A block polymeric units each independently having a Tg of at least 50° C., and at least one soft B block (meth)acrylic polymeric unit having a Tg no greater than 20° C. The composition can comprise a second block copolymer. Articles comprising an antistatic pressure sensitive adhesive composition adjacent a first surface of a substrate.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Inventors: Kiu-Yuen Tse, Vivek Bharti, Albert I. Everaerts, Eugene G. Joseph, Mark D. Purgett, Jianhui Xia, Andrew Satrijo, Wanshik Yoon
  • Patent number: 8980976
    Abstract: The invention relates to platelet-shaped pearlescent pigments that are coated with at least one mixed inorganic/organic layer for improving their application properties, and of these, particularly their mechanical properties, and to methods for the production thereof and to the use thereof. The said mixed inorganic/organic layer comprises at least one at least partially crosslinked inorganic metal-oxide component and an organic component. The organic component is at least one organic oligomer and/or polymer, which is covalently bonded, at least in part, to the inorganic network via network formers, wherein the coating comprises at least one mixed inorganic/organic layer, which mixed layer comprises, at least in part, an inorganic network having one or more inorganic oxide component(s) and at least one organic component, the organic component being, at least in part, an organic oligomer and/or polymer covalently bonded, at least in part, to the inorganic network via one or more organic network formers.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: March 17, 2015
    Assignee: Eckart GmbH
    Inventors: Frank Henglein, Stefan Trummer, Ulrich Schmidt, Günter Kaupp, Peter Krüger
  • Patent number: 8975325
    Abstract: Non-fibrous-reinforced thermoplastic molding compositions comprising a metal powder as a heat stabilizer are provided. The metal powder has a weight average particle size (dm) of at most 1 mm and the metal in the metal powder is selected from the group consisting of elementary metals from Group VB, VIB, VIIB and VIIIB of the Periodic Table, and mixtures thereof. A thermoplastic polyamide is also provided with an Mw of at most 50,000 g/mol, or a blend of at least two thermoplastic polymers with Tmelt or Tg differing by at least 20° C., or a second thermostabilizer. The invention also relates to the use of these compositions in high temperature applications.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: March 10, 2015
    Assignee: DSM IP Assets B.V.
    Inventors: Pieter Gijsman, Wilhelmus J. M. Sour, Rudy Rulkens, Robert H. C. Janssen
  • Patent number: 8946337
    Abstract: Provided are a thermoplastic resin composition including a thermoplastic resin and an amorphous sheet-shaped metal particle having a ratio of thickness relative to long diameter of about 1:20 to about 1:1, and a molded product using the same.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: February 3, 2015
    Assignee: Cheil Industries Inc.
    Inventors: Hyung-Tak Lee, Doo-Han Ha, Jin-Kyung Cho, Young-Chul Kwon
  • Patent number: 8940827
    Abstract: The present invention relates to a lead-free, non-toxic and arc resistant composite material having a thermosetting polymer, at least one heavy particulate filler, at least one light particulate filler and, optionally, at least one arc resistant filler. The composite material may be utilized in manufacturing articles used in radiation shielding and other applications where arc resistant and dielectric strength are desired.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: January 27, 2015
    Assignee: Globe Composite Solutions, Ltd.
    Inventor: Xiujun Wang
  • Patent number: 8927637
    Abstract: A polymer, a composition, and uses for either are disclosed. The polymer is derived from at least two monomers: acrylic-x and an alkylamine, and has attached to the polymer backbone a functional group capable of scavenging at least one metal. The polymer has a polymer backbone with a fluorescing quantity of conjugated double bonds, thereby providing a method for controlling metal scavenging via fluorescence. These polymers have many uses in various media, including wastewater systems.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 6, 2015
    Assignee: Nalco Company
    Inventors: Paul J. Zinn, Winston Su, Rebecca L. Stiles, Darlington Mlambo
  • Publication number: 20150003996
    Abstract: Coatings includes about 60 weight percent to about 90 weight percent of one or more fluorinated polymers, about 1 weight percent to about 7 weight percent of one or more erosion resistant fillers about 3 weight percent to about 9 weight percent of one or more anticorrosive pigments, about 1 weight percent to about 4 weight percent of one or more thixotropic agents, and about 1 weight percent to about 4 weight percent of one or more porosity reducing filler materials.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 1, 2015
    Inventors: Kalaga Murali Krishna, Padmaja Parakala, Surinder Singh Pabla, Krishnamurthy Anand
  • Publication number: 20140371353
    Abstract: Materials and Methods for implementing engineered aggregates in metamaterials are provided. The engineered aggregates may be tuned to oscillate resonantly under the influence of an external force improving the dynamic performance of the metamaterial by impeding dynamic excitation. The engineered aggregate generally comprise a multilayer resonant structure having at least a relatively heavy inner core surrounded by at least a compliant coating layer. The geometry and stiffness of the relative layers can be tuned to engineer a desired resonant frequency response within the aggregate for a chosen frequency range. The engineered aggregates are disposed in a matrix material to form a metamaterial. The engineered aggregates may be disposed within a mortar matrix to form a concrete metamaterial suitable for use, for example, in structural applications, including bunkers, shelters, etc.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 18, 2014
    Inventors: Stephanie Mitchell, Anna Pandolfi, Michael Ortiz
  • Patent number: 8906999
    Abstract: A thermosetting unsaturated polyester resin (UPR) composition comprising an unsaturated polyester polymer having at least two strained cycloolefinic double bonds and optional unstrained cycloolefinic double bonds, which can be cross-linked through a ring-opening metathesis polymerization (ROMP) or combination of ROMP and cationic or free radical polymerization is provided. No styrene is used in the resin composition. The thermosetting unsaturated polyester resin composition also comprises a catalyst system for the ring-opening metathesis polymerization, and in embodiments, can further comprise one or more optional unsubstituted or substituted cycloolefin monomer containing unsaturation, an optional co-catalyst selected from a cationic initiator or free radical initiator, and optional additives. The cured resin properties can be controlled through adjusting the structure and properties of the unsaturated polyester resin.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: December 9, 2014
    Assignee: CCP Composites US LLC
    Inventors: Chih-Pin Hsu, Ming Yang Zhao, Steven L. Voeks
  • Publication number: 20140350147
    Abstract: A method of producing metal flakes (72?) is provided. The method includes: applying a layer of ionic liquid (70) to a substrate (24); forming a layer of metal (70) on the substrate (24) over the ionic liquid (70); and removing the layer of metal (70) from the substrate (24).
    Type: Application
    Filed: August 24, 2012
    Publication date: November 27, 2014
    Applicant: ECKART AMERICA CORPORATION
    Inventor: John Moffatt
  • Patent number: 8894197
    Abstract: An ink set includes a metallic ink composition containing a metal pigment and at least one curable ink composition selected from the group consisting of a chromatic ink composition, a black ink composition, and a white ink composition.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: November 25, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Takashi Oyanagi, Keitaro Nakano
  • Patent number: 8888611
    Abstract: An object of the present invention is to provide a golf ball which has an increased dry spin rate and wet spin rate on approach shots without sacrificing the processability into the cover. The present invention provides a golf ball cover material having shear loss moduli G1? (Pa), G2? (Pa), and G3? (Pa) that satisfy following equations when measured using a dynamic viscoelasticity measuring apparatus at following conditions. log G1??7.09??(1) log G2??7.17??(2) log G3??7.14??(3) G1? measuring conditions: shear mode, oscillation frequency: 10 Hz, temperature: 0° C., strain: 0.05%; G2? measuring conditions: shear mode, oscillation frequency: 10 Hz, temperature: ?30° C., strain: 0.05%; and G3? measuring conditions: shear mode, oscillation frequency: 10 Hz, temperature: 0° C., strain: 5%.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: November 18, 2014
    Assignee: SRI Sports Limited
    Inventors: Kazuyoshi Shiga, Toshiyuki Tarao, Keiji Ohama
  • Publication number: 20140287208
    Abstract: In particular, the present invention is directed processes and product related to blackened coatings, blackened electroless nickel coatings, blackened electroless nickel coatings including particulate matter, coatings with cover coats, coatings with voids, and the methods of application and products with such coatings.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Inventors: Michael Feldstein, Jijeesh Thottathil
  • Patent number: 8841367
    Abstract: Disclosed herein is a flame retardant composition comprising a polycarbonate; 5 to 10 weight percent of a polysiloxane-polycarbonate copolymer; where the polysiloxane-polycarbonate copolymer comprises an amount of greater than 10 weigh percent of the polysiloxane and where the molecular weight of the polysiloxane-polycarbonate copolymer is greater than or equal to 25,000 grams per mole; 5 to 20 weight percent of a branched polycarbonate; 5 to 60 weight percent of a reinforcing filler; and 1 to 15 weight percent of a flame retarding compound.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: September 23, 2014
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Yun Zheng, Yunan Cheng, Shijie Song
  • Patent number: 8785538
    Abstract: Disclosed herein are an electromagnetic wave shielding thermoplastic resin composition and a plastic article including the same. The electromagnetic wave shielding thermoplastic resin composition comprises about 100 parts by weight of a thermoplastic resin comprising a polycarbonate resin, a polyester resin, or a combination thereof, about 1 to about 30 parts by weight of stainless steel fiber, and about 0.01 to about 10 parts by weight of carbon nanotubes.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 22, 2014
    Assignee: Cheil Industries Inc.
    Inventors: Sang Wan Kim, Young Sil Lee
  • Patent number: 8779048
    Abstract: The invention first relates to a feedstock for PIM, including a metal or ceramic powder; a polymeric binder; metallic or ceramic fibers or nanofibers, the fibers or nanofibers being metallic when the powder is metallic, and the fibers or nanofibers being ceramic when the powder is ceramic. It also relates to the method for producing such a feedstock, as well as the method for producing parts by means of powder injection molding (PIM) using said feedstock.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: July 15, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Luc Federzoni, Pascal Revirand
  • Patent number: 8772397
    Abstract: Non-fibrous-reinforced thermoplastic moulding compositions comprising a metal powder as a heat stabilizer are provided. The metal powder has a weight average particle size (dm) of at most 1 mm and the metal in the metal powder is selected from the group consisting of elementary metals from Group VB, VIB, VIIB and VIIIB of the Periodic Table, and mixtures thereof. A thermoplastic polyamide is also provided with an Mw of at most 50,000 g/mol, or a blend of at least two thermoplastic polymers with Tmelt or Tg differing by at least 20° C., or a second thermostabilizer. The invention also relates to the use of these compositions in high temperature applications.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: July 8, 2014
    Assignee: DSM IP Assets B.V.
    Inventors: Pieter Gijsman, Wilhelmus J. M. Sour, Rudy Rulkens, Robert H. C. Janssen