With Nonmetal, Nonhydrocarbon Compound Patents (Class 525/270)
  • Patent number: 10647788
    Abstract: A catalyst composition for the polymerization of propylene is provided. The catalyst composition includes one or more Ziegler-Natta procatalyst compositions having one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors, one or more aluminum containing cocatalysts and a selectivity control agent (SCA). The SCA is a mixture of an activity limiting agent and a silane composition. The catalyst composition has a molar ratio of aluminum to total SCA from 0.5:1 to 4:1. This aluminum/SCA ratio improves polymerization productivity and the polymer production rate. The catalyst composition is self-extinguishing.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: May 12, 2020
    Assignee: W. R. Grace & Co-.Conn.
    Inventors: Linfeng Chen, Richard E. Campbell, Jr., Jan W. Van Egmond
  • Patent number: 9068030
    Abstract: The present invention provides a process for preparing high melt strength propylene polymer by direct polymerization, comprising that a propylene polymer with wide molecular weight distribution and containing “very high molecular weight fraction” can be prepared by controlling the species and ratios of the external electron donors in the Ziegler-Natta catalyst system at different reaction stages according to the requirement for different molecular weight fractions in the different propylene polymerization stage of the series operation, and said polymer has excellent mechanical properties, especially with very high melt strength. The present invention also provides a propylene homopolymer with high melt strength, comprising the following features: (1) the MFR is 0.2-10 g/10 min at 230° C. with a load of 2.16 kg; (2) the molecular weight distribution Mw/Mn is 6-20; (3) the content of the fraction with a molecular weight higher than 5,000,000 is higher than or equal to 0.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: June 30, 2015
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Wenbo Song, Meifang Guo, Shijun Zhang, Wenjun Wei, Honghong Huang, Luqiang Yu, Tao Liu, Huijie Hu, Huan Xu, Peiqian Yu, Xiaomeng Zhang
  • Patent number: 8969483
    Abstract: A photoresist material comprising a polymer with at least two acrylate derivatives incorporated therein, and a photo-acid generator for generating an acid by exposure, wherein at least one of the two acrylate derivatives incorporated therein comprises a norbornyl moiety having a lactone structure, and at least one of the two acrylate derivatives comprises an ester-substituted tetracyclododecyl moiety.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: March 3, 2015
    Assignee: NEC Corporation
    Inventors: Katsumi Maeda, Shigeyuki Iwasa, Kaichiro Nakano, Etsuo Hasegawa
  • Patent number: 8802783
    Abstract: A photoresist material comprising a polymer with at least two acrylate derivatives incorporated therein, and a photo-acid generator for generating an acid by exposure, wherein at least one of the two acrylate derivatives incorporated therein comprises a norbornyl moiety having a lactone structure, and at least one of the two acrylate derivatives comprises an ester-substituted tetracyclododecyl moiety.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 12, 2014
    Assignee: NEC Corporation
    Inventors: Katsumi Maeda, Shigeyuki Iwasa, Kaichiro Nakano, Etsuo Hasegawa
  • Patent number: 8568845
    Abstract: The present invention relates to a heterophasic polymer composition which comprises (i) a matrix comprising a propylene homopolymer and/or a propylene copolymer having an amount of comonomer units of less than 1.0 wt %, and (ii) an elastomeric polypropylene which is dispersed within the matrix and comprises comonomer units derived from ethylene and/or a C4 to C12 alpha-olefin; and wherein the heterophasic polymer composition has an amorphous fraction AM in an amount of 2.0 to 7.5 wt %, and the amorphous fraction AM has an amount of ethylene- and/or C4 to C12 alpha-olefin-derived comonomer units of 20 to 45 wt %.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: October 29, 2013
    Assignee: Borealis AG
    Inventors: Bo Malm, Franz Ruemer, Andreas Wolf, Tua Sundholm
  • Patent number: 8329822
    Abstract: A polymer composition comprising A) a first polymer comprising (a) hydrophobized nanoparticle; (b) C1 to C18, straight, branched, or cyclic alkyl(meth)acrylate; (c) N-methylol(meth)acrylamide or a monomer of formula (I) R—(OCH2CH2)a—O—C(O)—C(R1)?CH2??(I) ?wherein R is hydrogen, C1-C4 alkyl, or —C(O)—C(R1)?CH2, and R1 is H or —CH3; said first polymer in contact with B) a second polymer comprising (d) a fluorinated monomer of formula (II) Rf1-L-X—C(O)—C(R)?CH2??(II) ?wherein Rf1 is a monovalent, partially or fully fluorinated, linear or branched, alkyl radical having 2 to about 100 carbon atoms; optionally interrupted by 1 to about 50 oxygen atoms; wherein the ratio of carbon atoms to oxygen atoms is at least 2:1 and no oxygen atoms are bonded to each other; L is a bond or a linear or branched divalent linking group having 1 to about 20 carbon atoms, said linking group optionally interrupted by 1 to about 4 hetero-radicals selected from the group consisting of —O—, —NR6—, —S—, —SO—, —SO2—, and —N(R6)
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 11, 2012
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Gerald Oronde Brown, Victoria A. Helinski
  • Patent number: 8236899
    Abstract: Zwitterionic block copolymers having oppositely charged or chargeable terminal groups, and methods of making and using the same, are disclosed. The zwitterionic block copolymers can undergo microphase separation.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: August 7, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Eugene P. Marsh
  • Patent number: 8207272
    Abstract: Heterophasic polypropylene composition comprising:—a polypropylene matrix (M) and—an elastomeric copolymer (E) being dispersed in the matrix (M), wherein the elastomeric copolymer (E) comprises units derived from—propylene and—ethylene and/or C4 to C20 ?-olefin, and wherein further,—the intrinsic viscosity of the xylene cold soluble fraction (XCS) of the heterophasic polypropylene composition is above 2.1 dl/g measured according to ISO 1628-1 (at 135° C. in decaline) and/or—Mz/Mw of the xylene cold soluble fraction (XCS) of the heterophasic polypropylene composition is more than 2.6, preferably 2.7, wherein the Mz is the z-average molecular weight measured according to ISO 16014-4:2003 and Mw is the weight average molecular weight measured according to ISO 16014-4:2003.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 26, 2012
    Assignee: Borealis AG
    Inventors: Klaus Bernreitner, Christelle Grein
  • Patent number: 8063154
    Abstract: Provided herein are methods for preparing a polyolefin containing one or more exo-olefinic end groups on the polyolefin chain, comprising quenching an ionized polyolefin with an alkoxysilane or an ether. In some embodiments, the methods are represented by the following scheme: In some embodiments, the alkoxysilane or ether compound has the formula: wherein Y is carbon or silicon; R1 is hydrocarbyl; and R2-R4 are each, independently, hydrogen or hydrocarbyl.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: November 22, 2011
    Assignee: The University of Southern Mississippi
    Inventors: Robson F. Storey, Lisa K. Kemp
  • Patent number: 8022147
    Abstract: Zwitterionic block copolymers having oppositely charged or chargeable terminal groups, and methods of making and using the same, are disclosed. The zwitterionic block copolymers can undergo microphase separation.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: September 20, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Eugene P. Marsh
  • Patent number: 7910660
    Abstract: Zwitterionic block copolymers having oppositely charged or chargeable terminal groups, and methods of making and using the same, are disclosed. The zwitterionic block copolymers can undergo microphase separation. In some embodiments a zwitterionic block copolymer includes a first terminal block having a positively charged or chargeable group at a terminal end, and a second terminal block having a negatively charged or chargeable group at another terminal end. The zwitterionic block copolymer is configured to undergo microphase separation to assemble into alternating lamellar domains; with one of the alternating domains being composed of the first terminal block, and with another of the alternating domains being composed of the second terminal block.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 22, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Dan B. Millward, Eugene P. Marsh
  • Patent number: 7875682
    Abstract: Disclosed is a propylene block copolymer having excellent flexibility and impact resistance and showing a good polymer powder form. Also disclosed is a process for producing the copolymer. More specifically, the copolymer is a novel propylene block copolymer which satisfies a specific requirement and is produced by a process comprising continuously performing a multi-step polymerization composed of a former step in which a propylene homopolymer component or a specific propylene copolymer component is produced in the presence of a metallocene catalyst carried on a support and a latter step in which propylene and a specific copolymer component are produced by gas phase polymerization.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: January 25, 2011
    Assignee: Japan Polypropylene Corporation
    Inventors: Kiyoshi Yukawa, Takehiro Sagae
  • Patent number: 7732533
    Abstract: Zwitterionic block copolymers having oppositely charged or chargeable terminal groups, and methods of making and using the same, are disclosed. The zwitterionic block copolymers can undergo microphase separation.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: June 8, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Dan B. Millward, Eugene P. Marsh
  • Patent number: 7501476
    Abstract: Disclosed is a method for preparing polyolefins containing vinylidine end groups from quasiliving carbocationically terminated polyolefin polymers by contacting the quasiliving carbocationically terminated polymer with a suitable azole quenching agent and substituted derivatives thereof.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: March 10, 2009
    Assignees: Chevron Oronite Company, LLC, The University of Southern Mississippi
    Inventors: Casey D. Stokes, Robson F. Storey
  • Patent number: 7482406
    Abstract: Olefin polymer composition comprising (by weight, unless otherwise specified): A) 60-95% of a propylene homopolymer or copoloymer having a Polydispersity Index (P.I.) value of from 4.6 to 10 and a content of isotactic pentads (mmmm), measured by 13C NMR on the fraction insoluble in xylene at 25° C., higher than 98 molar, B) 5-40% of a copolymer of ethylene containing from 40% to 70% of propylene or C4-C10 ?-olefins) or of combinations thereof, and optionally minor proportions of a diene; said composition having a Temperature Rising Elution Fractionation (TREF) profile, obtained by fractionation in xylene and collection of fractions at temperatures of 40° C., 80° C. and 90° C., in which the ethylene content Y of the fraction collected at 90° C. satisfies the following relation (1): Y??0.8+0.035X+0.0091X2 wherein X is the ethylene content of the fraction collected at 40° C. and both X and Y are expressed in percent by weight, and a value of intrinsic viscosity [?] of the fraction soluble in xylene at 25° C.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: January 27, 2009
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Jean News, Paola Massari, Hans-Jürgen Zimmermann
  • Patent number: 7247685
    Abstract: The present invention relates to a method for preparing polymers by gas-phase deposition polymerization, initiated by a zero valent metal and an initiator.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: July 24, 2007
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Haruo Nishida, Yoshito Andou, Takeshi Endo, Mikio Yasutake
  • Patent number: 7226979
    Abstract: Novel copolymers, including block copolymers, which comprise: (a) a plurality of constitutional units that correspond to one or more olefin monomer species and (b) a plurality of constitutional units that correspond to one or more protected or unprotected hydroxystyrene monomer species.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: June 5, 2007
    Assignee: University of Massachusetts Lowell
    Inventors: Rudolf Faust, Laszlo Sipos
  • Patent number: 7001966
    Abstract: The present invention relates to a process for preparing an isobutene polymer using a cyclopentene derivative as initiator and to the isobutene polymer obtainable by means of the process and to particular functionalization products thereof.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: February 21, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Gabriele Lang, Arno Lange, Hans Peter Rath, Helmut Mach
  • Patent number: 6710128
    Abstract: A process is provided to produce an aqueous composition. The process comprises shearing a mixture to produce a mini-emulsion and polymerizing said mini-emulsion in the presence of an initiator to produce the aqueous composition; wherein said mixture comprises at least one tackifier, at least one ethylenically unsaturated monomer, at least one surfactant, and water. The aqueous composition can be utilized to produced various articles including, but not limited to, adhesives, coatings, and laminates.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: March 23, 2004
    Assignee: Eastman Chemical Company
    Inventors: Bradley James Helmer, Glenn Lewis Shoaf
  • Patent number: 6630559
    Abstract: Disclosed are a propylene polymer having a high crystallinity of a boiled heptane-insoluble component contained therein, a high stereoregularity and an extremely long mesochain (continuous propylene units wherein directions of {acute over (&agr;)}-methyl carbons are the same as each other), and a process for preparing said polymer. Further disclosed is a propylene polymer composition comprising the above propylene polymer and at least one stabilizer selected from a phenol type stabilizer, an organophosphite type stabilizer, a thioether type stabilizer, a hindered amine type stabilizer a metallic salt of higher aliphatic acid. The propylene block polymer of the invention is well-balanced between rigidity, heat resistance and moisture resistance, and can be favorably used for sheet, filament, injection molded product, blow molded product, etc.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: October 7, 2003
    Assignee: Mitsui Chismicans, Inc.
    Inventors: Tetsunori Shinozaki, Kazumitsu Kawakita, Mamoru Kioka
  • Publication number: 20030144426
    Abstract: A process for making MD (machine direction) oriented polyethylene film is disclosed. The process comprises blending a high-molecular weight, medium-density polyethylene (HMW MDPE) and a linear low-density polyethylene (LLDPE), converting the blend into a thick film, and orienting the thick film into a thinner film in the machine direction. The resulting film has high modulus, high gloss, low haze, and relatively high MD tear and dart impact.
    Type: Application
    Filed: January 28, 2002
    Publication date: July 31, 2003
    Inventor: Kelly L. Williams
  • Patent number: 6579959
    Abstract: The present invention has for its object to produce an isobutylene polymer having excellent performance characteristics by suppressing side reactions at the polymer growth termini during polymerization. The process of the present invention is to carry out a cationic polymerization of a monomer component containing isobutylene in the presence of a polymerization initiator, a catalyst, an ether compound, and an electron donor. Moreover, the process is to carry out a cationic polymerization of a monomer component containing isobutylene in the presence of a polymerization initiator, a catalyst, an ether compound, and an electron donor, and add a compound having the carbon-carbon unsaturated bond for introducing the carbon-carbon unsaturated bond into the polymer terminus.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: June 17, 2003
    Assignee: Kaneka Corporation
    Inventors: Chiho Yoshimi, Keizo Hayashi, Shigeru Hagimori, Naoki Furukawa
  • Patent number: 6562914
    Abstract: A process for homo or copolymerizing propylene, wherein propylene is polymerized in the presence of a catalyst at an elevated temperature in a reaction medium in which a major part of the reaction medium is propylene and the polymerization is carried in at least one CSTR or loop reactor, where the polymerization is carried out at a temperature and a pressure which are above the corresponding critical temperature and the pressure of the reaction medium and were the residence time is at least 15 minutes. The process can also have a subcritical loop polymerization before the supercritical stage polymerization or gas phase polymerization after the supercritical stage polymerization.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: May 13, 2003
    Assignee: Borealis A/S
    Inventors: Henrik Andtsjö, Ismo Pentti, Ali Harlin
  • Patent number: 6545099
    Abstract: Disclosed are a propylene polymer having a high crystallinity of a boiled heptane-insoluble component contained therein, a high stereoregularity and an extremely long mesochain (continuous propylene units wherein directions of &agr;-methyl carbons are the same as each other), and a process for preparing said polymer. Also disclosed are a propylene block copolymer containing a crystalline polypropylene portion having a high crystallinity of a boiled heptane-insoluble component contained therein, a high stereoregularity and an extremely long mesochain, and a process for preparing said copolymer. Further disclosed is a propylene polymer composition comprising the above propylene polymer or propylene block copolymer and at least one stabilizer selected from a phenol type stabilizer, an organophosphite type stabilizer, a thioether type stabilizer, a hindered amine type stabilizer and a metallic salt of higher aliphatic acid.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: April 8, 2003
    Assignee: Mitsui Chemicals Inc.
    Inventors: Tetsunori Shinozaki, Kazumitsu Kawakita, Mamoru Kioka
  • Publication number: 20020042472
    Abstract: A class of relatively high molecular weight, high density ethylene polymers (HMW-HDPE) is disclosed capable of being formed into thin films of high strength, such polymers having a density of at least about 0.935 g/cc, a flow index (I21) no higher than about 15 g/10 min., a melt flow ratio (MFR) of at least about 65, and a dynamic elasticity at 0.1 rad./sec. of no higher than about 0.7 at a corresponding complex viscosity at 0.1 rad./sec. no higher than about 14E5, i.e., about 14×105 poises.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 11, 2002
    Inventors: S. Christine Ong, Sandra D. Schregenberger, Pradeep P. Shirodkar
  • Publication number: 20020006993
    Abstract: Disclosed are a propylene polymer having a high crystallinity of a boiled heptane-insoluble component contained therein, a high stereoregularity and an extremely long mesochain (continuous propylene units wherein directions of &agr;-methyl carbons are the same as each other), and a process for preparing said polymer. Also disclosed are a propylene block copolymer containing a crystalline polypropylene portion having a high crystallinity of a boiled heptane-insoluble component contained therein, a high stereoregularity and an extremely long mesochain, and a process for preparing said copolymer. Further disclosed is a propylene polymer composition comprising the above propylene polymer or propylene block copolymer and at least one stabilizer selected from a phenol type stabilizer, an organophosphite type stabilizer, a thioether type stabilizer, a hindered amine type stabilizer and a metallic salt of higher aliphatic acid.
    Type: Application
    Filed: July 6, 2001
    Publication date: January 17, 2002
    Inventors: Tetsunori Shinozaki, Kazumitsu Kawakita, Mamoru Kioka
  • Patent number: 6329477
    Abstract: This invention relates to a method of making polymer compositions, e.g. EPDM compositions, in a multistage reactor with monomers chosen from ethylene, C3-C8 alpha olefins, and a non conjugated diene. In particular, the invention relates to a process for improving diene conversion during the manufacture of the aforementioned polymer compositions by use of a multistage reactor and a metallocene catalyst system.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: December 11, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bruce A. Harrington, Charles C. Cozewith, Sudhin Datta, Bernard J. Folie, John F. Walzer, Jr., Donna J. Crowther
  • Patent number: 6316546
    Abstract: A class of relatively high molecular weight, high density ethylene polymers (HMW-HDPE) is disclosed capable of being formed into thin films of high strength, such polymers having a density of at least about 0.925 g/cc, a flow index (I21) no highier than about 15 g/10 min., a melt flow ratio (MFR) of at least about 65, and a dynamic elasticity at 0.1 rad./sec. of no higher than about 0.7 at a corresponding complex viscosity at 0.1 rad./sec. no highier than about 14E5, i.e., about 14×105 poises. The ethylene polymer is a bimodal blend of relatively high molecular weight (HMW) and low molecular weight (LMW) ethylene polymers.
    Type: Grant
    Filed: June 28, 1993
    Date of Patent: November 13, 2001
    Assignee: ExxonMobil Oil Corporation
    Inventors: S. Christine Ong, Sandra D. Schregenberger, Pradeep P. Shirodkar
  • Patent number: 6300434
    Abstract: Propylene-ethylene copolymers obtainable by three-step polymerization from the gas phase in an agitated fixed bed by means of a Ziegler-Natta catalyst system which, in addition to a titanium-containing solid component, also contains, as cocatalyst, an aluminum compound, where, in a first polymerization step, propylene is polymerized at from 60 to 90° C. and at from 20 to 40 bar and at a mean residence time of the reaction mixture of from 0.5 to 5 hours, then, in a second polymerization step, a mixture of propylene and ethylene is polymerized onto the polymer obtained from the first polymerization step at from 40 to 110° C. and from 5 to 30 bar, this pressure being at least 7 bar below the pressure in the first polymerization step, and at a mean residence time of the reaction mixture of from 0.2 to 4 hours, and then, in a third polymerization step, ethylene or a mixture of ethylene and propylene is polymerized onto the polymer obtained from the second polymerization step at from 40 to 110° C.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: October 9, 2001
    Assignee: Basell Polyolefin GmbH
    Inventors: Harald Schwager, Juergen Kerth
  • Patent number: 6274678
    Abstract: Disclosed are a propylene block copolymer containing a crystalline polypropylene portion having a high crystallinity of a boiled heptane-insoluble component contained therein, a high stereoregularity and an extremely long mesochain, and a process for preparing said copolymer. Further disclosed is a propylene polymer composition comprising the above propylene block copolymer and at least one stabilizer selected from a phenol type stabilizer, an organophosphite type stabilizer, a thioether type stabilizer, a hindered amine type stabilizer and a metallic salt of higher aliphatic acid. The propylene block polymer of the invention is well-balanced between rigidity, heat resistance and moisture resistance, and can be favorably used for sheet, filament, injection molded product, blow molded product, etc.
    Type: Grant
    Filed: December 7, 1994
    Date of Patent: August 14, 2001
    Assignee: Mitsui Chemicals INC
    Inventors: Tetsunori Shinozaki, Kazumitsu Kawakita, Mamoru Kioka
  • Patent number: 6225414
    Abstract: A polypropylene block copolymer obtained by producing an ethylene-propylene copolymer moiety as a component A having an ethylene content of 1.5 to 6.0% by weight in an amount of 40 to 85% by weight based on the total weight of components A and B in the absence of an inert solvent, substantially, in a first step, with a Ziegler-Natta catalyst, and then producing an ethylene-propylene copolymer moiety as a component B having an ethylene content of 7 to 17% by weight in an amount of 15 to 60% by weight based on an amount of the whole polymer in a gas phase in a second step, wherein an intrinsic viscosity ([&eegr;]B) of the component B is from 2.0 to 5.0 dl/g and the ratio of the intrinsic viscosity ([&eegr;]B) of the component B to an intrinsic viscosity ([&eegr;]A) of the component A is within the range of 0.5 to 1.8.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: May 1, 2001
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Takanori Kume, Kazuki Wakamatsu, Eisuke Shiratani
  • Patent number: 6214939
    Abstract: The present invention provides olefin polymerization catalysts and processes for preparing a polypropylene and a propylene block copolymer using the olefin polymerization catalysts. The olefin polymerization catalyst (1) of the invention is formed from: (I-1) a contact product obtained by contacting: (A) a solid titanium catalyst component, (B) an organometallic compound catalyst component, and (C) a specific organosilicon compound; (II-1) (D) a specific polyether compound; and optionally, (III) an organometallic compound catalyst component. The olefin polymerization catalyst (2) of the invention is formed from: (I-2) a contact product obtained by contacting: (A) a solid titanium catalyst component, (B) an organometallic compound catalyst component, and (D) a specific polyether compound; (II-2) (C) a specific organosilicon compound; and optionally, (III) an organometallic compound catalyst component.
    Type: Grant
    Filed: June 3, 1998
    Date of Patent: April 10, 2001
    Assignee: Mitsui Chemicals
    Inventors: Tetsunori Shinozaki, Mamoru Kioka
  • Patent number: 6194520
    Abstract: A class of relatively high molecular weight, high density ethylene polymer blends is disclosed capable of being blow molded with excellent processability into articles, e.g., bottles, of superior mechanical and other properties, such blends having a density of at least about 0.930 g/cc, a flow index (I21) of at least about 2 g/10 min., a melt flow ratio (MFR) of at least about 60, and a polydispersity index of at least about 8, the polymers of said blend consisting essentially of at least about 0.3 weight fraction of a relatively high molecular weight (HMW) component having a density of at least about 0.900 g/cc, a flow index or high load melt index (I21) of at least about 0.2 g/10 min., and a flow ratio (FR) at least about 10, and a relatively low molecular weight (LMW) component having a density of at least about 0.930 g/cc and a melt index (I2) no greater than about 1000 g/10 min.
    Type: Grant
    Filed: June 28, 1993
    Date of Patent: February 27, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Subrahmanyam Cheruvu, Thomas E. Nowlin, S. Christine Ong, Giyarpuram N. Prasad, Paul P. Tong
  • Patent number: 6136743
    Abstract: The invention provides catalysts which have a high polymerization activity, enable the obtaining of olefin polymers of wide molecular weight distribution, and which comprise (a)(a-1) a metallocene compound or (a-2) a titanium catalyst component containing magnesium, titanium, and halogen, (b) a compound of a transition metal from Groups 8 to 10 of the periodic table and is of the general formula shown below, and a cocatalyst component. ##STR1## The invention also provides olefin polymer compositions excellent in rigidity and impact resistance which can be produced using a catalyst comprising the transition metal compound (b) and which comprises a non-crystalline olefin polymer having a specific intrinsic viscosity, glass transition temperature and density, and another known olefin polymer.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: October 24, 2000
    Assignee: Mitsui Chemicals, INC.
    Inventors: Kenji Sugimura, Kiyotaka Yorozu, Yasuhiko Suzuki, Tetsuo Hayashi, Shin-ya Matsunaga
  • Patent number: 6111039
    Abstract: The present invention provides a catalyst system that exhibits unexpected control of desired properties in polyolefin products. The catalyst system includes a titanium-supported catalyst in combination with a mixture of tetraethoxysilane (TEOS) and dicyclopentyldimethoxy-silane (DCPMS). This catalyst system has been found to be effective in making polypropylene and polypropylene copolymers having relatively high melt flow rates and moderately broad molecular weight distribution.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: August 29, 2000
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Nemesio Delgado Miro, George Byron Georgellis, Homer Swei
  • Patent number: 6084041
    Abstract: A process for homo or copolymerizing propylene, wherein propylene is polymerized in the presence of a catalyst at an elevated temperature in a reaction medium in which a major part of the reaction medium is propylene and the polymerization is carried in at least one CSTR or loop reactor, where the polymerization is carried out at a temperature and a pressure which are above the corresponding critical temperature and the pressure of the reaction medium and where the residence time is at least 15 minutes. The process can also comprise a supercritical loop polymerization before the supercritical stage polymerization or a gas phase polymerization after the supercritical stage polymerization.
    Type: Grant
    Filed: May 17, 1996
    Date of Patent: July 4, 2000
    Assignee: Borealis A/S
    Inventors: Henrik Andtsjo, Ismo Pentti, Ali Harlin
  • Patent number: 6005034
    Abstract: A propylene-ethylene copolymer composition is obtained which has good moldability and an excellent balance of rigidity, toughness, and impact-strength. The composition has a melt flow rate of 10 to 300 g/10 minutes and is obtained by producing 60 to 95% by weight, based on the weight of whole polymer, of a propylene polymer having a melt flow rate (ASTM D1238) in the range of 100 to 1,000 g/10 minutes and having a ratio (Cf) of integrated values of the propylene polymer dissolved in o-dichlorobenzene at a temperature of lower than 112.degree. C., and a temperature of 112.degree. C. or higher, respectively, of 0.5 or less, by carrying out polymerization of propylene in the presence of a highly stereoregular catalyst and hydrogen in a polymerization step (I), and then producing 5 to 40% by weight, based on the weight of whole polymer, of an ethylene-propylene copolymer by feeding ethylene and propylene to the propylene polymer to react so that the content of ethylene becomes 30 to 80% by weight.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: December 21, 1999
    Assignees: Chisso Corpoation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Teruaki Hayashida, Shinei Gima, Kouichi Hatada, Osamu Kojima, Ken Shimizu, Hirokazu Nakajima, Takao Nomura, Yoshihiro Kanome, Takeyoshi Nishio
  • Patent number: 5922813
    Abstract: Catalyst systems comprising, on the one hand, a catalytic solid based on complexed titanium trichloride and, on the other hand, a nonhalogenated organoaluminium activator. When employed in gas phase olefin polymerisation processes, these catalyst systems make it possible to manufacture a wide range of homopolymers and copolymers (random and block) with an isotacticity index which can be adjusted to very low values and with excellent pourability, even in the case of copolymers of high comonomer content. In the absence of transfer agents they also make it possible to synthesize polymers of very high molecular masses, with an increased activity. These polymerization processes yield particularly advantageous results in the case of propylene.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 13, 1999
    Assignee: Solvay Polyolefins Europe-Belgium
    Inventors: Jean-Louis Costa, Sabine Pamart, Gaetane Hallot
  • Patent number: 5919866
    Abstract: The toner particles of this invention comprise pigment and a resin. The resin comprises a novel polymer formed from ethylenically unsaturated monomers, macromeric moieties that render the resin dispersible in hydrocarbon solvents, and a surface-release promoting moiety. When used for toner particles the polymer further comprises charge directing chelating moieties. The toner particles also include a charge director, preferably a metal cation. The toner particles, when dispersed in a carrier liquid, are useful as liquid toners for electrographic or electrophotographic processes.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: July 6, 1999
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Prabhakara S. Rao, Valdis Mikelsons
  • Patent number: 5916975
    Abstract: A process for enantioselectively epoxidising a prochiral olefin, which process comprises reacting a prochiral olefin with a source of oxygen in the presence of a salen catalyst and a source of an electron donating ligand, characterized in that the donor ligand is isoquinoline N-oxide or a compound having donor ligand activity and having substantially the same solubility characteristics as isoquinoline N-oxide.
    Type: Grant
    Filed: August 5, 1996
    Date of Patent: June 29, 1999
    Assignee: SmithKline Beecham p.l.c.
    Inventors: David Bell, Frances Finney, Robin Patrick Attrill, David Miller, Gillian Turner
  • Patent number: 5866663
    Abstract: Disclosed herein are processes for polymerizing ethylene, acyclic olefins, and/or selected cyclic olefins, and optionally selected olefinic esters or carboxylic acids, and other monomers. The polymerizations are catalyzed by selected transition metal compounds, and sometimes other co-catalysts. Since some of the polymerizations exhibit some characteristics of living polymerizations, block copolymers can be readily made. Many of the polymers produced are often novel, particularly in regard to their microstructure, which gives some of them unusual properties. Numerous novel catalysts are disclosed, as well as some novel processes for making them. The polymers made are useful as elastomers, molding resins, in adhesives, etc. Also described herein is the synthesis of linear .alpha.-olefins by the oligomerization of ethylene using as a catalyst system a combination a nickel compound having a selected .alpha.-diimine ligand and a selected Lewis or Bronsted acid, or by contacting selected .alpha.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: February 2, 1999
    Assignees: E. I. du Pont de Nemours and Company, University of North Carolina
    Inventors: Maurice S. Brookhart, Lynda Kaye Johnson, Christopher Moore Killian, Samuel David Arthur, Jerald Feldman, Elizabeth Forrester McCord, Stephan James McLain, Kristina Ann Kreutzer, Alison Margaret Anne Bennett, Edward Bryan Coughlin, Steven Dale Ittel, Anju Parthasarathy, Lin Wang, Zhen-Yu Yang
  • Patent number: 5852145
    Abstract: Certain olefins such as ethylene, .alpha.-olefins and cyclopentene can be polymerized by using catalyst system containing a nickel or palladium .alpha.-diimine complex, a metal containing hydrocarbylation compound, and a selected Lewis acid, or a catalyst system containing certain nickel ?II! or palladium ?II! compounds, an .alpha.-diimine, a metal containing hydrocarbylation compound, and optionally a selected Lewis acid. The process advantageously produces polyolefins useful for molding resins, films, elastomers and other uses.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: December 22, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Stephan James McLain, Jerald Feldman
  • Patent number: 5844056
    Abstract: The synthesis and characterization of novel linear polymers and multi-arm star polymers comprising polyisobutylene arms connected to a well-defined calixarene core are described. The polymers are directly telechelic. They synthesis has been achieved using the "core first" method wherein multifunctional calix?n!arene (where n=4 to 16) derivatives or their monofunctional analogues are used as initiators which, in conjunction with certain Freidel-Crafts acids as co-initiators, induce the living polymerization of isobutylene or a similar carbocationic polymerizable monomer. Novel initiators suitable for inducing the polymerization are also described.
    Type: Grant
    Filed: August 7, 1996
    Date of Patent: December 1, 1998
    Assignee: The University of Akron
    Inventors: Joseph P. Kennedy, Istvan J. Majoros, Sunny Jacob
  • Patent number: 5844046
    Abstract: A process for preparing an olefin polymer comprising the steps of: preparing an olefin polymer ?I! by polymerizing or copolymerizing an olefin in the presence of an olefin poymerization catalyst comprising a specific solid titanium catalyst component ?A!, a specific organoaluminum compound catalyst component ?B! and a specific electron donor catalyst component ?C!; preparing an olefin polymer ?II! by polymerizing or copolymerizing an olefin in an polymerizer different from that for the polymerization of the above step in the presence of an olefin poymerization catalyst comprising a specific solid titanium catalyst component ?A!, a specific organoaluminum compound catalyst component ?B! and a specific electron donor catalyst component ?D!; and then allowing the resulting olefin polymer ?I! and the resulting olefin polymer ?II! to coexist in one polymerizer to further polymerize or copolymerize an olefin.
    Type: Grant
    Filed: March 5, 1997
    Date of Patent: December 1, 1998
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Masaaki Ohgizawa, Mamoru Kioka
  • Patent number: 5840808
    Abstract: The present invention provides processes for preparing olefin polymers, by which olefin polymers composed of a propylene block copolymer component and an ethylene/.alpha.-olefin copolymer component are directly prepared by polymerization and olefin polymers excellent in impact resistance as well as in mechanical strength such as rigidity, moldability and heat resistance can be prepared. In the processes of the invention, a step (i) for preparing a crystalline polypropylene component and a step (ii) for preparing a low-crystalline or non-crystalline ethylene/.alpha.-olefin copolymer component are carried out in an arbitrary order using an olefin polymerization catalyst to form a propylene block copolymer component; then another catalyst component is added to the polymerization system; and a step (iii) for preparing a low-crystalline or non-crystalline ethylene/.alpha.-olefin copolymer component is carried out.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: November 24, 1998
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Kenji Sugimura, Mamoru Kioka
  • Patent number: 5811501
    Abstract: The present invention provides a novel halogen-free solvent system which can produce a good isobutylene polymer and can be easily reused. A novel process for the production of an isobutylene polymer is provided which comprises using a hydrocarbon solvent having a boiling point of not lower than 105.degree. C. and a melting point of not higher than -90.degree. C. Heretofore, a solvent system containing a halogenated hydrocarbon such as methylene chloride has been used for the production of an isobutylene polymer. However, such a solvent system has a great adverse effect on the environment. Therefore, a non-halogenated solvent is desirable. The present invention is characterized by the use of a hydrocarbon solvent as a reaction solvent. The resulting polymer has good properties. Further, compounds which are produced as by-products during the reaction can be easily removed, enabling the recycling of the solvent used. Thus, the production cost can be reduced.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: September 22, 1998
    Assignee: Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventors: Takeshi Chiba, Hiroshi Fujisawa, Yoshimichi Yamanaka, Yoshikuni Deguchi, Kazuya Yonezawa
  • Patent number: 5786427
    Abstract: There are provided a highly rigid propylenic resin which has a melt index MI in the range of 0.1 to 1.2 g/10 minutes as determined at 230.degree. C. under 2.160 kg load and also satisfies a relationship between the MI and the elongational viscosity ?Y(Pa.s)!, said relationship being represented by the expression2.0.times.10.sup.5 .times.MI.sup.-0.68 .ltoreq.Y.ltoreq.8.0.times.10.sup.5.times. MI.sup.-0.68 ;and a blow molded article made from the above resin. The propylenic resin has favorable resistance to draw down and can produce a large-sized and lightweight blow molded article excellent in rigidity, dimensional stability and heat resistance.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: July 28, 1998
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Masato Kijima, Masayuki Shinohara, Minoru Sugawara, Koki Hirano
  • Patent number: 5780570
    Abstract: Process with two or more steps for the preparation in suspension of mixtures of ethylene-propylene (EPM) elastomer homopolymers or ethylene-propylene-diene (EPDM) elastomer terpolymers in the presence of a catalytic system essentially consisting of a compound of Vanadium and a cocatalyst essentially consisting of an Aluminum alkyl and in the presence of an activator, the above process being characterized in that:a) in the first step a first polymerization of the monomers is carried out in the presence of the Vanadium based catalyst;b) in the second or subsequent steps further polymerizable monomers and activator are added to the suspension of the polymer obtained in step (a).
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: July 14, 1998
    Assignee: Enichem S.p.A.
    Inventor: Tiziano Tanaglia
  • Patent number: 5777037
    Abstract: The present invention provides a novel solvent which is capable of providing an excellent isobutylene polymer, little affects the environment, has a lower solubility in water than those of halogenated hydrocarbons having 1 or 2 carbon atoms and can be decomposed relatively easily. Namely, the present invention relates to: a process for producing an isobutylene polymer, which comprises performing a cationic polymerization reaction in a solvent containing primary and/or secondary monohalogenated hydrocarbon(s) having 3 to 8 carbon atoms, and an isobutylene polymer thus obtained; and a process for producing an isobutylene polymer having a vinyl group introduced into the terminal thereof, which comprises reacting the isobutylene polymer produced above with 1,9-decadiene or allyltrimethylsilane, and an isobutylene polymer thus obtained.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: July 7, 1998
    Assignee: Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yoshimichi Yamanaka, Hiroshi Fujisawa, Takeshi Chiba, Yoshikuni Deguchi, Kazuya Yonezawa
  • Patent number: 5753763
    Abstract: The toner particles of this invention comprise pigment and a resin. The resin comprises a novel polymer formed from ethylenically unsaturated monomers, macromeric moieties that render the resin dispersible in hydrocarbon solvents, and a surface-release promoting moiety. When used for toner particles the polymer further comprises charge directing chelating moieties. The toner particles also include a charge director, preferably a metal cation. The toner particles, when dispersed in a carrier liquid, are useful as liquid toners for electrographic or electrophotographic processes.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: May 19, 1998
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Prabhakara S. Rao, Valdis Mikelsons