Mixed With -o-c(=o)- Or Hal-c(=o)- Reactant Or Polymer Derived Therefrom Patents (Class 525/413)
  • Patent number: 12139604
    Abstract: The present disclosure provides a polyalkylene carbonate-based resin having excellent thermal stability, thereby having an improved heat shrinkage phenomenon, and a molded article produced using the same. The polyalkylene carbonate-based resin includes 100 parts by weight of a base resin including a polyalkylene carbonate resin and a polylactide resin, and 5 parts by weight to 10 parts by weight of a heat shrinkage prevention agent, wherein the base resin includes the polyalkylene carbonate resin and the polylactide resin in a weight ratio of 6:4 to 4:6, and the heat shrinkage prevention agent is one or more selected from the group consisting of a polyalkyl(meth)acrylate-based resin, a polyalphaolefin-vinyl acetate-based resin, and a polyoxyalkylene-based resin.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: November 12, 2024
    Assignee: LG Chem, Ltd.
    Inventors: Won Hee Woo, Seung Young Park, Sung Kyoung Kim, Sang Cheol Shin, Kyung Min Min, Won Seok Kim
  • Patent number: 12024627
    Abstract: A process for manufacturing particles including a stereocomplex of poly-D-lactide (PDLA) and poly-L-lactide (PLLA), including the steps of: extruding a melt including 30-70 wt. % of PDLA and 70-30 wt. % of PLLA through an sc-PLA formation zone in a twin-screw extruder, wherein the formation zone is operated at a barrel temperature above the melting temperature of the PDLA and PLLA and below 220° C.; wherein the sc-PLA formation zone is followed by a finishing zone which is operated at a barrel temperature below 160° C.; wherein the finishing zone is followed by the end of the extruder which has a die-head resistance of 0; and recovering solid stereocomplex particles from the end of the extruder. The stereocomplex particles find use in various applications, e.g., in fracking fluids, as filler, as nucleating agent, in particular in the molding of semi-crystalline PLA, or as a starting material for the manufacture of sc-PLA products.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: July 2, 2024
    Assignee: PURAC BIOCHEM B.V.
    Inventors: Gerrit Gobius Du Sart, Siebe Cornelis De Vos, Taco Pascal Van Doorn
  • Patent number: 11744696
    Abstract: A mastopexy implant for maintaining the breast in an elevated and aesthetically pleasing position includes a lower pole support comprising end portions which may be affixed to the chest wall or to a previously installed upper suspension strut. The implant is loaded in an insertion device. The insertion device is inserted through a small incision and into a subcutaneous pocket created in an inferior half of the breast. The lower pole support may have various constructs and in one embodiment includes a unitary conformable mesh having a plurality of arm or band members which are attached across the breast parenchyma and to the chest wall.
    Type: Grant
    Filed: August 1, 2020
    Date of Patent: September 5, 2023
    Assignee: Tepha, Inc.
    Inventors: Arikha Moses, Emily Stires, Anthony Natale
  • Patent number: 11566103
    Abstract: Polylactide resins are branched by reaction with a mixture of a polyene compound and a cyclic peroxide. This branching method produces a product that has a very high polydispersity, a high branching number (Bn) and excellent melt strength, without forming large amounts of gelled material. The branched polylactide resins are useful in many melt processing operations, in particular sheet and film extrusion, extrusion foaming, extrusion coating and fiber processing. They are characterized by easy processing and allow for broadened processing windows.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: January 31, 2023
    Assignee: Nature Works LLC
    Inventors: Jed Richard Randall, Aman Kulshrestha, Nemat Hossieny
  • Patent number: 10466169
    Abstract: A method for quantification of the amount of meso-lactide in a composition containing at least one other lactide stereoisomer with respect to the total amount of lactide stereoisomers in the composition. The quantification is based on measurements performed on absorptions in the Infra-Red region of the electromagnetic spectrum. Small amounts of meso-lactide in a lactide composition could be measured online in an easy and reproducible manner. Preferably near-IR has been used in this quantification method. The method can be applied with great advance in a lactide production device.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: November 5, 2019
    Assignee: PURAC BIOCHEM BV
    Inventors: Gerrit Gobius Du Sart, Johannes Adrianus Kamp
  • Patent number: 10174160
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as aliphatic hydroxy-carboxylic acid and hydroxyl-carboxylic acid derivatives. These aliphatic hydroxy-carboxylic acids are, in turn, polymerized. The polymerization is carried out using a thin film evaporator or a thin film polymerization/devolatilization device. Conversion of lactic acid to poly lactic acid is an especially useful product to this process.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: January 8, 2019
    Assignee: Xyleco, Inc.
    Inventors: Marshall Medoff, Thomas Craig Masterman, Robert Paradis
  • Patent number: 10113062
    Abstract: Polymeric compositions and processes of forming the same are discussed herein. The processes generally include contacting a polylactic acid with a reactive modifier selected from epoxy-functionalized polybutadiene, ionic monomer, and combinations thereof.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 30, 2018
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Fengkui Li, John Ashbaugh, David Rauscher, Robert Dotter
  • Patent number: 9682178
    Abstract: Implantable medical devices comprising radiopaque star-block copolymers.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: June 20, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, David C. Gale, Vincent J. Gueriguian
  • Patent number: 9567428
    Abstract: The present invention relates to a polylactic acid resin composition useful as a packaging material which has not only improved flexibility but also superior external appearance and superior properties such as mechanical property, transparency, heat resistance, anti-blocking property, workability of a film, and the like, and a packaging film including the same. The polylactic acid resin composition comprises a polylactic acid resin including a hard segment comprising a polylactic acid repeating unit and a soft segment comprising a polyurethane polyol repeating unit in which polyether polyol repeating units are linearly linked via a urethane bond; and a specific content of antioxidant.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: February 14, 2017
    Inventors: Young-Man Yoo, Tae-Woong Lee, Kye-Yune Lee, Jae-Il Chung
  • Patent number: 9133304
    Abstract: The present invention discloses new catalyst systems based on complexes of divalent metals supported by chelating phenoxy ligands for immortal ring-opening polymerization of cyclic esters and cyclic carbonates.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: September 15, 2015
    Assignees: TOTAL RESEARCH & TECHNOLOGY FELUY, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Jean-Francois Carpentier, Yann Sarazin, Valentin Poirier, Marion Helou
  • Patent number: 9068282
    Abstract: A system and method for making a biomaterial device includes a support structure providing a shape for a biomaterial device. At least one applicator has a supply of biomaterial solution and is positioned along the support structure. The at least one applicator forms a biomaterial fiber by applying shear force to the biomaterial solution and delivering the biomaterial fiber to the support structure. A controller causes relative movement between the support structure and the at least one applicator, and the biomaterial fiber is arranged on the support structure according to the relative movement to form the biomaterial device. The biomaterial may be silk fibroin which may be wound onto a reciprocating and rotating mandrel. Control over the properties of the biomaterial device is achieved through appropriate selection of material processing, winding strategy, and post-winding processing.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: June 30, 2015
    Assignees: Trustees of Tufts College, The Trustees of Columbia University in the City of New York
    Inventors: Christopher Cannizzaro, Michael L. Lovett, Gordana Vunjak-Novakovic, David L. Kaplan
  • Publication number: 20150134048
    Abstract: The present invention is directed to polymeric materials comprising biodegradable, dioxanone-based copolymers and implantable devices (e.g., drug-delivery stents) formed of such materials. The polymeric materials can also contain at least one additional biocompatible moiety, at least one non-fouling moiety, at least one biobeneficial material, at least one bioactive agent, or a combination thereof. The polymeric materials are designed to improve the mechanical, physical and biological properties of implantable devices formed thereof.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventor: Ni Ding
  • Patent number: 8952126
    Abstract: A method of making a pure block copolymer includes forming a crude block copolymer; heating a solution of the crude block copolymer and alcohol; and cooling the solution to promote precipitation of a purified block copolymer, wherein an amount of impurities remaining in the purified block copolymer is from about 0 to about 5 wt % based on a total weight of the purified block copolymer; a ratio of a polydispersity index of the crude block copolymer to a polydispersity index of the purified block copolymer is from about 1.02 to about 1.25; a ratio of a molecular weight of the crude block copolymer to a molecular weight of the purified block copolymer is from about 0.75 to about 1.0; and a ratio of a number average molecular weight of the crude block copolymer to a number average molecular weight of the purified block copolymer is from about 0.65 to about 1.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: February 10, 2015
    Assignees: Xerox Corporation, National Research Council of Canada
    Inventors: Andrew J. Myles, Karen A. Moffat, Jordan H. Wosnick, Valerie M. Farrugia
  • Patent number: 8889823
    Abstract: Methods of making a biodegradable polymeric stent made from poly(L-lactide) and a low concentration of L-lactide monomer is disclosed. The concentration of L-lactide is adjusted to provide a degradation behavior that is suitable for different treatment applications including coronary, peripheral, and nasal. Methods include making a poly(L-lactide) material for a stent with uniformly distributed L-lactide monomer through control of polymerization conditions during PLLA synthesis, control of post-processing conditions, or both.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: November 18, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, Xiao Ma
  • Patent number: 8821850
    Abstract: A drug conjugate is provided herein. The conjugate comprises a protein based recognition-molecule (PBRM) and a polymeric carrier substituted with one or more -LD-D, the protein based recognition-molecule being connected to the polymeric carrier by LP. Each occurrence of D is independently a therapeutic agent having a molecular weight ?5 kDa. LD and LP are linkers connecting the therapeutic agent and PBRM to the polymeric carrier respectively. Also disclosed are polymeric scaffolds useful for conjugating with a PBRM to form a polymer-drug-PBRM conjugate described herein, compositions comprising the conjugates, methods of their preparation, and methods of treating various disorders with the conjugates or their compositions.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: September 2, 2014
    Assignee: Mersana Therapeutics, Inc.
    Inventors: Aleksandr Yurkovetskiy, Mao Yin, Timothy B. Lowinger, Joshua D. Thomas, Charles E. Hammond, Cheri A. Stevenson, Natalya D. Bodyak, Patrick R. Conlon, Dmitry R. Gumerov
  • Patent number: 8815226
    Abstract: A drug conjugate is provided herein. The conjugate comprises a protein based recognition-molecule (PBRM) and a polymeric carrier substituted with one or more -LD-D, the protein based recognition-molecule being connected to the polymeric carrier by LP. Each occurrence of D is independently a therapeutic agent having a molecular weight ?5 kDa. LD and LP are linkers connecting the therapeutic agent and PBRM to the polymeric carrier respectively. Also disclosed are polymeric scaffolds useful for conjugating with a PBRM to form a polymer-drug-PBRM conjugate described herein, compositions comprising the conjugates, methods of their preparation, and methods of treating various disorders with the conjugates or their compositions.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: August 26, 2014
    Assignee: Mersana Therapeutics, Inc.
    Inventors: Aleksandr V. Yurkovetskiy, Mao Yin, Timothy B. Lowinger, Joshua D. Thomas, Charles E. Hammond, Cheri A. Stevenson, Natalya D. Bodyak, Patrick R. Conlon, Dmitry R. Gumerov
  • Patent number: 8808679
    Abstract: Auristatin compounds and conjugates thereof are provided herein. The conjugate comprises a protein based recognition-molecule (PBRM) and a polymeric carrier substituted with one or more -LD-D, the protein based recognition-molecule being connected to the polymeric carrier by LP. Each occurrence of D is independently an Auristatin compound. LD and LP are linkers connecting the therapeutic agent and PBRM to the polymeric carrier respectively. Also disclosed are polymeric scaffolds useful for conjugating with a PBRM to form a polymer-drug-PBRM conjugate described herein, compositions comprising the conjugates, methods of their preparation, and methods of treating various disorders with the conjugates or their compositions.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: August 19, 2014
    Assignee: Mersana Therapeutics, Inc.
    Inventors: Aleksandr V. Yurkovetskiy, Mao Yin, Timothy B. Lowinger, Joshua D. Thomas, Charles E. Hammond, Cheri A. Stevenson, Natalya D. Bodyak, Patrick R. Conlon, Dmitry R. Gumerov
  • Patent number: 8722814
    Abstract: Polyglycerol carboxylic acid esters are made by reaction of a, typically C2 to C30, particularly C6 to C22, carboxylic acid with glycerol carbonate, particularly with base catalyst, and desirably at temperatures from 170° C. to 250° C. Other carbonates e.g. cyclic diol carbonates such as ethylene or propylene carbonates, may be used in combination with the glycerol carbonate to make novel mixed polymeric esters. The molar ratio of carboxylic acid group to glycerol carbonate is typically from 2 to 30, but can be up to 100. The base catalyst is desirably alkali metal hydroxide, carbonate or alkoxide. The reaction is desirably carried out in an inert atmosphere, and reducing agent such as phosphorous acid, hypophosphorous acid or borohydride and/or activated carbon, may be included to improve product color.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: May 13, 2014
    Assignee: Croda International PLC
    Inventors: Hanamanthsa Shankarsa Bevinakatti, Alan Geoffrey Waite, Jackie Frank
  • Patent number: 8691912
    Abstract: A process for producing an aliphatic polyester, comprising: subjecting at least two serial stages of bulk-phase ring-opening polymerization and a solid-phase polymerization step, wherein a cyclic ester held in a dry air atmosphere is supplied to a first reactor to perform a first stage polymerization, thereby obtaining a partially polymerized molten product, and the resultant partially polymerized molten product is supplied to a second reactor held under a dry inert gas atmosphere to perform a second stage polymerization. As a result, the production efficiency can be improved, while maintaining excellent properties of the aliphatic polyester product.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: April 8, 2014
    Assignee: Kureha Corporation
    Inventors: Yoshinori Suzuki, Fumio Maeda, Takahiro Watanabe, Hiroyuki Sato
  • Patent number: 8685383
    Abstract: A drug conjugate is provided herein. The conjugate comprises a protein based recognition-molecule (PBRM) and a polymeric carrier substituted with one or more -LD-D, the protein based recognition-molecule being connected to the polymeric carrier by LP. Each occurrence of D is independently a therapeutic agent having a molecular weight ?5 kDa. LD and LP are linkers connecting the therapeutic agent and PBRM to the polymeric carrier respectively. Also disclosed are polymeric scaffolds useful for conjugating with a PBRM to form a polymer-drug-PBRM conjugate described herein, compositions comprising the conjugates, methods of their preparation, and methods of treating various disorders with the conjugates or their compositions.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: April 1, 2014
    Assignee: Mersana Therapeautics, Inc.
    Inventors: Aleksandr Yurkovetskiy, Mao Yin, Timothy B. Lowinger, Joshua D. Thomas, Charles E. Hammond, Cheri A. Stevenson, Natalya D. Bodyak, Patrick R. Conlon, Dmitry R. Gumerov
  • Patent number: 8674032
    Abstract: The invention relates to a biodegradable multi-block copolymer, comprising at least two hydrolysable segments derived from pre-polymers A and B, which segments are linked by a multi-functional chain-extender and are chosen from the pre-polymers A and B, and triblock copolymers ABA and BAB, wherein the multi-block copolymer is amorphous at physiological (body) conditions. The invention further relates to a process for preparing said copolymer and to its use as a medical implant, a coating for a medical device or a drug delivery vehicle.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: March 18, 2014
    Assignee: Innocore Technologies B.V.
    Inventors: Catharina Everdina Hissink, Rob Steendam, Ronald Meyboom, Theodorus Adrianus Cornelius Flipsen
  • Patent number: 8609771
    Abstract: Process for preparing a composition of a vinylidene chloride polymer and at least one ?-caprolactone polymer according to which: a) during the preparation of the vinylidene chloride polymer by polymerization of the vinylidene chloride and at least one comonomer that is copolymerizable with it, at least one ?-caprolactone polymer, preformed in a medium other than that of the vinylidene chloride polymerization, is added; and b) optionally, in addition, at least one ?-caprolactone polymer is added to the vinylidene chloride polymer isolated at the end of step a). Process for preparing articles, in particular films, which includes the use of a composition prepared by the aforementioned process. Single-layer or multilayer film comprising said composition and packaging or bag formed from this film.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: December 17, 2013
    Assignee: Solvay (Societe Anonyme)
    Inventors: Christophe Fringant, Pascal Dewael, Yves Vanderveken
  • Patent number: 8536291
    Abstract: Block copolymers include hydrophobic and hydrophilic blocks having repeating units derived from ring opening polymerization of one or more cyclic carbonate monomers. The carbonate monomers are independently selected from compounds of formula (II): wherein each Q? and Qa group independently represents a hydrogen, an alkyl group, a halide, a carboxy group, an ester group, an amide group, an aryl group, an alkoxy group, or a foregoing Q? or Qa group substituted with a carboxy group or an ester group, at least one Q? and Qa group includes an ester group; each Y independently represents O, S, NH, or NQ?; n is an integer from 0 to 6, wherein when n is 0, carbons labeled 4 and 6 are linked together by a single bond; each Q? group independently represents an alkyl group, an aryl group, or a foregoing Q? group substituted with a carboxy group, or an ester group.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: September 17, 2013
    Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Standford Junior University
    Inventors: Kazuki Fukushima, James L. Hedrick, Sung-Ho Kim, Robert M. Waymouth
  • Publication number: 20130231435
    Abstract: There are provided a resin composition including a polylactic acid which (i) includes a poly-L-lactic acid (component B-1) and a poly-D-lactic acid (component B-4), (ii) has a weight ratio of the component B-1 to the component B-4 (component B-1/component B-4) of 10/90 to 90/10, and (iii) shows a proportion of melt peaks at 195° C. or higher to all melt peaks in a temperature rising process in measurement by a differential scanning calorimeter (DSC) of at least 20%; a molded article of the resin composition; and methods for producing the resin composition and the molded article.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicants: TEIJIN LIMITED, TEIJIN CHEMICALS LTD.
    Inventors: Katsuhiko HIRONAKA, Fumitaka KONDO, Keiichiro INO, Yuichi MATSUNO, Kiyotsuna TOYOHARA, Hirotaka SUZUKI, Ryuji NONOKAWA, Takaaki MATSUDA
  • Patent number: 8518302
    Abstract: Organic materials which possess outstanding stability to oxidative, thermal or light-induced degradation comprise as stabilizers at least one compound of the formula I wherein the general symbols are as defined in claim 1. The compounds of formula I are especially useful as stabilizers for protecting polymers and lubricants against oxidative, thermal or light-induced degradation and as scavengers for oxidized developer in color photographic material.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 27, 2013
    Assignee: BASF SE
    Inventors: Michèle Gerster, Peter Nesvadba
  • Patent number: 8445593
    Abstract: A resin composition comprises a polylactic acid resin (A) 75-10 wt %, an aromatic polycarbonate resin (B) 25-90 wt % and a polymer compound to which a glycidyl compound or an acid anhydride is grafted or copolymerized (D) 1-50 wt parts with respect to 100 wt parts of the total of the component (A) and the component (B).
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: May 21, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Hiromitsu Ishii, Takashi Nagao, Hiroyuki Ohme
  • Patent number: 8367780
    Abstract: A block or graft copolymer including a thermoplastic resin segment and as an aliphatic polyester segment is provided. The copolymer can be used as a compatibilizer for a resin alloy comprising polylactic acid, which can reduce the consumption of petroleum raw materials.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: February 5, 2013
    Assignee: Cheil Industries Inc.
    Inventors: Ji Won Pack, Byeong Do Lee, Chang Do Jung, Hyung Tak Lee
  • Publication number: 20130023509
    Abstract: Hyaluronic acid (HA) conjugates or crosslinked HAs compositions for coating an implantable device are provided. The implantable device can be used for treating a disorder such as atherosclerosis, thrombosis, restenosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 24, 2013
    Applicant: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
    Inventor: ADAVANCED CARDIOVASCULAR SYSTEMS,IN
  • Publication number: 20120321583
    Abstract: A drug conjugate is provided herein. The conjugate comprises a protein based recognition-molecule (PBRM) and a polymeric carrier substituted with one or more -LD-D, the protein based recognition-molecule being connected to the polymeric carrier by LP. Each occurrence of D is independently a therapeutic agent having a molecular weight ?5 kDa. LD and LP are linkers connecting the therapeutic agent and PBRM to the polymeric carrier respectively. Also disclosed are polymeric scaffolds useful for conjugating with a PBRM to form a polymer-drug-PBRM conjugate described herein, compositions comprising the conjugates, methods of their preparation, and methods of treating various disorders with the conjugates or their compositions.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 20, 2012
    Applicant: Mersana Therapeutics, Inc.
    Inventors: Aleksandr Yurkovetskiy, Mao Yin, Timothy B. Lowinger, Joshua D. Thomas, Charles E. Hammond, Cheri A. Stevenson, Natalya D. Bodyak, Patrick R. Conlon, Dmitry R. Gumerov
  • Patent number: 8263715
    Abstract: A block copolymer includes a hydrophobic block and a hydrophilic block, wherein the hydrophobic block and the hydrophilic block include repeating units derived from ring opening polymerization of one or more cyclic carbonate monomers. The one or more cyclic carbonate monomers are independently selected from compounds of the general formula (II): wherein each Q? and Qa group independently represents a hydrogen, an alkyl group, a halide, a carboxy group, an ester group, an amide group, an aryl group, an alkoxy group, or a foregoing Q? or Qa group substituted with a carboxy group or an ester group, at least one Q? and Qa group includes an ester group; each Y independently represents O, S, NH, or NQ?; n is an integer from 0 to 6, wherein when n is 0, carbons labeled 4 and 6 are linked together by a single bond; each Q? group independently represents an alkyl group, an aryl group, or a foregoing Q? group substituted with a carboxy group, or an ester group.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: September 11, 2012
    Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kazuki Fukushima, James L. Hedrick, Sung-Ho Kim, Robert M. Waymouth
  • Patent number: 8258242
    Abstract: Disclosed are: a compatibilizing agent for a polymer alloy, which can increase the compatibility with a variety of polymers; a polymer alloy using the compatibilizing agent; and master batch for a polymer alloy. Specifically disclosed is a compatibilizing agent which is used for the preparation of a polymer alloy by blending at least one polymer (A) selected from the group consisting of a polyphenylene sulfide, a polyphenylene ether and a polyamide with a polymer (B) of a different type from the polymer (A) at such a ratio that the amount of the polymer (A) blended is the same as or more than that of the polymer (B). The compatibilizing agent comprises a nanosheet-shaped layered titanic acid which is produced by intercalate an organic basic compound between the layers of a layered titanic acid.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: September 4, 2012
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Ryoichi Hiroi, Minoru Yamamoto
  • Patent number: 8252361
    Abstract: Implantable medical devices adapted to erodibly release delivery media for local and regional treatment are disclosed.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: August 28, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Pamela A. Kramer-Brown, Florian Ludwig
  • Patent number: 8211986
    Abstract: It is an object of the present invention to provide a method for producing a polylactic acid block copolymer having high molecular weight, and in lower cost, wherein only a stereo-complex crystal is capable of growing, even when heat melting process is repeated. The present invention relates to a method for producing a polylactic acid block copolymer characterized in that (i) ring-opening polymerization of D-lactide (D component) is carried out in the presence of poly-L-lactic acid (L component), or (ii) ring-opening polymerization of L-lactide (L component) is carried out in the presence of poly-D-lactic acid (D component), and mass ratio of the D component and the L component is the D component/the L component=60/40 to 91/9, or the L component/the D component=60/40 to 91/9.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: July 3, 2012
    Assignees: Musashino Chemical Laboratory, Ltd., Mutual Corporation
    Inventors: Yuka Komazawa, Zhen Tang
  • Patent number: 8188185
    Abstract: A biodegradable packaging film is provided. The film is formed from a blend that contains a thermoplastic starch and polylactic acid. Starch is a relatively inexpensive natural polymer that is also renewable and biodegradable. Polylactic acid is likewise an inexpensive synthetic polymer that is biodegradable and renewable, yet also capable of providing increased tensile strength to the film. Although providing a good combination of biodegradability/renewability and increased tensile strength, the polylactic acid is also relatively rigid and can result in films having a relatively high stiffness (e.g., high modulus of elasticity) and low ductility. While more ductile than polylactic acid, the thermoplastic starch is often difficult to melt process in film forming processes and very sensitive to moisture and water vapor, reducing its ability to be used as a stand alone packaging film.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 29, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: James H. Wang, Sara A. Funk
  • Patent number: 8133943
    Abstract: Disclosed is a polylactic acid/polycarbonate resin composition including (A) about 100 parts by weight of a mixed resin including: (a1)) about 10 to about 90 wt % of a polycarbonate resin and (a2) about 10 to about 90 wt % of a polylactic acid resin; (B) about 1 to about 50 parts by weight of a flame retardant based on about 100 parts by weight of the mixed resin; (C) about 1 to about 30 parts by weight of an acryl-based copolymer based on about 100 parts by weight of the mixed resin; and (D) about 1 to about 20 parts by weight of an impact-reinforcing agent based on about 100 parts by weight of the mixed resin.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: March 13, 2012
    Assignee: Cheil Industries Inc.
    Inventors: Jin-Kyung Cho, Hyung-Tak Lee, Doo-Han Ha, Chang-Do Jung
  • Publication number: 20120035321
    Abstract: The present disclosure relates to compounds and medical devices activated with a solvophobic material functionalized with a first reactive member and methods of making such compounds and devices.
    Type: Application
    Filed: February 22, 2010
    Publication date: February 9, 2012
    Inventors: Sébastien Ladet, Philippe Gravagna
  • Patent number: 8105504
    Abstract: Organic materials which possess outstanding stability to oxidative, thermal or light-induced degradation comprise as stabilizers at least one compound of the formula (I) wherein the general symbols are as defined in claim 1. The compounds of formula I are especially useful as stabilizers for protecting polymers and lubricants against oxidative, thermal or light-induced degradation and as scavengers for oxidized developer in color photographic material.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: January 31, 2012
    Assignee: BASF SE
    Inventors: Michèle Gerster, Peter Nesvadba
  • Patent number: 8092830
    Abstract: A process for producing a lactic acid polymer of 15,000 to 50,000 in weight-average molecular weight, the content of polymeric materials having not more than about 5,000 in weight-average molecular weight therein being not more than about 5% by weight, characterized by hydrolyzing a high molecular weight lactic acid polymer, placing the resultant solution comprising the hydrolyzed product under a condition capable of precipitating the objective lactic acid polymer, separating the precipitated lactic acid polymer and collecting them. The lactic acid polymer is useful as a matrix for sustained-release preparations. The sustained-release microcapsule preparation encapsulating a physiologically active substance can fully prevent the initial excessive release of the physiologically active substance from the microcapsules and keep a stable release rate over a long period of time.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: January 10, 2012
    Assignees: Wako Pure Chemical Industries, Ltd., Takeda Pharmaceutical Company Limited
    Inventors: Kohei Yamamoto, Tsutomu Tani, Takashi Aoki, Yoshio Hata
  • Patent number: 8076378
    Abstract: A dispersant comprising a polyester chain obtainable by polymerising a hydroxy carboxylic acid or lactone thereof such as ?-caprolactone with a cyclic alkylene carbonate such as 5,5-dimethyltrimethylene carbonate. The dispersant may be in the form of a phosphate ester where the polyester chain is reacted with a phosphating agent such as polyphosphoric acid or the polyester chain may be attached to a polyamine or polyimine such as polyethyleneimine.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: December 13, 2011
    Assignee: The Lubrizol Corporation
    Inventor: Dean Thetford
  • Patent number: 8058470
    Abstract: A star-branched polyester polyol is obtained by polymerizing lactide or lactic acid, using, as an initiator, a fat and oil composed mainly of a triacylglycerol that has at least three hydroxyl groups or epoxy groups in its molecule. This polyester polyol has low crystallinity and a low melting point, and thus shows good working properties when used in various applications. Furthermore, this polyester polyol is derived from renewable resources, and, thus, it is highly desirable in view of its effectiveness in protecting the global environment and preventing fossil resources from being depleted.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: November 15, 2011
    Assignees: Bio-Energy Corporation, Osaka University, Kansai Chemical Engineering Co., Ltd.
    Inventors: Hiroshi Uyama, Yinan Yin, Takashi Tsujimoto, Hideo Noda, Takahiko Terada
  • Publication number: 20110270387
    Abstract: This invention is directed to implantable medical device comprising a polymeric composition comprising poly[L-lactide-co-(3,6-dialkyl-1,4-dioxane-2,5-dione)], alone or as a blend with one or more polymers selected from the group consisting of poly(L-lactide) and poly(3,6-dialkyl-1,4-dioxane-2,5-dione).
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, Xiao Ma, Lothar Kleiner, Thierry Glauser
  • Patent number: 8030379
    Abstract: Provided is a polycarbonate resin composition having high rigidity, high flowability, high heat resistance, and excellent flame retardancy and molded articles with good appearance using the polycarbonate resin composition. The polycarbonate resin composition comprises 4 to 50 parts by mass of a nonmetallic inorganic filler (B) and 0.01 to 1 part by mass of a phosphate compound (C) relative to 100 parts by mass of a resin mixture (A) which is composed of 60 to 97% by mass of an aromatic polycarbonate resin (a-1) and 40 to 3% by mass of a fatty acid polyester (a-2).
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: October 4, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Akio Nodera, Yusuke Hayata, Yutaka Tsubokura, Yoshiaki Miura
  • Publication number: 20110071247
    Abstract: A resin composition comprises a polylactic acid resin (A) 75-10 wt %, an aromatic polycarbonate resin (B) 25-90 wt % and a polymer compound to which a glycidyl compound or an acid anhydride is grafted or copolymerized (D) 1-50 wt parts with respect to 100 wt parts of the total of the component (A) and the component (B).
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Toray Industries, Inc.
    Inventors: Hiromitsu Ishii, Takashi Nagao, Hiroyuki Ohme
  • Patent number: 7879953
    Abstract: This disclosure provides a medical device and a method of forming the medical device. The medical device comprises a coating comprising a type-one polymer and a type-two polymer. The type-one polymer comprises at least two different blocks, at least one L1 block with the formula ; and at least one L2 block with the formula Medical devices comprising these polymers, mixtures of these polymers with therapeutic agents, and methods of making these polymers and mixtures are within the scope of this disclosure.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: February 1, 2011
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Stephen D. Pacetti
  • Publication number: 20110003719
    Abstract: Process for the preparation of a polymer-containing composition comprising the steps of: a) preparing a mixture of at least one cyclic monomer selected from glycolide and lactide and a layered double hydroxide comprising as charge-balancing anions 10 to 100% of an organic anion and 0 to 90% of hydroxide, based on the total amount of charge-balancing anions, and b) polymerising said monomer, optionally in the presence of a polymerisation initiator or catalyst.
    Type: Application
    Filed: March 9, 2009
    Publication date: January 6, 2011
    Inventors: Robin Winters, Elwin Schomaker, Siebe Cornelis De Vos
  • Patent number: 7863382
    Abstract: A resin composition in which a polylactic acid resin (A) 95-5 wt %, an aromatic polycarbonate resin (B) 5-95 wt %, and, with respect to 100 wt parts of the total of the (A) and the (B), at least one compatibilizer selected from a polymer compound containing an acrylic resin or styrene resin unit as a graft (C), a polymer compound to which a glycidyl compound or an acid anhydride is grafted or copolymerized (D) and an oxazoline compound, an oxazine compound and a carbodiimide compound (E) are compounded.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: January 4, 2011
    Assignee: Toray Industriés, Inc.
    Inventors: Hiromitsu Ishii, Takashi Nagao, Hiroyuki Ohme
  • Publication number: 20100234536
    Abstract: A resin composition comprising 100 parts by weight of a polycarbonate of which a specific ether diol residue constitutes 40-100 mol % and 1-40 parts by weight of polylactic acid, wherein the polylactic acid is composed of a poly-L-lactic acid component and a poly-D-lactic acid component, and wherein in the melting peak derived from the polylactic acid component during temperature increase for measurement with a differential scanning calorimeter (DSC), the proportion of the melting peak area for 195° C. and above is at least 60% of the sum of the melting peak area for 195° C. and above (high temperature) and the melting peak area for 140-180° C. (low temperature), as determined by measurement of the melting peak derived from the polylactic acid component during temperature increase with a differential scanning calorimeter (DSC).
    Type: Application
    Filed: August 27, 2007
    Publication date: September 16, 2010
    Applicant: Teijin Limited
    Inventors: Akimichi Oda, Takanori Miyoshi
  • Patent number: 7736393
    Abstract: Provided are an artificial dura mater having a laminated constitution of at least two layers of in vivo degradable polymers, at least one layer of them being a substrate layer, the substrate layer being formed of a lactic acid/glycolic acid/?-caprolactone copolymer, the copolymer having a component molar ratio of 60-85:3-15:10-30 mol % and the copolymer having an average chain length that satisfies the following expressions (1) to (3) and a process for the production thereof, and when this artificial dura mater is used, no liquid leakage is caused since the bloating of suture holes is small, and the period of time for which it retains its strength is suitably a little longer than the period of time required for the regeneration of an autodura mater, 2<L(LA)<[LA%/(LA%+GA%+CL%)]×X×0.058??(1) 1<L(GA)<[GA%/(LA%+GA%+CL%)]×X×0.58??(2) 1<L(CL)<[CL%/(LA%+GA%+CL%)]×X×0.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: June 15, 2010
    Assignee: Kawasumi Laboratories, Inc.
    Inventors: Noriaki Shirahama, Tomokazu Mukai, Takao Okada, Yukari Imamura, Yoshimichi Fujiyama
  • Patent number: 7589164
    Abstract: A flexibilized resorcinolic novolak resin is prepared by reacting a phenolic compound, such as resorcinol, with an unsaturated dihydroxy, an unsaturated aldehyde, an aliphatic dialdehyde, or a mixture thereof. An aldehyde (different from the unsaturated aldehyde and the aliphatic dialdehyde) is either simultaneously or subsequently added to the reaction mixture. The flexibilized resorcinolic novolak resin can be used in an adhesive composition for enhancing the adhesion between tire cords and rubber for tire applications.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 15, 2009
    Inventors: Raj B. Durairaj, Mark A. Lawrence
  • Publication number: 20090118241
    Abstract: A bimodal bioabsorbable polymer composition. The composition includes a first amount of a bioabsorbable polymer polymerized so as to have a first molecular weight distribution; a second amount of said bioabsorbable polymer polymerized so as to have a second molecular weight distribution having a weight average molecular weight between about 10,000 to about 50,000 Daltons, the weight average molecular weight ratio of said first molecular weight distribution to said second molecular weight distribution is at least about two to one; wherein a substantially homogeneous blend of said first and second amounts of said bioabsorbable polymer is formed in a ratio of between about 50/50 to about 95/5 weight/weight percent. Also disclosed are a medical device, a method of making a medical device and a method of melt blowing a semi-crystalline polymer blend.
    Type: Application
    Filed: April 22, 2008
    Publication date: May 7, 2009
    Applicant: ETHICON, INC.
    Inventors: Sasa ANDJELIC, Benjamin D. FITZ, Jianguo Jack ZHOU