Mixed With Additional Polycarboxylic Acid And A Polyamine; Amino Carboxylic Acid Or Derivative; Polyamine Salt Of A Polycarboxylic Acid; Lactam; Or Polymer Derived Therefrom Patents (Class 525/432)
  • Patent number: 11377556
    Abstract: The present disclosure relates to a polyimide-based block copolymer and a polyimide-based block copolymer film including the same. The polyimide-based block copolymer according to the present disclosure makes it possible to provide a polyimide-based film having low haze and yellow index value while exhibiting excellent transparency.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: July 5, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Duk Hun Jang, Byung Guk Kim, Young Sik Eom, Sung Yeol Choi, Sang Gon Kim, Jin Sook Ryu, Sun Ok Oh, Hyung Sam Choi
  • Patent number: 11326024
    Abstract: A polyamide resin with an excellent balance of mechanical characteristics such as breaking strength and breaking elongation in a solid state, a molded body containing said polyamide resin, a laminate provided with a film or a sheet containing said polyamide resin, a medical device provided with the aforementioned molded body and/or the aforementioned laminate, and a production method of the aforementioned polyamide resin are provided. A polyamide resin is used which contains: a linear aliphatic dicarbonyl unit as unit (a); a linear aliphatic diamino unit as unit (b); at least one of a unit (b) and a unit (c), each of a prescribed structure; and a trivalent unit (e).
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 10, 2022
    Assignee: KANEKA CORPORATION
    Inventor: Takayuki Kato
  • Patent number: 11274206
    Abstract: An object of the present invention is to provide a polyamideimide resin for an optical member having both high flexibility and bending resistance, and in particular, a polyamideimide resin for a front plate of an image display apparatus, and an optical member such as a front plate containing the polyamideimide resin.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: March 15, 2022
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Koji Miyamoto, Nozomi Masui, Hiroko Sugiyama, Katsunori Mochizuki, Junichi Ikeuchi
  • Patent number: 11248090
    Abstract: A poly(amide-imide) copolymer composition comprising an imide of a polyamic acid and an ultraviolet stabilizer, and a colorless and transparent poly(amide-imide) film including the composition. The poly(amide-imide) copolymer composition according to the present disclosure makes it possible to provide a poly(amide-imide) film exhibiting excellent scratch resistance, UV shielding property, and UV weather resistance while being colorless and transparent. This film can be suitably used as a cover film of various flexible or foldable devices.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: February 15, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Bi Oh Ryu, Soon Yong Park, Young Ji Tae, Young Seok Park, Kwan Yeol Paek, Il Hwan Choi
  • Patent number: 11148374
    Abstract: A method for printing a three-dimensional part with an additive manufacturing system, which includes providing a part material that compositionally has one or more semi-crystalline polymers and one or more secondary materials that are configured to retard crystallization of the one or more semi-crystalline polymers, where the one or more secondary materials are substantially miscible with the one or more semi-crystalline polymers. The method also includes melting the part material in the additive manufacturing system, forming at least a portion of a layer of the three-dimensional part from the melted part material in a build environment, and maintaining the build environment at an annealing temperature that is between a glass transition temperature of the part material and a cold crystallization temperature of the part material.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: October 19, 2021
    Assignee: Stratasys, Inc.
    Inventors: Luke M. B. Rodgers, Vittorio L. Jaker
  • Patent number: 11117837
    Abstract: A polyamide powder for selective absorbing sintering, SAS, or selective inhibition sintering, SIS. The polyamide powder has a solution viscosity to ISO 307 of 1.8 to 2 and a rise in the solution viscosity of 0% to 25% when it is subjected to a temperature 20° C. below its melting temperature under air for 20 hours.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 14, 2021
    Assignee: Evonik Operations GbmH
    Inventors: Wolfgang Diekmann, Maik Grebe, Franz-Erich Baumann, Sylvia Monsheimer, Beatrice Küting
  • Patent number: 10646832
    Abstract: The present invention discloses high selectivity copolyimide membranes for gas, vapor, and liquid separations. Gas permeation tests on these copolyimide membranes demonstrated that they not only showed high selectivity for CO2/CH4 separation, but also showed extremely high selectivities for H2/CH4 and He/CH4 separations. These copolyimide membranes can be used for a wide range of gas, vapor, and liquid separations such as separations of CO2/CH4, He/CH4, CO2/N2, olefin/paraffin separations (e.g. propylene/propane separation), H2/CH4, He/CH4, O2/N2, iso/normal paraffins, polar molecules such as H2O, H2S, and NH3 mixtures with CH4, N2, H2. The high selectivity copolyimide membranes have UV cross-linkable sulfonyl functional groups and can be used for the preparation of UV cross-linked high selectivity copolyimide membranes with enhanced selectivities. The invention also includes blend polymer membranes comprising the high selectivity copolyimide and polyethersulfone.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 12, 2020
    Inventors: Chunqing Liu, Sudipto Chakraborty, Nicole Karns
  • Patent number: 10583595
    Abstract: The invention relates to a method for producing a composite plastic part (CK). A first fiber material (F1) is impregnated with a polyamide matrix polymer (PAM), thereby obtaining a matrix composition (MZ), onto which a surface composition (OZ) is applied, and a first plastic component (K1) is obtained. In a second step, a second plastic component (K2) is molded on the first plastic component (K1), whereby the composite plastic part (CK) is obtained. The invention further relates to the composite plastic part (CK) which can be obtained using the method according to the invention. The invention additionally relates to the use of polyethyleneimine (PEI) for improving the impregnation of the first fiber material (F1) with the polyamide matrix polymer (PAM).
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: March 10, 2020
    Assignee: BASF SE
    Inventors: Gijsbrecht Habraken, Manoranjan Prusty, Andreas Radtke, Gaurav Ramanlal Kasaliwal
  • Patent number: 10147541
    Abstract: A uniaxially-stretched, high yield extruded capacitor film comprising a miscible polymer blend comprising a polyetherimide and a poly(carbonate-arylate ester), wherein the polyetherimide comprises units derived from polymerization of an aromatic dianhydride with a diamine comprising a m-phenylenediamine, a p-phenylenediamine, or combinations thereof, wherein the polyetherimide is endcapped with a substituted or unsubstituted aromatic primary monoamine, wherein the poly(carbonate-arylate ester) comprises repeating bisphenol carbonate units and repeating arylate ester units, wherein the repeating bisphenol carbonate units and the repeating arylate ester units are different from each other, and wherein the high yield extruded capacitor film comprises equal to or greater than about 90 wt. % of the miscible polymer blend entering an extruder used for manufacturing the capacitor film, based on the total weight of miscible polymer blend prior to entering the extruder.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: December 4, 2018
    Assignee: SABIC GLOBAL TECHNOLOGIES, B.V.
    Inventors: Mark Sanner, Neal Pfeiffenberger, Matthew F. Niemeyer
  • Patent number: 10144847
    Abstract: The present invention relates to a polyimide-based solution that can be used to produce an isotropic transparent polyimide-based film with high heat resistance and excellent mechanical properties as well as high transmittance. A coating of the polyimide-based solution on a substrate has a haze of 1% or less after storage at a temperature of 30° C. and a humidity of 70% for 30 minutes.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: December 4, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Cheolmin Yun, BoRa Shin, Hye Won Jeong, Kyungjun Kim, HangAh Park
  • Patent number: 10046284
    Abstract: In some aspects, the present disclosure provides a polymer composition which comprises two polymer molecules and a compatibilizing agent. In some embodiments, the polymer composition is useful for the preparation of membranes used in the separation of two or more gases. In some embodiments, the polymer composition comprises a polyimide polymer and a polybenzimidazole polymer which have been compatibilizing with a small molecule or a metal organic framework.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: August 14, 2018
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: John P. Ferraris, Nimanka Panapitiya, Sumudu Wijenayake, Inga H. Musselman, Chamaal Karunaweera, Kenneth J. Balkus, Jr.
  • Patent number: 10046280
    Abstract: To provide a method for improving a rejection rate of an RO membrane, which further improves the stability of removal performance (rejection rate) and flux stability (sustainability of contamination resistance). In a method for improving a rejection rate of an RO membrane, including a step of allowing an aqueous solution containing a polyphenol to pass through an RO membrane, the method further includes a step of allowing an aqueous solution containing at least one type selected from the group consisting of a modified poly(vinyl alcohol), a high molecular polysaccharide, and a poly(amino acid) to pass through the RO membrane. The method preferably further includes a step of allowing an aqueous solution containing an organic compound having an amino group and having a molecular weight of 1,000 or less to pass through the RO membrane.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: August 14, 2018
    Assignee: KURITA WATER INDUSTRIES LTD.
    Inventors: Kunihiro Hayakawa, Takahiro Kawakatsu
  • Patent number: 9592530
    Abstract: A consumable material for use in an additive manufacturing system, the consumable filament comprising a polyamide blend of at least one semi-crystalline polyamide, and at least one amorphous polyamide that is substantially miscible with the at least one semi-crystalline polyamide, and a physical geometry configured to be received by the additive manufacturing system for printing a three-dimensional part from the consumable material in a layer-by-layer manner using an additive manufacturing technique. The consumable material is preferably capable of printing three-dimensional parts having good part strengths and ductilities, and low curl.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 14, 2017
    Assignee: Stratasys, Inc.
    Inventor: Luke M. B. Rodgers
  • Patent number: 9511362
    Abstract: Disclosed herein are anion-conducting polymers that comprise a cationic benzimidazolium and imidazolium moieties. Methods of forming the polymers and membranes comprising the polymers are also provided.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: December 6, 2016
    Assignee: Simon Fraser University
    Inventors: Owen Thomas, Steven Holdcroft, Andrew Wright
  • Patent number: 9454040
    Abstract: A liquid crystal display is provided, including a first insulating substrate; a second insulating substrate facing the first insulating substrate; a pixel electrode disposed on the first insulating substrate; a common electrode disposed on the first insulating substrate or the second insulating substrate; a first alignment layer disposed on the first insulating substrate; a second alignment layer disposed on the second insulating substrate; and a liquid crystal layer disposed between the first insulating substrate and the second insulating substrate, in which at least one of the first alignment layer and the second alignment layer include a main chain and a plurality of side chains which are connected to the main chain, and at least one of the plurality of side chains includes a reactive mesogen including a vertical expression group and at least two photoreactor groups connected to the vertical expression group.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: September 27, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventor: Ho Lim
  • Patent number: 9315630
    Abstract: Disclosed herein are anion-conducting polymers that comprise a cationic benzimidazolium and imidazolium moieties. Methods of forming the polymers and membranes comprising the polymers are also provided.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: April 19, 2016
    Assignee: Simon Fraser University
    Inventors: Owen Thomas, Steven Holdcroft, Andrew Wright
  • Patent number: 9315633
    Abstract: Polyimides containing a backbone with at least one nanoparticle component and made from oligomers having endcaps that are difunctional or a mix of di- and monofunctionality are provided. The endcaps may be nadic or phenylethynyl. The backbone may be wholly inorganic or made from a mixture of inorganic and organic groups. The oligomers may be created in-situ using standard polymerization of monomeric reactants chemistry using a solvent or may be provided as a pre-imidized compound that may be either a solid or liquid. It is believed that the nanoparticle component of the polymer backbone provides superior thermo-oxidative stability verses unmodified organic backbones. It is further believed that providing difunctional or a mixture of di- and monofunctional endcaps allows for increased crosslinking to provide improved strength and stiffness verses wholly monofunctional endcapped oligomers for polyimides. The nanoparticle is part of the backbone of the polymer and not solely a pendant group.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: April 19, 2016
    Assignee: THE BOEING COMPANY
    Inventor: Thomas K. Tsotsis
  • Patent number: 9228085
    Abstract: A resin composition for a refrigerant-transporting hose, including: a semi-aromatic polyamide resin (A) as a main component; an aliphatic polyamide resin (B); and an elastomer (C), in which the aliphatic polyamide resin (B) is dispersed in a phase formed of the semi-aromatic polyamide resin (A) and the elastomer (C), which is not crosslinked, is incorporated in the form of particles into the dispersed aliphatic polyamide resin (B). Thus, excellent refrigerant permeation resistance and acid resistance, and at the same time, for example, extrusion processability and flexibility, are obtained.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: January 5, 2016
    Assignee: SUMITOMO RIKO COMPANY LIMITED
    Inventors: Naoki Oyaizu, Kazutaka Katayama, Yukinori Wakazono
  • Patent number: 9209444
    Abstract: A polyimide blend nanofiber and its use in battery separator are disclosed. The polyimide blend nanofiber is made of two kinds of polyimide precursors by high pressure electrostatic spinning and then high temperature imidization processing, wherein one of the polyimide precursor does not melt under high temperature, and the other is meltable at a temperature of 300-400° C. The polyimide blend nanofiber of present invention has high temperature-resistance, high chemical stability, high porosity, good mechanical strength and good permeability, and can be applied as battery separator.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 8, 2015
    Assignee: JIANGXI ADVANCE NANOFIBER S&T CO., LTD.
    Inventors: Haoqing Hou, Chuyun Cheng, Shuiliang Chen, Xiaoping Zhou, Xiaoyi Lv, Ping He, Xiaoming Kuang, Jinsheng Ren
  • Patent number: 9162252
    Abstract: According to an embodiment of the present disclosure, a method of forming a polyimide film on a substrate is disclosed. Such method can be easily controlled and form a polyimide film applicable as an insulation film. While a wafer is heated at a temperature at which a polyimide film is formed, a cycle, in which the wafer is sequentially supplied with a first processing gas, for example, containing a PMDA-based first monomer, and a second processing gas containing a non-aromatic monomer, for example, an HMDA-based second monomer, is performed for a predetermined number of times. When the processing gases are switched, a replacement gas is supplied into a reaction tube so that the monomers are not mixed together under the atmosphere in the reaction tube.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: October 20, 2015
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tatsuya Yamaguchi, Reiji Niino
  • Publication number: 20150113714
    Abstract: The invention concerns fiber, and a process for making same, the fiber comprising a mixture of at least a first polymer and a second polymer, the first polymer having a structure derived from the reaction of one or more amine monomers and a plurality of acid monomers, wherein the one or more amine monomers includes at least 60 mole percent 5(6)-amino-2-(p-aminophenyl)benzimidazole, and the plurality of acid monomers include those having a structure of Cl—CO—Ar1-CO—Cl & Cl—CO—Ar2-CO—Cl wherein Ar1 is an aromatic group having para-oriented linkages and Ar2 is an aromatic group having meta-oriented linkages, and wherein the plurality of acid monomers has at least 50 mole percent of the monomer containing aromatic group Ar2; and the second polymer has a structure derived from the reaction of metaphenylene diamine and isophthaloyl chloride. This fiber has use in heat-resistant protective apparel fabrics and garments.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventor: Kiu-Seung LEE
  • Publication number: 20150119533
    Abstract: This invention relates to a film comprising a mixture of at least a first polymer and a second polymer; the first polymer derived from the reaction of one or more amine monomers and a plurality of acid monomers, wherein the one or more amine monomers includes at least 60 mole percent 5(6)-amino-2-(p-aminophenyl)benzimidazole, based on the total amount of amine monomers; and the plurality of acid monomers include those having a structure of Cl—CO—Ar1—CO—Cl & Cl—CO—Ar2—CO—Cl wherein Ar1 is an aromatic group having para-oriented linkages and Ar2 is an aromatic group having meta-oriented linkages, and wherein the plurality of acid monomers has at least 50 mole percent of the monomer containing aromatic group Ar2; and the second polymer derived from the reaction of metaphenylene diamine and isophthaloyl chloride.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventor: KIU-SEUNG LEE
  • Patent number: 9011998
    Abstract: Phase separated blends of polyaryl ether ketones, polyaryl ketones, polyether ketones, polyether ether ketones and mixtures thereof with at least one polysulfone etherimide, wherein the polysulfone etherimide has greater than or equal to 50 mole % of the polymer linkages contain at least one aryl sulfone group are described. Such blends have improved load bearing capability at high temperature. In another aspect a high crystallization temperature, especially at fast cooling rates, is achieved.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: April 21, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Ashish Aneja, Robert Russell Gallucci, Roy Ray Odle, Kapil Chandrakant Sheth
  • Publication number: 20150099847
    Abstract: A composition, containing at least 50% by weight of a polyamide fraction which comprises: a) from 50 to 95 parts by weight of a polyamide having as copolymerized units bis(4-aminocyclohexyl)methane (PACM) and a linear dicarboxylic acid having from 8 to 18 C atoms; and b) from 50 to 5 parts by weight of a linear aliphatic polyamide having an average of from 8 to 12 C atoms in the monomer units, where the sum of the parts by weight of a) and b) is 100 is provided. The composition can be processed to give a moulded article having high transparency, high toughness and high resistance to chemicals, to solvents and to stress cracking.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 9, 2015
    Applicant: Evonik Industries AG
    Inventors: Klaus HUELSMANN, Heinrich Peirick, Maximilian Gruhn, Luca Castelli
  • Patent number: 9000122
    Abstract: The present invention is for aromatic poly(ether sulfone imide) membranes and methods for making and using these membranes for gas, vapor, and liquid separations. The membranes may be fabricated into any known membrane configuration including a flat sheet or hollow fiber. An embodiment of the present invention is for aromatic poly(ether sulfone imide) polymers, aromatic poly(ether sulfone imide) membranes and UV cross-linked aromatic poly(ether sulfone imide) membranes made from these polymers.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Zhixue Zhu, Chunqing Liu
  • Patent number: 8993686
    Abstract: Biodegradable saturated and unsaturated polyester amides (PEA)s made from multiamino acid monomers and methods of making biodegradable saturated and unsaturated PEAs.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 31, 2015
    Assignee: Cornell University
    Inventors: Chih-Chang Chu, Mingxiao Deng
  • Publication number: 20150065641
    Abstract: A tube connector made from a polyamide composition, the polyamide composition including at least one first polyamide A having an average number of carbon atoms per nitrogen atom CA and at least one second polyamide B having an average number of carbon atoms per nitrogen atom CB, wherein CA?8.5 and CB?7.5, and wherein CA<CB. The composition may include a third polyamide C having an average number of carbon atoms per nitrogen atom CC, wherein CB?CC.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Applicant: ARKEMA FRANCE
    Inventors: Yves DEYRAIL, Thibaut MONTANARI, Zhenzhong LI, Sylvain BENET
  • Patent number: 8969486
    Abstract: Disclosed are a liquid crystal alignment agent, a liquid crystal alignment film manufactured using the same, and a liquid crystal display including the liquid crystal alignment film. The liquid crystal alignment agent includes a polymer comprising a polyamic acid including a repeating unit represented by Chemical Formula 1, polyimide including a repeating unit represented by Chemical Formula 2, or a combination thereof: wherein Y1 and Y2 are each independently a divalent organic group derived from diamine, wherein the diamine includes photodiamine represented by Chemical Formula 3 and functional diamine represented by Chemical Formula 5: and wherein the other substituents are the same as defined in the detailed description.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 3, 2015
    Assignee: Cheil Industries Inc.
    Inventors: Jae-Deuk Yang, Yong-Sik Yoo, Guk-Pyo Jo
  • Publication number: 20150038652
    Abstract: The invention discloses a method to produce a blended polymer by mixing polyamide 11 and polyamide 6, 10. The method may be utilize melt mixing or may utilize blended solutions. The invention also includes a blended polymer, wherein the blended polymer is produced from polyamide 11 and polyamide 6,10.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 5, 2015
    Inventors: John R. Dorgan, David A. Ruehle
  • Patent number: 8945694
    Abstract: Filled phase-separated blends of polyaryl ether ketones, polyaryl ketones, polyether ketones, polyether ether ketones and mixtures thereof with at least one polysulfone etherimide, wherein the polysulfone etherimide has greater than or equal to 50 mole % of the polymer linkages contain at least one aryl sulfone group are described. Such filled blends have improved load-bearing capability at high temperature. In another aspect the filled blends have a higher crystallization temperature, especially at fast cooling rates.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: February 3, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Ashish Aneja, Robert Russell Gallucci, Roy Ray Odle, Kapil Chandrakant Sheth
  • Publication number: 20150031834
    Abstract: Composite polyamide fine particles include a polyamide (A1) which has a melting point or a glass transition temperature of over 100° C. and a polymer (A2) which is different from the polyamide (A1). The composite polyamide fine particles have: a dispersion structure in which a plurality of domains each having an average particle diameter of 0.05 to 100 ?m whose main component is the polymer (A2) are dispersed in a polyamide (A1) based matrix; an average particle diameter of 0.1 to 500 ?m; and a sphericity of 80 or more.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 29, 2015
    Inventors: Hiroshi Kobayashi, Takahiko Otsubo, Hiroshi Takezaki
  • Patent number: 8936849
    Abstract: Provided are a polyamide combination that includes: a first polyamide including a repeating unit represented by Chemical Formula 1, a repeating unit represented by Chemical Formula 2, or a combination thereof; and a second polyamide including a repeating unit represented by Chemical Formula 3, and a film prepared using the polyamide combination.
    Type: Grant
    Filed: September 24, 2011
    Date of Patent: January 20, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chung Kun Cho, Kalinina Fedosya, Kovalev Mikhail, Tai Gyoo Park, Young Suk Jung, Yoo Seong Yang
  • Publication number: 20150017361
    Abstract: This disclosure relates to a film for a tire inner liner film that may exhibit uniform excellent physical properties over all directions when applied to a tire, and may secure excellent durability and fatigue resistance in a tire manufacturing process or in an automobile running process, a method for manufacturing the film for a tire inner liner, a pneumatic tire using the tire inner liner film, and a method for manufacturing the pneumatic tire using the tire inner liner film.
    Type: Application
    Filed: March 8, 2013
    Publication date: January 15, 2015
    Applicant: KOLON INDUSTRIES, INC
    Inventors: Yun-Jo Kim, Si-Min Kim, Dong-Jin Kim, II Chung, Dong-Hyeon Choi
  • Publication number: 20140368083
    Abstract: Poly(?-amino acid) which contain: (A) a glutamic acid ?-ester unit represented by formula (I): and (B) one or more kinds of units selected from a glutamic acid ?-ester unit represented by formula (II), an alanine unit, a phenylalanine unit and an N?-benzyloxycarbonyllysine unit, represented by formula (III), and a glutamic acid ?-ester unit represented by formula (IV) can be dissolved in various solvents and are useful for preparing piezoelectric elements which exhibit superior piezoelectricity.
    Type: Application
    Filed: August 13, 2014
    Publication date: December 18, 2014
    Applicant: AJINOMOTO CO., INC.
    Inventors: Satoru OHASHI, Sei Uemura, Manabu Kitazawa, Toshihide Kamata, Yoshinori Wada
  • Patent number: 8912288
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Publication number: 20140357796
    Abstract: A thermoplastic composition comprises a polymer blend. The polymer blend comprises a first polyimide and a second polyimide. The first polyimide has repeating units derived from a first dianhydride and a first diamine. The second polyimide has repeating units derived from a second dianhydride and a second diamine. Either the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same.
    Type: Application
    Filed: August 14, 2014
    Publication date: December 4, 2014
    Inventors: MICHAEL STEPHEN DONOVAN, ROBERT RUSSELL GALLUCCI, ROY RAY ODLE, KAPIL CHANDRAKANT SHETH
  • Patent number: 8895677
    Abstract: A polyamide block copolymer that includes a first segment including a repeating unit represented by Chemical Formula 1, a repeating unit represented by Chemical Formula 2, or a combination thereof; and a second segment including a repeating unit represented by Chemical Formula 3. The variables R1 to R15, and n1 to n8 are defined herein.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: November 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chung Kun Cho, Kalinina Fedosya, Kovalev Mikhail, Sang Mock Lee
  • Publication number: 20140342145
    Abstract: Provide is a molded product showing low water absorption, high chemical resistance, high crystallinity index. A molded product formed from a polyamide resin composition containing 50 to 99 parts by mass of (A) an aliphatic polyamide resin and 50 to 1 parts by mass of (B) a polyamide resin including 70 mol % or more of a diamine structural unit derived from xylylenediamine and 50 mol % or more of a dicarboxylic acid structural unit derived from sebacic acid, provided that the total of (A) and (B) is 100 parts by mass.
    Type: Application
    Filed: November 22, 2012
    Publication date: November 20, 2014
    Inventors: Hatsuki Oguro, Jun Mitadera
  • Patent number: 8889101
    Abstract: A nanodevice composition including N-acetyl cysteine linked to a dendrimer, such as a PAMAM dendrimer or a multiarm PEG polymer, is provided. Also provided is a nanodevice for targeted delivery of a compound to a location in need of treatment. The nanodevice includes a PAMAM dendrimer or multiarm PEG polymer, linked to the compound via a disulfide bond. There is provided a nanodevice composition for localizing and delivering therapeutically active agents, the nanodevice includes a PAMAM dendrimer or multiarm PEG polymer and at least one therapeutically active agent attached to the PAMAM dendrimer or multiarm PEG polymer.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: November 18, 2014
    Assignee: Wayne State University
    Inventors: Rangaramanujam M. Kannan, Sujatha Kannan, Roberto Romero, Raghavendra S. Navath
  • Publication number: 20140329953
    Abstract: A powder mixture is described, which is suitable for a layer-wise manufacturing of a three-dimensional object by solidifying a building material in powder form. The powder mixture consists of a mixture of a first polyamide 12 powder and a second polyamide 12 powder, wherein the first polyamide 12 powder is characterized by an increase of its viscosity number determined in accordance with ISO 307 that is less than 10%, when the powder is exposed for 20 hours to a temperature that lies 10° C. below its melting temperature under nitrogen atmosphere, and the second polyamide 12 powder is characterized by an increase of its viscosity number, determined in accordance with ISO 307, by 15% or more, when the powder is exposed for 20 hours to a temperature that lies 10° C. below its melting temperature under nitrogen atmosphere.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Applicant: EOS GMBH ELECTRO OPTICAL SYSTEMS
    Inventor: Stefan Paternoster
  • Publication number: 20140329078
    Abstract: To provide a biaxially oriented polyamide-based resin film being excellent in laminate strength, pin-hole resistance under a low-temperature environment, impact resistance, and transparency, and which retains satisfactory a good external appearance even after being sterilized in hot water. A biaxially oriented polyamide-based resin film comprising a polyamide resin and 1 to 5% by mass of a polyamide-based block copolymer, wherein the polyamide-based block copolymer comprises a hard part including a residue of cyclic lactam having 4 to 10 carbon atoms, and a soft part including a residue of polyoxypropylene glycol or polyoxytetramethylene glycol having a weight average molecular weight of 500 to 3000, and the content X of the hard part and the content Y and the weight average molecular weight Mw of the soft part satisfy the following formulae (1) and (2): X+Y=100 (parts by mass) ??(1) 478.74×Mw?0.2989?Y?93 (parts by mass) ??(2).
    Type: Application
    Filed: December 3, 2012
    Publication date: November 6, 2014
    Inventors: Yoshinori Miyaguchi, Gaku Maruyama, Takanori Ishikura
  • Patent number: 8877874
    Abstract: A powder mixture is described, which is suitable for a layer-wise manufacturing of a three-dimensional object by solidifying a building material in powder form. The powder mixture consists of a mixture of a first polyamide 12 powder and a second polyamide 12 powder, wherein the first polyamide 12 powder is characterized by an increase of its viscosity number determined in accordance with ISO 307 that is less than 10%, when the powder is exposed for 20 hours to a temperature that lies 10° C. below its melting temperature under nitrogen atmosphere, and the second polyamide 12 powder is characterized by an increase of its viscosity number, determined in accordance with ISO 307, by 15% or more, when the powder is exposed for 20 hours to a temperature that lies 10° C. below its melting temperature under nitrogen atmosphere.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: November 4, 2014
    Assignee: EOS GmbH Electro Optical Systems
    Inventor: Stefan Paternoster
  • Patent number: 8871874
    Abstract: Disclosed is a thermoplastic melt-mixed composition including: a) a polyamide resin; b) a poly(amino acid)-polyol compound provided by reacting: b1) one or more amino acids selected from the group consisting of primary amino acids and secondary amino acids and combinations of these; the amino acid having no more than one hydroxyl group; and b2) one or more polyepoxy compound comprising at least two or more epoxy groups; the poly(amino acid)-polyol compound having a range of at least 10 percent conversion of epoxy equivalents of component (b1) up to, but excluding, the gel point of the components b1) and b2) and c) reinforcing agent; and, optionally, d) polymeric toughener; and f) further additives. Processes for making the composition are also disclosed.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: October 28, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Yuefei Tao, Lech Wilczek, Jennifer Leigh Thompson
  • Publication number: 20140275439
    Abstract: Disclosed is a biodegradable polymer comprising an optionally substituted aliphatic hydrocarbon group having 5 or more carbon atoms at at least one terminal of the polymer chain, wherein the biodegradable polymer has a weight-average molecular weight of not less than 35,000 when the biodegradable polymer has a 2-pyrrolidone polymer or copolymer as its main chain and stearic acid at the terminal of the polymer chain; a molded article comprising the biodegradable polymer; and a method for controlling biodegradability of a biodegradable polymer, comprising introducing an optionally substituted aliphatic hydrocarbon group into the terminal of the polymer chain of the biodegradable polymer.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 18, 2014
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Naoko Yamano, Norioki Kawasaki, Atsuyoshi Nakayama
  • Patent number: 8835595
    Abstract: A polyamide compound containing: from 25 to 50 mol % of a diamine unit, which contains an aromatic diamine unit represented by the following formula (I), in an amount of 50 mol % or more; from 25 to 50 mol % of a dicarboxylic acid unit, which contains a linear aliphatic dicarboxylic acid unit represented by the following formula (II-1) and/or an aromatic dicarboxylic acid unit represented by the following formula (II-2), in an amount in total of 50 mol % or more; and from 0.1 to 50 mol % of a constitutional unit represented by the following formula (III): wherein n represents an integer of from 2 to 18, Ar represents an arylene group, and R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: September 16, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takafumi Oda, Ryoji Otaki, Shota Arakawa, Tsuneaki Masuda, Hiroyuki Matsushita, Ryuji Hasemi
  • Patent number: 8829153
    Abstract: To provide a polyamic acid ester-containing polyimide precursor composition having a good storage stability, from which a polyimide film having a high imidization degree and excellent adhesion to an inorganic substrate can be obtained. A polyimide precursor composition comprising a polyamic acid ester, a thermal imidization accelerator and a solvent, wherein the thermal imidization accelerator is a compound which has a carboxy group and an amino group or an imino group which is deprotected by heat to show basicity, and which will not accelerate the imidization of the polyamic acid ester before the protecting group leaves, and a polyimide precursor composition containing a silane coupling agent.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: September 9, 2014
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Naoki Sakumoto, Masato Nagao, Yuho Noguchi
  • Patent number: 8816017
    Abstract: Disclosed is a process for producing a polyamic acid solution by reacting a diamine component consisting essentially of 20 mol % to 80 mol % of p-phenylenediamine and 80 mol % to 20 mol % of diaminodiphenyl ether with a tetracarboxylic acid component consisting essentially of 10 mol % to 60 mol % of 2,3,3?,4?-biphenyltetracarboxylic dianhydride and 90 mol % to 40 mol % of 3,3?,4,4?-biphenyltetracarboxylic dianhydride in a solvent, comprising: a first step in which a diamine component is reacted with a molar excess of a tetracarboxylic acid component in a solvent containing more than ? mole of water per mole of the tetracarboxylic acid component, whereby preparing a polyamic acid solution; and a second step in which a diamine component, or a diamine component and a tetracarboxylic acid component are added to the polyamic acid solution obtained in the first step so that the molar amount of the diamine component is substantially equal to the molar amount of the tetracarboxylic acid component, and then the dia
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: August 26, 2014
    Assignee: UBE Industries, Ltd.
    Inventors: Takeshige Nakayama, Seiichirou Takabayashi, Tooru Murakami
  • Publication number: 20140220274
    Abstract: A film containing a layer formed from a resin composition containing a polyamide compound (A) and a resin (B), wherein the polyamide compound (A) contains from 25 to 50% by mol of a diamine unit, which contains a particular diamine unit, in an amount of 50% by mol or more; from 25 to 50% by mol of a dicarboxylic acid unit, which contains a particular dicarboxylic acid unit, in an amount of 50% by mol or more; and from 0.1 to 50% by mol of a particular constitutional unit.
    Type: Application
    Filed: June 19, 2012
    Publication date: August 7, 2014
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY INC.
    Inventors: Takafumi Oda, Ryoji Otaki, Kentaro Ishii, Shota Arakawa
  • Patent number: 8778247
    Abstract: The invention relates to a polymer film made of a polyamide composition comprising at least 80 weight percentage (wt. %) of a semi-crystalline semi-aromatic polyamide with a melting temperature (Tm) of at least 270° C., wherein the wt. % is relative to the total weight of the polymer composition, wherein the polymer film has an average coefficient of thermal expansion in plane in the temperature range of 20° C.-Tg, measured in plane with the method according to ASTM D969-08, of at most 40 ppm/K. The said film can be made from a polyamide moulding composition comprising said polyamide by film casting followed by biaxial stretching. The film has properties suitable for carrier films in flexible printed circuit boards.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 15, 2014
    Assignee: DSM IP Assets B.V.
    Inventors: Alexander Antonius Marie Stroeks, Guido Richard Struijk
  • Patent number: 8772438
    Abstract: A process for making a polyamide polymer, said process comprising heating, in one or more ionic liquid(s), one or more polyamide precursor(s) selected from: (i) one or more free dicarboxylic acid(s) or ester(s) thereof, with one or more diamine(s); or (ii) one or more salt(s) of a dicarboxylic acid with a diamine; or (iii) one or more lactam(s); or (iv) mixtures of any of the foregoing precursors (i) to (iii).
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 8, 2014
    Assignee: Invista North America S.är.l.
    Inventors: Keith Whiston, Charles Richard Langrick, Kenneth Richard Seddon, Alberto V. Puga