Contains Non-transition Elemental Metal, Hydride Thereof, Or Carbon To Non-transition Metal Atom Bond Patents (Class 526/119)
-
Patent number: 11104621Abstract: According to one embodiment, a catalyst system that reduces polymeric fouling may comprise at least one titanate compound, at least one aluminum compound, and at least one antifouling agent or a derivative thereof. The antifouling agent may comprise a structure comprising a central aluminum molecule bound to an R1 group, bound to an R2 group, and bound to an R3 group. One or more of the chemical groups R1, R2, and R3 may be antifouling groups comprising the structure —O((CH2)nO)mR4, where n is an integer from 1 to 20, m is an integer from 1 to 100, and R4 is a hydrocarbyl group. The chemical groups R1, R2, or R3 that do not comprise the antifouling group, if any, may be hydrocarbyl groups.Type: GrantFiled: December 29, 2016Date of Patent: August 31, 2021Assignees: Saudi Arabian Oil Company, Sumitomo Chemical Company, LimitedInventors: Motaz Khawaji, Hussain Al Yami, Sohel Shaikh, Wei Xu, Kenji Sogo
-
Patent number: 10676545Abstract: Catalyst deactivating agents and compositions containing catalyst deactivating agents are disclosed. These catalyst deactivating agents can be used in methods of controlling polymerization reactions, methods of terminating polymerization reactions, methods of operating polymerization reactors, and methods of transitioning between catalyst systems.Type: GrantFiled: February 11, 2019Date of Patent: June 9, 2020Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Qing Yang, Kathy S. Clear, Tony R. Crain, Timothy O. Odi
-
Patent number: 10508164Abstract: The low density polyethylene copolymer according to the present invention is characterized in that as LCB (Long Chain Branch) is introduced into LLDPE, the melt strength is remarkably high even without blending with LDPE, and thus it can be advantageously applied to blown film processing and the like.Type: GrantFiled: December 23, 2016Date of Patent: December 17, 2019Assignee: LG Chem, Ltd.Inventors: Oh Joo Kwon, Sol Cho, Ki Soo Lee, Heon Yong Kwon, Dae Sik Hong, Sung Hyun Park, Myung Han Lee
-
Patent number: 10308737Abstract: The present invention deals with a process for polymerizing ethylene in the presence of an olefin polymerization catalyst comprising titanium, magnesium and halogen in at least one polymerization stage where ethylene is polymerized in slurry, the process comprising treating the polymerization catalyst in a pre-treatment step by polymerizing an olefin on the polymerization catalyst so that the ratio of the weight of the olefin polymer to the weight of the original solid catalyst component is from 0.1 to 10 g/g and using the pre-treated catalyst in the production of ultra-high molecular weight polyethylene.Type: GrantFiled: September 29, 2015Date of Patent: June 4, 2019Assignee: BOREALIS AGInventors: Ravindra Tupe, Pernilla Fagerstolt
-
Patent number: 10273315Abstract: Catalyst deactivating agents and compositions containing catalyst deactivating agents are disclosed. These catalyst deactivating agents can be used in methods of controlling polymerization reactions, methods of terminating polymerization reactions, methods of operating polymerization reactors, and methods of transitioning between catalyst systems.Type: GrantFiled: June 20, 2012Date of Patent: April 30, 2019Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Qing Yang, Kathy S. Clear, Tony R. Crain, Timothy O. Odi
-
Patent number: 9994973Abstract: The present invention relates to fibers, particularly to as-spun fibers, having improved properties, in particular improved bonding performance and mechanical properties. In particular, the present invention relates to fibers comprising a metallocene random copolymer of propylene and one or more comonomers, said metallocene random copolymer having a broader molecular weight distribution. The present invention further relates to nonwovens comprising such fibers and to a process for producing such fibers and nonwovens. The fibers and the nonwovens of the present invention are characterized by improved properties, in particular improved bonding performance and mechanical properties, when compared to the prior art fibers and nonwovens.Type: GrantFiled: February 19, 2009Date of Patent: June 12, 2018Assignee: Total Research & Technology FeluyInventors: John Bieser, Guillaume Pavy, Hugues Haubruge, Alain Standaert, William Rusty Wheat
-
Patent number: 9624321Abstract: A process of forming a Ziegler-Natta catalyst component is disclosed. The process includes contacting an alkyl magnesium compound with an alcohol and a first organoaluminum compound to form a magnesium dialkoxide compound and contacting the magnesium dialkoxide compound with a titanating agent to form reaction product “A.” The process further includes reacting reaction product “A” with a halogenating agent to form reaction product “B” and reacting reaction product “B” with a second organoaluminum compound to form a single halogenated catalyst component.Type: GrantFiled: June 13, 2014Date of Patent: April 18, 2017Assignee: Fina Technology, Inc.Inventors: Lei Zhang, David J. Rauscher
-
Patent number: 9598531Abstract: This invention relates to olefin metathesis catalysts and methods for controlling olefin metathesis reactions. More particularly, the present invention relates to methods and compositions for catalyzing and controlling ring opening metathesis polymerization (ROMP) reactions and the manufacture of polymer articles via ROMP. This invention also relates to olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts, wherein the at least two metal carbene olefin metathesis catalysts are structurally different, are chemically different, are distinct compounds, are not isomers, are not structural isomers, are not diastereoisomers, are not stereoisomers, are not enantiomers, or are not cis/trans isomers of each other, or any combinations thereof.Type: GrantFiled: September 2, 2015Date of Patent: March 21, 2017Assignee: MATERIA, INC.Inventors: Anthony R. Stephen, Christopher J. Cruce, Michael A. Giardello
-
Patent number: 9156728Abstract: The present invention relates to fabrics, composites, prepregs, laminates, and other products incorporating glass fibers formed from glass compositions. The glass fibers, in some embodiments, are incorporated into composites that can be adapted for use in high energy impact applications such as ballistic or blast resistance applications. Glass fibers formed from some embodiments of the glass compositions can have certain desirable properties that can include, for example, desirable electrical properties (e.g. low Dk) or desirable mechanical properties (e.g., specific strength).Type: GrantFiled: September 14, 2011Date of Patent: October 13, 2015Assignee: PPG Industries Ohio, Inc.Inventors: James Carl Peters, Juan Camilo Serrano, Hong Li, Cheryl A. Richards
-
Publication number: 20150133612Abstract: Methods for controlling properties of an olefin polymer using an alcohol compound are disclosed. The MI and the HLMI of the polymer can be decreased, and the Mw and the Mz of the polymer can be increased, via the addition of the alcohol compound.Type: ApplicationFiled: January 22, 2015Publication date: May 14, 2015Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Albert P. Masino, Ted H. Cymbaluk, John D. Stewart
-
Patent number: 8993693Abstract: A Ziegler-Natta catalyzed ethylene copolymer having a novel composition distribution in which comonomers are incorporated into the high molecular weight polymer molecules and distributed evenly among the entire polyethylene chains, and a method for making the same are provided. The resins having a novel composition distribution have controlled molecular weight distribution which is narrower than conventional ZN-ethylene copolymers but broader than single-site catalyzed ethylene copolymers. The resins having a novel composition distribution exhibit a superior tear strength and impact strength.Type: GrantFiled: March 23, 2012Date of Patent: March 31, 2015Assignee: Formosa Plastics CorporationInventors: Honglan Lu, Guangxue Xu
-
Patent number: 8940838Abstract: The method for preparation of polyisoprene includes conducting polymerization reaction of isoprene in a first organic solvent under the presence of rare earth catalyst I and rare earth catalyst II, to obtain polyisoprene with bimodal molecular weight distribution, wherein the polymerization reaction conditions are controlled to ensure the peak molecular weight of the high molecular weight component fraction in the polyisoprene is 1×106-2×106 and the peak molecular weight of the low molecular weight component fraction is 2×105-4×105, and the weight ratio of content of the high molecular weight component fraction to the low molecular weight component fraction is 1-25:1. The molecular weight distribution of the polyisoprene obtained with the method provided is bimodal distribution; therefore, the polyisoprene not only has the mechanical properties of polyisoprene with high molecular weight, but also has the processability of polyisoprene with low molecular weight.Type: GrantFiled: May 28, 2013Date of Patent: January 27, 2015Assignees: China Petroleum & Chemcial Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical CorporationInventors: Aimin Liang, Jie Zhang, Jiangwei Zhao, Chuanqing Li, Lin Xu, Ximing Xie, Guozhu Yu, Sufang Ouyang, Jinmei Tan, Liangliang Yang, Wei Sun, Yishuang Xin
-
Patent number: 8940842Abstract: Methods for controlling the weight ratio of a higher molecular weight component to a lower molecular weight component of an olefin polymer are disclosed. This weight ratio can be increased as polymerization reaction temperature and/or catalyst system residence time are increased.Type: GrantFiled: September 24, 2012Date of Patent: January 27, 2015Assignee: Chevron Phillips Chemical Company LPInventors: Qing Yang, Tony R. Crain, Jerry T. Lanier, Jeff S. Fodor
-
Patent number: 8927671Abstract: The present invention relates to an ethylene-?-olefin copolymer satisfying the following requirements (A) to (E): (A) the MFR is 0.1 to 50 g/10 min., (B) the density is 860 to 970 kg/m3, (C) the Mz/Mw is from 3.0 to 6.0, (D) the fraction having a molecular weight of 106.5 g/mol of the ethylene-?-olefin copolymer has a branching index g? of 0.26 or more, and (E) the Ea is 60 to 90 kJ/mol.Type: GrantFiled: September 30, 2013Date of Patent: January 6, 2015Assignee: Sumitomo Chemical Company, LimitedInventors: Jumma Nomura, Masato Takano, Yoshinobu Nozue
-
Publication number: 20140235804Abstract: The present invention provides dual catalyst systems and polymerization processes employing these dual catalyst systems. The disclosed polymerization processes can produce olefin polymers at higher production rates, and these olefin polymers may have a higher molecular weight and/or a lower melt index.Type: ApplicationFiled: April 29, 2014Publication date: August 21, 2014Applicant: Chevron Phillips Chemical Company LPInventors: Albert P. Masino, Rex E. Murray, Qing Yang, Steve J. Secora, Kumudini C. Jayaratne, William B. Beaulieu, Errun Ding, Gary L. Glass, Alan L. Solenberger, Ted H. Cymbaluk
-
Patent number: 8802584Abstract: A supported catalyst system comprising a phosphinimine ligand containing catalyst on a porous inorganic support treated with a metal salt has improved reactor continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation. The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.Type: GrantFiled: March 27, 2012Date of Patent: August 12, 2014Assignee: Nova Chemicals (International) S.A.Inventors: Lee Douglas Henderson, Peter Phung Minh Hoang, Ian Ronald Jobe, Xiaoliang Gao
-
Publication number: 20140114031Abstract: Metallocene compounds of the invention are useful as olefin polymerization catalysts or catalyst components. Olefin polymerization processes of the invention involve an olefin polymerization catalyst containing the metallocene compound. In detail, the olefin polymerization catalysts can catalyze with high polymerization activity the production of olefin polymers having high melt tension, excellent mechanical strength and good particle properties, and the olefin polymerization processes involve the catalysts. Ethylene polymers according to the invention are obtained by the polymerization processes and have higher processability and easy-opening properties and particularly excellent mechanical strength compared to conventional ethylene polymers. Thermoplastic resin compositions of the invention contain the ethylene polymers.Type: ApplicationFiled: December 20, 2013Publication date: April 24, 2014Applicant: Prime Polymer Co., Ltd.Inventors: Hideki BANDO, Yasuo SATOH, Takashi YUKITA, Yasuyuki HARADA, Yoshiho SONOBE, Yasushi TOHI, Yusuke SEKIOKA, Masao SUZUKI, Daisuke TANIFUJI
-
Patent number: 8691715Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.Type: GrantFiled: January 24, 2013Date of Patent: April 8, 2014Assignee: Chevron Phillips Chemical Company LPInventors: Qing Yang, Max P. McDaniel, William B. Beaulieu, Joel L. Martin, Tony R. Crain
-
Patent number: 8680218Abstract: Methods for controlling properties of an olefin polymer using an organozinc compound are disclosed. The HLMI/MI shear ratio of the polymer can be decreased and the Mz/Mw ratio of the polymer can be increased via the addition of the organozinc compound.Type: GrantFiled: January 30, 2013Date of Patent: March 25, 2014Assignee: Chevron Phillips Chemical Company LPInventors: Qing Yang, Max P. McDaniel, Errun Ding, Ted H. Cymbaluk, Tony R. Crain, Gary L. Glass
-
Publication number: 20130345375Abstract: The olefin polymerization catalyst composition comprises an organometallic compound represented by Formula 1; an organic transition metal compound represented by Formula 2; an organic transition metal compound represented by Formula 3; and an aluminoxane. (Cp?)lM1R1mR2n??Formula 1: wherein M1 is an element selected from the group of elements of Group 1, 2, 12, 13 and 14, (Cp?) is a cyclic hydrocarbyl group of 5 to 30 carbon atoms having at least 2 conjugated double bonds, R1 and R2 are independently a hydrocarbyl group of 1 to 24 carbon atoms, l is an integer of 1 to the valence of M1, m and n are independently an integer of 0 to 2, and l+m+n is equal to the valence of M1, (4HInd)2M2X2??Formula 2: M2X4??Formula 3: wherein in Formulas 2 and 3, (4HInd) is a group having tetrahydroindenyl nucleus, M2 is titanium (Ti), zirconium (Zr) or hafnium (Hf), and X is a halogen atom.Type: ApplicationFiled: June 26, 2012Publication date: December 26, 2013Applicant: DAELIM INDUSTRIAL CO., LTD.Inventors: Sah-Mun HONG, Hye-Sun CHOI
-
Publication number: 20130317176Abstract: The method for preparation of polyisoprene includes conducting polymerization reaction of isoprene in a first organic solvent under the presence of rare earth catalyst I and rare earth catalyst II, to obtain polyisoprene with bimodal molecular weight distribution, wherein the polymerization reaction conditions are controlled to ensure the peak molecular weight of the high molecular weight component fraction in the polyisoprene is 1×106-2×106 and the peak molecular weight of the low molecular weight component fraction is 2×105-4×105, and the weight ratio of content of the high molecular weight component fraction to the low molecular weight component fraction is 1-25:1. The molecular weight distribution of the polyisoprene obtained with the method provided is bimodal distribution; therefore, the polyisoprene not only has the mechanical properties of polyisoprene with high molecular weight, but also has the processability of polyisoprene with low molecular weight.Type: ApplicationFiled: May 28, 2013Publication date: November 28, 2013Applicants: Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation, China Petroleum & Chemical CorporationInventors: Aimin LIANG, Jie Zhang, Jiangwei Zhao, Chuanqing Li, Lin Xu, Ximing Xie, Guozhu Yu, Sufang Ouyang, Jinmei Tan, Liangliang Yang, Wei Sun, Yishuang Xin
-
Publication number: 20130253150Abstract: A Ziegler-Natta catalyzed ethylene copolymer having a novel composition distribution in which comonomers are incorporated into the high molecular weight polymer molecules and distributed evenly among the entire polyethylene chains, and a method for making the same are provided. The resins having a novel composition distribution have controlled molecular weight distribution which is narrower than conventional ZN-ethylene copolymers but broader than single-site catalyzed ethylene copolymers. The resins having a novel composition distribution exhibit a superior tear strength and impact strength.Type: ApplicationFiled: March 23, 2012Publication date: September 26, 2013Inventors: Honglan Lu, Guangxue Xu
-
Patent number: 8536081Abstract: Supported catalyst system for the polymerization of olefins, having at least two different monocyclopentadienyl transition metal compounds, one or more activators including an ionic compound having (i) a cation and (ii) an anion having up to 100 non-hydrogen atoms and the anion containing at least one substituent comprising a moiety having an active hydrogen, and one or more support materials. The supported “mixed or dual site” catalyst systems having different monocyclopentadienyl catalysts when activated by specific ionic activators lead to catalyst systems showing an improved balance of properties which may be used to prepare LLDPE polymers having broad melt flow ratios.Type: GrantFiled: November 10, 2005Date of Patent: September 17, 2013Assignee: Ineos Europe LimitedInventors: Grant Berent Jacobsen, Dusan Jeremic, Sergio Mastroianni, Ian Douglas McKay
-
Patent number: 8492498Abstract: A polymer having a density of from about 0.94 g/cm3 to about 0.96 g/cm3 and a primary structure parameter 2 (PSP2 value) of greater than about 8.5, wherein an article formed from the polymer has an environmental stress crack resistance of equal to or greater than about 1000 hours when measured in accordance with ASTM D 1693 condition A. A polymer having at least one lower molecular weight component and at least one higher molecular weight component and having a PSP2 value of equal to or greater than about 8.5, wherein an article formed from the polymer has an environmental stress crack resistance of greater than about 1000 hours when measured in accordance with ASTM D 1693 condition A.Type: GrantFiled: February 21, 2011Date of Patent: July 23, 2013Assignee: Chevron Phillips Chemical Company LPInventors: Richard M. Buck, Albert P. Masino, Qing Yang, Paul J. DesLauriers, Steven J. Secora, Elizabeth M. Lanier, Guylaine St. Jean, Jon D. Ratzlaff, Christopher E. Wittner
-
Patent number: 8487053Abstract: Methods for removing polymer skins or build-up from reactor walls in polymerization reactor systems containing a loop slurry reactor are disclosed. Such methods can employ removing some or all of the comonomer from the reactor system in combination with increasing the polymerization temperature of the loop slurry reactor.Type: GrantFiled: November 30, 2011Date of Patent: July 16, 2013Assignee: Chevron Phillips Chemical Company LPInventors: George R. Rajaendran, Max P. McDaniel, Gregory G. Hendrickson, John D. Stewart, John D. Hottovy, Ted H. Cymbaluk, Susannah Lane, Richard A. Hernandez, Elliott W. Johnson, Qing Yang, William L. Valerioti, Eric Schwerdtfeger, Albert P. Masino
-
Publication number: 20130085243Abstract: A catalyst component for the polymerization of olefins obtained by: (a) reacting in a inert hydrocarbon suspension medium a Mg(OR1)(OR2) compound, in which R1 and R2 are identical or different and are each an alkyl radical having 1 to 10 carbon atoms, with a tetravalent transition metal compound having at least a Metal-halogen bond, used in amounts such that the molar ratio metal/Mg is from 0.05 to 10, thereby obtaining a solid reaction product dispersed in a hydrocarbon slurry, (b) washing the solid reaction product dispersed in a hydrocarbon slurry with a liquid hydrocarbon, (c) contacting the washed solid reaction product obtained in (b) with a tetravalent titanium compound and (d) contacting the product obtained in (c) with an organometallic compound of a metal of group 1, 2 or 13 of the Periodic Table.Type: ApplicationFiled: June 6, 2011Publication date: April 4, 2013Applicant: BASELL POLYOLEFINE GMBHInventors: Friedhelm Gundert, Martin Schneider
-
Patent number: 8404833Abstract: Preparation and use of synthetic disaccharides useful for the preparation of synthetic heparinoids.Type: GrantFiled: December 14, 2011Date of Patent: March 26, 2013Assignee: Alchemia LimitedInventors: Joachim Seifert, Latika Singh, Tracie E. Ramsdale, Michael L. West, Nicholas B. Drinnan
-
Patent number: 8383754Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.Type: GrantFiled: April 19, 2010Date of Patent: February 26, 2013Assignee: Chevron Phillips Chemical Company LPInventors: Qing Yang, Max P. McDaniel, William B. Beaulieu, Joel L. Martin, Tony R. Crain
-
Patent number: 8318872Abstract: A method of performing a polymerization reaction in a gas phase polymerization reactor to produce a bimodal polymer while controlling activity of a bimodal polymerization catalyst composition in the reactor by controlling concentration of at least one induced condensing agent (‘ICA’) in the reactor is provided. In some embodiments, the ICA is isopentane (or another hydrocarbon compound) and the bimodal catalyst composition includes a Group 15 and metal containing catalyst compound (or other HMW catalyst for catalyzing polymerization of a high molecular weight fraction of the product), and a metallocene catalyst compound (or other LMW catalyst for catalyzing polymerization of a low molecular weight fraction of the product).Type: GrantFiled: December 17, 2008Date of Patent: November 27, 2012Assignee: Univation Technologies, LLCInventors: Bruce J. Savatsky, John H. Oskam, Mark W. Blood, Mark B. Davis, Douglas H. Jackson, Timothy R. Lynn, Daniel P. Zilker, Jr.
-
Patent number: 8318873Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. An improved method for preparing cyclopentadienyl complexes used to produce polyolefins is also provided.Type: GrantFiled: February 3, 2011Date of Patent: November 27, 2012Assignee: Chevron Phillips Chemical Company LPInventors: Kumudini C. Jayaratne, Michael D. Jensen, Qing Yang
-
Patent number: 8247342Abstract: A highly active supported chromium catalyst composition for ethylene and other olefins polymerization and also for ethylene copolymerization with efficient incorporation of comonomer, produces polymers with superior spherical morphology, improved bulk density and almost 0% fines. The catalyst composition component includes at least one chromium compound, mainly chromium acetylacetonate, or chromium hexaflouroacetonylacetonate, or chromium diethylmalonate. One magnesium compound, or aluminum compound, metal alkoxy compound and defined polymer particles mainly chloromethylated cross linked styrene-DVB copolymer or polyvinylchloride. The catalyst composition, when used in conjunction with an organoaluminum compound or a mixture of organoaluminum compounds, can be used for olefin polymerization to produce medium or high density polyethylene and copolymers of ethylene with alpha-olefins having about 3 to 18 carbon atoms.Type: GrantFiled: July 23, 2008Date of Patent: August 21, 2012Inventor: Abdullah Saad N. Al-Arifi
-
Publication number: 20120202955Abstract: Catalyst Systems, processes of forming the same and polymers and polymerization processes are described herein.Type: ApplicationFiled: February 7, 2011Publication date: August 9, 2012Applicant: Fina Technology, Inc.Inventors: LEI ZHANG, Kenneth Blackmon, David Rauscher
-
Publication number: 20120190804Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.Type: ApplicationFiled: February 15, 2012Publication date: July 26, 2012Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: QING YANG, KUMUDINI C. JAYARATNE, MICHAEL D. JENSEN, MAX P. MCDANIEL, JOEL L. MARTIN, MATTHEW G. THORN, JERRY T. LANIER, TONY R. CRAIN
-
Patent number: 8153734Abstract: The present invention discloses a process for preparing polyethylene resins in a double loop reactor wherein the catalyst system comprises a bis-tetrahydroindenyl and a bis-indenyl catalyst component deposited on the same support. It also discloses the polyethylene resins obtained by the process and their use to prepare films having a good compromise of haze, processing and mechanical properties.Type: GrantFiled: November 4, 2008Date of Patent: April 10, 2012Assignee: Total Petrochemicals Research FeluyInventors: Jacques Michel, Martine Slawinski, Guy Debras
-
Publication number: 20120065346Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 860 to 950 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a single melting peak measured by a differential scanning calorimeter (DSC).Type: ApplicationFiled: May 27, 2010Publication date: March 15, 2012Applicant: SUMITOMO CHEMICAL COMPANY, LIMITEDInventors: Yoshinobu Nozue, Naoko Ochi
-
Publication number: 20120010375Abstract: The present invention provides a polymerization process utilizing a dual metallocene catalyst system for the production of broad or bimodal molecular weight distribution polymers, generally, in the absence of added hydrogen. Polymers produced from the polymerization process are also provided, and these polymers can have a Mn in a range from about 9,000 to about 30,000 g/mol, and a short chain branch content that decreases as molecular weight increases.Type: ApplicationFiled: July 6, 2010Publication date: January 12, 2012Applicant: CHERVON PHILLIPS CHEMICAL COMPANY LPInventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu
-
Publication number: 20110257348Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.Type: ApplicationFiled: April 19, 2010Publication date: October 20, 2011Applicant: Chevron Phillips Chemical Company LPInventors: Qing Yang, Max P. McDaniel, William B. Beaulieu, Joel L. Martin, Tony R. Crain
-
Patent number: 8039569Abstract: Monomodal molding compositions based on polymers of ethylene, wherein the density of the molding compositions is in the range from 0.940 to 0.96 g/cm3, the Mi is in the range from 0.5 to 10.0 g/10 min. the polydispersity Mw/Mn is in the range from 3 to 20, the branches/1000 carbon atoms is in the range from 0.1 to 10 and the weight average molar mass Mw is in the range from 50 000 g/mol to 150 000 g/mol, and also injection-molded shaped bodies as well as screw closures comprising the molding compositions.Type: GrantFiled: April 15, 2006Date of Patent: October 18, 2011Assignee: Basell Polyolefine GmbHInventors: Jennifer Kipke, Shahram Mihan, Rainer Karer
-
Patent number: 8008403Abstract: A polyethylene which comprises ethylene homopolymers and/or copolymers of ethylene with 1-alkenes and has a molar mass distribution width Mw/Mn of from 5 to 30, a density of from 0.92 to 0.955 g/cm3, a weight average molar mass Mw of from 50000 g/mol to 500 000 g/mol and has from 0.01 to 20 branches/1000 carbon atoms and a z-average molar mass Mz of less than 1 million g/mol, a process for its preparation, catalysts suitable for its preparation and also films in which this polyethylene is present.Type: GrantFiled: April 25, 2005Date of Patent: August 30, 2011Assignee: Basell Polyolefine GmbHInventors: Jennifer Kipke, Shahram Mihan, Rainer Karer, Dieter Lilge
-
Patent number: 7981992Abstract: Copolymers, especially multi-block copolymer containing therein two or more segments or blocks, are prepared by polymerizing propylene, 4-methyl-1-pentene, or another C4-8 ?-olefin in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers having increased incidence of regio-irregular branching compared to the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.Type: GrantFiled: January 30, 2006Date of Patent: July 19, 2011Assignee: Dow Global Technologies LLCInventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
-
Patent number: 7951743Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.Type: GrantFiled: July 29, 2008Date of Patent: May 31, 2011Assignee: Equistar Chemicals, LPInventor: Shaotian Wang
-
Patent number: 7915192Abstract: A composition for use in forming a multi-block copolymer from a single polymerizable monomer, said copolymer containing therein two or more segments or blocks differing in branching index, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization catalyst, (B) a second olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, at least one of catalyst (A) or catalyst (B) being capable of forming a branched polymer by means of chain walking or reincorporation of in situ formed olefinic polymer chains, and (C) a chain shuttling agent.Type: GrantFiled: March 17, 2005Date of Patent: March 29, 2011Assignee: Dow Global Technologies LLCInventors: Daniel J. Arriola, David D. Devore, Edmund M. Carnahan, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
-
Patent number: 7897706Abstract: The present invention relates to a supported, treated catalyst system and its use in a process for polymerizing olefin(s). More particularly, it provides a supported, treated catalyst system produced by a process comprising the steps of: (a) forming a supported bimetallic catalyst system comprising a first catalyst component and a metallocene catalyst compound; and (b) contacting the supported bimetallic catalyst system of (a) with at least one methylalumoxane-activatable compound.Type: GrantFiled: June 27, 2008Date of Patent: March 1, 2011Assignee: Univation Technologies, LLCInventor: Sun-Chueh Kao
-
Patent number: 7842763Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.Type: GrantFiled: October 6, 2008Date of Patent: November 30, 2010Assignee: Chevron Phillips Chemical Company LPInventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
-
Patent number: 7829641Abstract: A two-stage cascade polymerization process for the production of multimodal polyethylene film resins with improved bubble stability is provided. The process comprises polymerizing ethylene or a mixture of ethylene and a C4-8 ?-olefin in two reactors arranged in series using a mixed single-site catalyst comprised of a bridged and a non-bridged indenoindolyl transition metal complex to form a multimodal polyethylene resin comprised of a lower molecular weight, higher density component and a higher molecular weight, lower density component.Type: GrantFiled: July 16, 2008Date of Patent: November 9, 2010Assignee: Equistar Chemicals, LPInventors: Bradley P. Etherton, Stephen M. Imfeld, Philip J. Garrison
-
Patent number: 7825200Abstract: Described are novel monomers bearing functionalities capable of initiating control free radical reactions, and a novel process using these initiating monomers in the co-polymerization of an olefin for the formation of well-controlled polyethylene graft polymers where the graft component is derived from controlled free radical polymerization reactions. The initiating monomers are produced by combining an amount of 5-norbornen-2-ol with a hydride or amine for a predetermined amount of time to form a mixture; and adding an amount of an alkyl or acyl halide to said mixture. Polymerization of an olefin with an initiating monomer is conducted in the presence of a metal compound, where the metal compound is comprised of a Group VIII transition metal complex.Type: GrantFiled: January 18, 2007Date of Patent: November 2, 2010Assignee: The Regents of the University of CaliforniaInventors: Guillermo C. Bazan, Robert C. Coffin
-
Patent number: 7816478Abstract: A thick film and process to prepare polyethylene useful for the film are disclosed. Ethylene is polymerized in two reaction zones with a C6-C10 ?-olefin in the presence of a catalyst system comprising an activator, a supported bridged zirconium complex, and a supported non-bridged zirconium complex. The process yields medium density to linear low density polyethylene having a melt index from 0.20 to 1.0 dg/min. Thick films from the polyethylene have a superior combination of high impact strength and high modulus.Type: GrantFiled: September 3, 2008Date of Patent: October 19, 2010Assignee: Equistar Chemicals, LPInventors: Bradley P. Etherton, Stephen M. Imfeld, Mohan Sasthav
-
Publication number: 20100227987Abstract: A propylene-based polymer which is suitably applicable to foam molding, sheet molding, blow molding or the like, because of having good flow characteristics, high melt tension, high swell ratio and thus good molding workability. It is attained by a propylene-based polymer or the like characterized by satisfying the following requirements (i) to (vi). Requirement (i): MFR is 0.1 g/10 minutes to 100 g/10 minutes. Requirement (ii): Q value by GPC is 3.5 to 10.5. Requirement (iii): ratio of components with a molecular weight of equal to or higher than 2,000,000, in a molecular weight distribution curve obtained by GPC, is equal to or larger than 0.4% by weight and less than 10% by weight. Requirement (iv): components, which elute at a temperature of equal to or lower than 40° C., are equal to or less than 3.0% by weight, in temperature rising elution fractionation by ODCB. Requirement (v): isotactic triad fraction (mm) measured with 13C-NMR is equal to or higher than 95%.Type: ApplicationFiled: May 16, 2008Publication date: September 9, 2010Applicant: JAPAN POLYPROPYLENE CORPORATIONInventors: Masaaki Ito, Hideshi Uchino, Yoshiyuki Ishihama, Masaru Aoki, Masato Nakano, Fusaaki Katou, Kazuo Asuka
-
Patent number: 7741420Abstract: This invention relates to a process to polymerize olefins comprising contacting, under supercritical conditions, olefin monomers with a catalyst compound, an activator, optional comonomer, and optional hydrocarbon diluent or solvent.Type: GrantFiled: June 20, 2005Date of Patent: June 22, 2010Assignee: ExxonMobil Chemical Patents Inc.Inventor: Patrick Brant
-
Publication number: 20100093954Abstract: The invention relates to a polymerization process, the polymerization process includes contacting a cyclic bridged metallocene catalyst represented by the following formula: LA(A)LBMQn wherein A is a divalent group bound to each of LA and LB; each of LA and LB are bound to M, and each Q is bound to M; LA and LB are independently selected from the group consisting of cyclopentadienyl ligands and substituted cyclopentadienyl ligands; A is a divalent bridging group comprising a heterocyclic ring comprising from 3 to 6 carbon atoms and one silyl, thus forming a 4 to 7 member divalent ring; M is a Group 4, 5, or 6 transition metal; Q is independently a halogen, a hydride, or a hydrocarbyl radical having from 1 to 20 carbon atoms; wherein n is 1 or 2; with an activator, and optionally a support, to form an activated catalyst and, subsequently, contacting the activated catalyst with ethylene and optionally, at least one C3-C8 alpha olefin comonomer.Type: ApplicationFiled: December 14, 2009Publication date: April 15, 2010Applicant: UNIVATION TECHNOLOGIES, LLCInventors: Donna J. Crowther, John Francis Szul