Contains Organic Non-metal Containing B, Si, N, P, Or Chalcogen Material Patents (Class 526/124.6)
  • Patent number: 11161924
    Abstract: An ethylene/alpha-olefin copolymer that can be synthesized in a fluidized-bed, gas phase polymerization reactor and made into a blown film. The ethylene/alpha-olefin copolymer is characterized by a bubble stability-effective combination of properties comprising density, melt flow ratio (“I21/I5”), and melt storage modulus G? (G?=3,000 Pa). The synthesis in the FB-GPP reactor is characterized by a property-imparting-effective combination of operating conditions comprising reactor bed temperature and H2/C2 gas molar ratio. An embodiment of the blown film consisting of the ethylene/alpha-olefin copolymer is characterized by enhanced bubble stability. A method of making the ethylene/alpha-olefin copolymer. A film comprising the ethylene/alpha-olefin copolymer. A method of making the film. A manufactured article comprising the film.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: November 2, 2021
    Assignee: Univation Technologies, LLC
    Inventors: Bo Liu, Mark G. Goode, Ayush A. Bafna, Daniel C. Garska, François Alexandre, Timothy R. Lynn
  • Patent number: 10766854
    Abstract: The present invention relates to a process for synthesis of a compound according to Formula (A): wherein R1 is a substituted or unsubstituted aryl having 6 to 20 carbon atoms; preferably substituted or unsubstituted phenyl; R2 is a straight or branched alkyl having 1 to 12 carbon atoms; and R3 is a straight or branched alkyl having 1 to 12 carbon atoms; starting from a di-keto compound according to Formula (B) wherein R3 is as shown above, which compound is converted into a ketoenamine compound according to Formula (C) wherein R2 and R3 are as shown above, which ketoenamine compound is then reduced to an amino alcohol according to Formula (D), wherein R2 and R3 are as shown above, that is subsequently converted into a compound according to Formula (A): characterized in that the ketoenamine is reduced into an amino alcohol using a nickel aluminium alloy in an aqueous solution of an inorganic base.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: September 8, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Shirish Shrikant Abhyankar, Abbas-Alli Ghudubhai Shaikh, Sivalingam Gunasekaran, Jaiprakash Brijlal Sainani
  • Patent number: 9758602
    Abstract: The present invention describes a process for preparing catalyst for the polymerization of ethylene consisting essentially of the steps of (i) contacting a magnesium based precursor with a solvent; and (ii) then contacting the magnesium based precursor in the solvent with a transition metal compound to obtain the catalyst, wherein step (ii) is single contact step. The present invention also relates to a process for preparation of a catalyst system and a process of polymerizing and/or copolymerizing of ethylene to obtain a polyethylene using the catalyst.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: September 12, 2017
    Assignee: INDIAN OIL CORPORATION LIMITED
    Inventors: Gurmeet Singh, Naresh Kumar, Bhasker Bantu, Sukhdeep Kaur, Rashmi Rani, Mohasin Momin, Gurpreet Singh Kapur, Shashikant, Biswajit Basu, Ravinder Kumar Malhotra
  • Patent number: 9394392
    Abstract: A polymerization process including the use of a first Ziegler-Natta type procatalyst having no internal electron donor and a second Ziegler-Natta type procatalyst including an internal electron donor is provided.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 19, 2016
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventor: Robert J. Jorgensen
  • Publication number: 20150073108
    Abstract: The present invention relates to a high surface area silicon derivative free magnesium-titanium catalyst system for ethylene polymerization comprising: magnesium mixed alkoxide and titanium chloride. The present invention also provides a simple process for the preparation of high surface area silicon derivative free magnesium-titanium catalyst system for ethylene polymerization by reacting magnesium alkoxide precursor with titanium compound using dialkyl dialkoxy silane as external donor. The invention further relates to the process for ethylene polymerization using the silicon derivative free magnesium-titanium catalyst system and polyethylene produced by the catalyst system having narrow molecular weight distribution and higher bulk density.
    Type: Application
    Filed: July 26, 2012
    Publication date: March 12, 2015
    Applicant: Reliance Industries Limited
    Inventors: Harshad Ramdas Patil, Virendrakumar Gupta, Ajay Vinoklal Kothari
  • Publication number: 20140364576
    Abstract: Disclosed is a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst is characterized by a high catalyst activity for olefin polymerization and a significant monomer effect. Further disclosed is use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization. The polymer produced therewith is characterized by superior particle morphology, a high bulk density, and/or a narrow molecular weight distribution.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 11, 2014
    Applicants: SINOPEC YANGZI PETROCHEMICAL COMPANY LTD., CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Chuanfeng LI, Hongping REN, Lin KAN, Feng GUO, Wenrui WANG, Yuming YI, Shaohui CHEN, Jiye BAI
  • Publication number: 20140243489
    Abstract: Catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor compound of the following formula (I) In which R to R12 groups, equal to or different from each other, are hydrogen, halogen or C1-C15 hydrocarbon groups, optionally containing an heteroatom selected from halogen, P, S, N and Si, with the proviso that R groups cannot be hydrogen and that the carboxylate groups are in trans configuration with respect to each other.
    Type: Application
    Filed: October 11, 2012
    Publication date: August 28, 2014
    Applicant: Basell Poliolefine Italia S.r.l.
    Inventors: Ilya Nifant'ev, Alessandro Mignogna, Vladimir Bagrov, Simona Esposito, Simona Guidotti, Giampiero Morini, Joachim T.M. Pater, Fabrizio Piemontesi, Sophia A. Toloraya
  • Publication number: 20140235805
    Abstract: The presently disclosed and claimed inventive concept(s) relates to solid catalyst components comprising titanium, magnesium, halogen and an internal electron donor compound having at least one ester group and at least one alkoxy group, and catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds. The presently disclosed and claimed inventive concept(s) further relates to methods of making the catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 21, 2014
    Applicant: BASF CORPORATION
    Inventor: Main Chang
  • Publication number: 20140171604
    Abstract: Solid adducts comprising MgCl2 and an alcohol ROH in which R is a C1-C20 hydrocarbon group, in which the amount of alcohol ranges from higher than 42% to 60% by weight and the porosity determined with Hg method due to pores up to 1 ?m and expressed in cm3/g, is such that the value of its ratio with the amount of alcohol in percentage falls above the straight line defined by the equation y=?0.0158x+1.03 in which y is the porosity of the adduct and x is the alcohol percentage by weight.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 19, 2014
    Applicant: Basell Poliolefine Italia S.r.l.
    Inventors: Daniele Evangelisti, Benedetta Gaddi, Gianni Collina
  • Publication number: 20140142262
    Abstract: Catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor compound of the following formula (I) In which R1 to R4 groups, equal to or different from each other, are hydrogen, C1-C15 hydrocarbon groups, optionally containing an heteroatom selected from halogen, P, S, N and Si, R6 group is selected from C1-C15 hydrocarbon groups optionally containing an heteroatom selected from halogen, P, S, N and Si, and R5 is selected from phenyl groups mono or poly substituted with halogens, said groups R1-R4 being also optionally linked to form a saturated or unsaturated mono or poly cycle.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 22, 2014
    Applicant: Basell Poliolefine Italia S.r.I.
    Inventors: Alessandro Mignogna, Davide Balboni, Antonio Cristofori, Simona Guidotti, Giampiero Morini, Joachim T.M Peter
  • Publication number: 20120220739
    Abstract: The present invention relates to catalysts systems for the polymerization of ethylene and its mixtures with olefins CH2?CHR, wherein R is an alkyl, cycloalkyl or aryl radical having 1-12 carbon atoms, comprising (A) a solid catalyst component comprising Ti, Mg, halogen, and optionally an electron donor compound in a donor/Ti molar ratio lower than 1, (B) an aluminum alkyl compound and (C) a silicon compound of formula RImSi(ORII)n in which RI is C1-C20 alkyl group, RII is a secondary or tertiary alkyl group or a cycloalkyl having from 3 to 20 carbon atoms, m is an integer ranging from 0 to 3, and n is (4-m). The catalyst of the invention is suitably used in (co)polymerization processes of ethylene to prepare (co)polymers having narrow Molecular Weight Distribution (MWD) and high activity.
    Type: Application
    Filed: May 31, 2010
    Publication date: August 30, 2012
    Applicant: BASELL POLIOLEFINE ITALIA S.R.L.
    Inventors: Masaki Fushimi, Martin Schneider, Giampiero Morini
  • Patent number: 8202932
    Abstract: This invention relates to (meth)acrylate-based polymerizable compositions and adhesive systems prepared therefrom, which include a alkylated borohydride or tetraalkyl borane metal or ammonium salt and an amino silane or an amino silane capped polymer. The inventive compositions and adhesive systems are particularly well suited for bonding applications which involve at least one low energy bonding surface, for example, the polyolefins, polyethylene, and polypropylene.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: June 19, 2012
    Assignee: Loctite (R&D) Limited
    Inventors: Brendan J. Kneafsey, Edward Patrick Scott, Rachel Miriam Hersee
  • Patent number: 7977435
    Abstract: Provided are a propylene polymer compositions comprising a propylene copolymer and a propylene homopolymer polymerized in the presence of the propylene copolymer. The propylene polymer compositions exhibit properties such as broad molecular weight distribution, low crystallinity, high solubles and superior crystallization kinetics and are useful in fast cycle-time processing methods such as injection molding, sheet extrusion, thermoforming, and oriented film fabrication. Also provided is a process for preparing the propylene polymer compositions in the presence of a catalyst and at least two electron donors using sequential or parallel polymerization reaction zones. Finally, articles made from the propylene polymer composition are provided, particularly articles requiring high stiffness, high heat deflection temperature, good fatigue resistance and low temperature impact resistance such as appliance parts.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: July 12, 2011
    Inventors: Chon-Yie Lin, Stephen Francis Broadbent
  • Patent number: 7935651
    Abstract: A method for preparing a titanium-containing Ziegler-Natta catalyst is disclosed. A dialkyl magnesium compound, a trialkyl aluminum compound, and a polymethylhydrosiloxane are first combined in a hydrocarbon solvent. That product is then combined with dry, alcohol-free magnesium chloride. A solid product from the reaction with the magnesium chloride component is isolated and washed with a hydrocarbon solvent. The washed solid product is then combined with an alkyl aluminum dichloride or a dialkyl aluminum chloride to give the catalyst. The catalyst is suitable for both slurry and gas-phase olefin polymerizations. Polyolefins produced with the catalyst have broad molecular weight distributions and narrow distributions of relatively large particles.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 3, 2011
    Assignee: Equistar Chemicals, L.P.
    Inventors: Mark K. Reinking, Joachim T. M. Pater, Giampiero Morini
  • Patent number: 7786237
    Abstract: A polyethylene may be prepared using a mixture of a silica supported catalyst and a magnesium chloride supported catalyst. By changing the ratio of the two catalysts, the polyethylene produced may have a varying bulk density and shear response. The method allows for the tuning or targeting of properties to fit a specific application, such as a blow molding or vapor barrier film.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: August 31, 2010
    Assignee: Fina Technology, Inc.
    Inventors: Vincent Barre, Kayo Vizzini, Steven D. Gray
  • Patent number: 7638585
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of an olefin containing a solid titanium catalyst component and an antistatic agent. Also disclosed are methods of making a polyolefin involving contacting an olefin with a catalyst system containing an antistatic agent. The use of the antistatic agent added to the catalyst system can improve flowability and/or dispersibility of the catalyst system.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: December 29, 2009
    Assignee: BASF Catalysts, LLC
    Inventors: Stephen L. Van Pelt, Neiman T. Eaton
  • Patent number: 7399812
    Abstract: The present invention relates to silicon ether compounds having a general formula (I), a method for the preparation thereof and use thereof as a component of catalysts for polymerization of olefins. In particular, in propylene polymerization, catalyst systems comprising the silicon ether compounds as external electron donor component exhibit good hydrogen response, and can be used to prepare polymer having high isotacticity at high yield. wherein R1-R10 groups are as defined in the description.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: July 15, 2008
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Lunjia Xie, Mingzhi Gao, Siyuan Zhao, Jing Ma, Zhufang Sun, Haitao Liu, Tianyi Li, Mingsen Zhang, Changjiang Wu
  • Publication number: 20080103274
    Abstract: The invention is a two part polymerizable composition comprising in one part i) an organoboron compound capable of forming free radical generating species; and in the second part ii) one or more compounds capable of free radical polymerization; iii) one or more cure accelerators comprising a) at least one compound containing a quinone structure or b) at least one compound containing at least one aromatic ring and one or more substituents on the aromatic ring selected from hydroxyl, ether and both and a compound with a peroxide moiety; and iv) one or more vinyl functional modifiers having a glass transition temperature of ?50° C. or less.
    Type: Application
    Filed: October 12, 2006
    Publication date: May 1, 2008
    Inventors: Gary L. Jialanella, Eric E. Cole
  • Patent number: 7332455
    Abstract: The present invention relates to a catalyst component and a catalyst for olefin polymerization. The catalyst component utilizes magnesium halide and silica as composite support, and the particle morphology thereof can be improved by regulating the ratio of magnesium halide to silica. Further, the purpose of stabilizing the rate of catalytic polymerization reaction and improving the particle morphology of polymer so as to meet the requirements on catalyst performance of various polymerization processes can be achieved through the combination of the supports of the catalyst. In the meantime, when used in the polymerization of propylene, the catalyst of the present invention exhibits a relatively high polymerization activity and high stereospecificity.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: February 19, 2008
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Chen Wei, Yuexiang Liu, Xianzhi Xia, Wenbo Song, Hongbin Du, Zifang Guo, Yang Tan, Zhaowen Ma, Weimin Ji, Zhichao Yang, Xiaodong Wang, Lei Guo
  • Patent number: 7211535
    Abstract: The present invention provides a novel process for preparing a catalyst useful in gas phase polymerization of olefins wherein the physical properties of the polymer and the productivity of the catalyst can be altered depending on the sequence of addition of the catalyst components. The catalyst consists of compounds of Ti, Mg, Al and optionally an electron donor supported on an amorphous support.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 1, 2007
    Assignees: Nova Chemicals Corporation, Ineos Europe Limited
    Inventors: Mark Kelly, Shivendra Kumar Goyal, Victoria Ker, Perry Montyn de Wit, Brian Stephen Kimberley, Peter Phung Ming Hoang
  • Patent number: 7169727
    Abstract: A pre-catalyst is formed by reacting butylethylmagnesium with an alcohol to form a magnesium alkoxide compound, followed by contacting the magnesium alkoxide compound with a phosphorous compound to form a magnesium alkoxide phosphorous compound mixture. The magnesium alkoxide phosphorous compound mixture is subsequently reacted with TiCl4 to form a MgCl2 support. The MgCl2 support is then contacted with an internal donor while being heated to form a first catalyst slurry, which is then contacted with TiCl4 while being heated to form a second catalyst slurry. The second catalyst slurry is next contacted with TiCl4 while being heated to form a third catalyst slurry, which is washed and dried, resulting in a highly active pre-catalyst with controlled morphology. The pre-catalyst may be combined with one or more co-catalysts and optionally one or more external electron donors to form an active catalyst system, which may be used for the polymerization of olefins.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: January 30, 2007
    Assignee: Fina Technology, Inc.
    Inventor: Joseph Lyndon Thorman
  • Patent number: 7084217
    Abstract: An improved supported Ziegler-Natta catalyst especially useful for olefin polymerisation, the catalyst including a carrier, an organomagnesium compound, a borate compound, and one transition metal compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 1, 2006
    Assignee: B.P. Chemicals Ltd.
    Inventor: Stephen John Dossett
  • Patent number: 7022795
    Abstract: Propylene homopolymers, wherein, in their separation according to tacticity by first dissolving the polymers in boiling xylene, then cooling the solution to 25° C. at a cooling rate of 10° C./h and then, with ascending temperature, separating the propylene homopolymers into fractions of different tacticity, either one or more of the conditions that i) the fraction of propylene homopolymers which remains undissolved on heating the cooled propylene homopolymer solution to 112° C. is greater than 20% by weight or ii) the fraction of propylene homopolymers which remains undissolved on heating the cooled propylene homopolymer solution to 117° C. is greater than 8% by weight or iii) the fraction of propylene homopolymers which remains undissolved on heating the cooled propylene homopolymer solution to 122° C. is greater than 1% by weight, are satisfied.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: April 4, 2006
    Assignee: Novolen Technology Holdings, C.V.
    Inventors: Stephan Hüffer, Joachim Rösch, Stefan Seelert, Franz Langhauser, Dieter Lilge, Roland Hingmann, Günther Schweier
  • Patent number: 6924343
    Abstract: A process for polymerizing olefins using a high activity catalyst. The catalyst utilize in the present process has a good balance in activity and can be used to carry out ethylene polymerization at high and low melt flow rates to produce low gel or gel free product.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: August 2, 2005
    Assignee: Borealis Technology Oy
    Inventors: Jarmo Lindroos, Solveig Johansson, Päivi Waldvogel
  • Publication number: 20040242812
    Abstract: In one embodiment the invention is a polymerizable composition comprising a) an organoborane amine complex; b) one or more of monomers, oligomers or polymers having olefinic unsaturation which is capable of polymerization by free radical polymerization; c) one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization; and d) a catalyst for the polymerization of the one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization. This composition may further comprise a compound which causes the organoborane amine complex to disassociate.
    Type: Application
    Filed: June 9, 2004
    Publication date: December 2, 2004
    Inventors: Mark F. Sonnenschein, Steven P. Webb, Benjamin L. Wendt, Daniel R. Harrington
  • Patent number: 6767857
    Abstract: A pre-catalyst is formed by reacting butylethylmagnesium with an alcohol to form a magnesium alkoxide compound, followed by contacting the magnesium alkoxide compound with a phosporous compound to form a magnesium alkoxide phosphorous compound mixture. The magnesium alkoxide phosphorous compound mixture is subsequently reacted with TiCl4 to form a MgCl2 support. The MgCl2 support is then contacted with an internal donor while being heated to form a first catalyst slurry, which is then contacted with TiCl4 while being heated to form a second catalyst slurry. The second catalyst slurry is next contacted with TiCl4 while being heated to form a third catalyst slurry, which is washed and dried, resulting in a highly active pre-catalyst with controlled morphology. The pre-catalyst may be combined with one or more co-catalysts and optionally one or more external electron donors to form an active catalyst system, which may be used for polymerization of olefins.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: July 27, 2004
    Assignee: Fina Technology, Inc.
    Inventor: Joseph Lyndon Thorman
  • Patent number: 6730753
    Abstract: Catalyst systems of the Ziegler-Natta type, which are suitable for the polymerization of olefins are prepared by: A) bringing an inorganic metal oxide on which a magnesium compound has been deposited into contact with a tetravalent titanium compound, B) if desired, bringing the intermediate obtained in this way into contact with an electron donor compound and C) bringing the intermediate obtained in step A) or B) into contact with a polysiloxane.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: May 4, 2004
    Assignee: Basell Polyolefine GmbH
    Inventors: Klaus Föttinger, Stephan Hüffer, Rainer Karer
  • Publication number: 20030092857
    Abstract: The present invention is generally directed to a process for preparing aromatic polymers. It further relates to devices that are made with the polymers.
    Type: Application
    Filed: November 7, 2002
    Publication date: May 15, 2003
    Inventor: Frank P. Uckert
  • Patent number: 6544920
    Abstract: Solid catalyst component for the polymerization of olefins, includes the product of the direct reaction, with no subsequent reactions with reducing organometallic compounds, between a titanium compound and a support obtained by contacting a metal oxide containing hydroxyl groups with a solution containing A) a magnesium chloride; B) from 1 to 6 moles of an alcohol per mole of magnesium chloride, in a halogenated hydrocarbon or aromatic hydrocarbon organic solvent C) capable of bringing the magnesium chloride in solution in quantities greater than or equal to 5 grams per liter in the presence of the above-mentioned quantities of alcohol B), the solvent not being able to form adducts with the magnesium chloride.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: April 8, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Gianni Pennini, Arrigo Arletti, Giampiero Morini
  • Patent number: 6503993
    Abstract: The present invention concerns nucleated propylene polymers having a xylene soluble fraction at 23° C. of less than 2.5%, a crystallization temperature of over 124 ° C. and a tensile modulus of greater than 2,000 MPa. These polymers can be prepared by nucleating a propylene polymer with a polymeric nucleating agent containing vinyl compound units, and by polymerizing propylene optionally with comonomers in the presence of a Ziegler-Natta catalyst system primarily transesterified with a phthalic acid ester—a lower alcohol pair to provide said propylene polymer. The catalyst contains a strongly coordinating external donor.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: January 7, 2003
    Assignee: Borealis Technology Oy
    Inventors: Päivi Huovinen, Pirjo J{umlaut over (aa)}skeläinen, Amir Karbasi, Christer Lind, Bo Malm, John Haugen
  • Patent number: 6495634
    Abstract: Propylene polymers containing a matrix of a propylene homopolymer and a copolymer of propylene and other alkenes, wherein, during the separation of the propylene polymers according to tacticity and comonomer distribution of the polymer chains, by first dissolving the propylene polymers in boiling xylene, then cooling the solution at a cooling rate of 10° C./h to 25° C. and thereafter, increasing the temperature, separating the propylene polymers into fractions of different solubility, either one or more of the conditions that i) more than 20% by weight of the matrix remain undissolved on further heating to 112° C. or ii) more than 8% by weight of the matrix remain undissolved on further heating to 117° C. or iii) more than 1% by weight of the matrix remain undissolved on further heating to 122° C. are fulfilled by the matrix which remains undissolved on heating the cooled propylene polymer solution to 80° C.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: December 17, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Stephan Hüffer, Joachim Rösch, Franz Langhauser, Dieter Lilge, Roland Hingmann
  • Patent number: 6486089
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising (1) providing silica which is porous and has a particle size of 1 to 250 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g; (2) slurrying the silica in an aliphatic solvent having a boiling point less than 110° C.; (3) providing a volume of a solution comprising metallocene and alumoxane wherein the volume of solution is less than that required to form a slurry of the silica, wherein the concentration of alumoxane, expressed as Al weight percent, is 5 to 20; (4) contacting the silica slurry (2) with said volume of said solution (3) and allowing the solution to impregnate the pores of silica and, to disperse the metallocene in and on the carrier; (5) evaporating the solvents from the contacted and impregnated silica to recover dry free-flowing catalyst particles.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien
  • Patent number: 6486275
    Abstract: A process for preparing polyolefins by polymerizing or coploymerizing an olefin or olefins in the presence of a catalyst comprising a solid catalyst component and an organometallic compound is provided.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: November 26, 2002
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Akira Sano, Takeichi Shiraishi, Kunihiro Suzuki, Hiroyuki Shimizu, Kazuo Matsuura
  • Patent number: 6469112
    Abstract: One aspect of the present invention relates to a catalyst system for use in olefinic polymerization, containing a solid titanium catalyst component; an organoaluminum compound having at least one aluminum-carbon bond; and an organosilicon compound comprising a (cycloalkyl)methyl group. Another aspect of the present invention relates to a method of making a catalyst for use in olefinic polymerization, involving the steps of reacting a Grignard reagent having a (cycloalkyl)methyl group with an orthosilicate to provide an organosilicon compound having a (cycloalkyl)methyl moiety; and combining the organosilicon compound with an organoaluminum compound having at least one aluminum-carbon bond and a solid titanium catalyst component to form the catalyst.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: October 22, 2002
    Assignee: Engelhard Corporation
    Inventors: Chung-Ping Cheng, Michael D. Spencer
  • Patent number: 6437065
    Abstract: Reactive systems for polymerizing ethylenically unsaturated compounds comprising a first component, comprised of ethylenically unsaturated compounds capable of polymerization, and a second component of a hardener system comprised of organoboron compounds which are stabilized with suitable oligomers. An organic peroxide (perester, hydroperoxide, perether and/or peranhydride)is admixed with the compounds. These components are mixed to form a polymer. The reactive system reaches full strength in reduced time with the use of the organic peroxide and are suitable for joining hard body materials in human or animal tissue, in particular in the surgical and/or dental sector, in the production of body-absorbable or body-resistant adhesives, cements, and/or filling compounds and for forming synthetic material moldings.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: August 20, 2002
    Assignee: Merck Patent Gesellschaft mit beschrankter Haftung
    Inventors: Wolfgang Ritter, Robert Wenz, Peter Pokinskyj
  • Publication number: 20020082160
    Abstract: Disclosed is a solid titanium catalyst component which is obtained by a process comprising the steps of bringing (a) a liquid magnesium compound into contact with (b) a liquid titanium compound in the presence of (c) an organosilicon compound having no active hydrogen in an amount of 0.25 to 0.35 mol based on 1 mol of the magnesium compound (a), elevating the temperature of the resulting contact product to a temperature of 105 to 115° C. and maintaining the contact product at this temperature. The contact product may be further brought into contact with not more than 0.5 mol of the organosilicon compound having no active hydrogen (c). Also disclosed are an ethylene polymerization catalyst formed from the solid titanium catalyst component and an organometallic compound and an ethylene polymerization process using the catalyst. By the use of the solid titanium catalyst component, ethylene can be polymerized with high activities and an ethylene polymer having excellent particle properties can be prepared.
    Type: Application
    Filed: December 26, 2001
    Publication date: June 27, 2002
    Inventors: Tsuneo Yashiki, Shuji Minami
  • Patent number: 6337377
    Abstract: A process for producing an olefin polymer using a catalyst in which (A) is a solid catalyst component which includes magnesium, titanium, halogen and an electron donative compound as essential constituents; (B) is an organoaluminum component; and (C) is at least two electron donative compounds (&agr;) and (&bgr;), wherein the pentad stereoregularity of a xylene insoluble fraction of a homopolyproylene is 0<mmrr/mmmm≦0.0068 when electron donative compound (&agr;) is used in combination with (A) and (B), and the pentad stereoregularity of a xylene insoluble fraction homoproplyene of a is 0.0068<mmrr/mmmm ≦0.0320 when electron donative compound (&bgr;) is used in combination with (A) and (B). A polypropylene produced in the process can be used to obtain a biaxially oriented film. (A) and (B). A polypropylene produced in the process can be used to obtain a biaxially oriented film.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: January 8, 2002
    Assignee: Sumitomo Chemical Company, Ltd.
    Inventors: Takeshi Ebara, Koji Mizunuma, Toshio Sasaki, Kazuki Wakamatsu, Junichi Kimura, Yoichi Obata
  • Patent number: 6313225
    Abstract: Disclosed is a catalyst for olefin (co-)polymerization comprising a transition metal compound catalytic component which contains at least a titanium compound and an &agr;-olefin (co-)polymer (A) supported by the catalyst, wherein said &agr;-olefin (co-)polymer (A) has an intrinsic viscosity (&eegr;) of 15 dl/g to 100 dl/g measured in tetrahydronaphthalene at 135° C., and the content of said olefin (co-)polymer (a) is 0.01 to 5000 g for 1 g of the transition compound catalytic component.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: November 6, 2001
    Assignee: Chisso Corporation
    Inventors: Jun Saito, Hideo Nobuhara, Hitoshi Sato
  • Patent number: 6291384
    Abstract: An ethylene-alpha-olefin copolymerization catalyst is prepared by impregnating a silica calcined at elevated temperature sequentially with an organomagnesium compound such as dialkylmagnesium compound, a silane compound which is free of hydroxyl groups, such as tetraethyl orthosilicate. A transition metal component such as titanium tetrachloride is then incorporated into the support. Unexpectedly, the calcination temperature of the silica used to prepare the catalyst precursors has a strong influence on polymer product properties. By increasing the calcination temperature of the silica from 600° to 700° C. or higher temperatures, a catalyst precursor when activated produced ethylene/1-hexene copolymers with narrower molecular weight distributions (MWD) as manifested by a decrease of resin MFR values of ˜3-4 units. Activation of this catalyst precursor with a trialkylaluminum compound results in a catalyst system which is effective for the production of ethylene copolymers.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: September 18, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Robert I. Mink, Thomas E. Nowlin
  • Patent number: 6271167
    Abstract: Disclosed are a catalyst for polymerizing olefins containing a solid catalyst component containing titanium, magnesium and halogen as essential components (component (A)); an organic aluminum compound (component (B)); and a silane compound (component (C)) represented by general formula (1) wherein R1 and R2 independently represent a straight, branched or cyclic saturated aliphatic hydrocarbon group or a silyl group, a method of preparing polyolefins using the catalyst as well as novel trimethoxysilane compounds represented by the general formula (1) in which R1 is a straight saturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, and R2 represents a methyl group. Use of the catalyst enables efficient production of polyolefins having a low molecular weight (MFR>20 (g/10 minutes)), a broad molecular weight distribution (MLMFR/MFR>22) and a high stereoregularity when applied to polymerization of olefins having 3 or more carbon atoms.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: August 7, 2001
    Assignee: Japan Polyolefins Co., Ltd.
    Inventors: Masaki Fushimi, Toshio Fujita, Shintaro Inazawa
  • Publication number: 20010004657
    Abstract: An olefin (co-)polymer composition including 0.01 to 5.0 weight parts of high molecular weight polyethylene which is an ethylene homopolymer or an ethylene-olefin copolymer containing 50 weight % or more of an ethylene polymerization unit; and 100 weight parts of an olefin (co-)polymer other than the high molecular weight polyethylene, wherein said high molecular weight polyethylene has an intrinsic viscosity [&eegr;E] of 15 to 100 dl/g measured in tetralin at 135° C. or more, and said high molecular weight polyethylene exists as dispersed fine particles having a numerical average particle size of 1 to 5000 nm.
    Type: Application
    Filed: September 14, 1998
    Publication date: June 21, 2001
    Applicant: CHISSO CORPORATION
    Inventors: JUN SAITO, HIDEO NOBUHARA, SHINGO KIKUKAWA, HITOSHI SATO, AKIRA YAMAUCHI