Boron Compound Contains Boron Bonded To Hydrogen Or To Carbon Atom Patents (Class 526/134)
  • Patent number: 7723447
    Abstract: The invention provides for a process to produce polymers utilizing a hydrofluorocarbon diluent.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: May 25, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Scott Thomas Milner, Michael Gerard Matturro, Timothy Daniel Shaffer, Robert Norman Webb, David Yen-Lung Chung, Michael Francis McDonald
  • Patent number: 7714073
    Abstract: The invention provides blends comprising an ethylene copolymer formed from ethylene with at least one comonomer selected from (a) the group comprising compounds represented by the formula H2C?CHR wherein R represents a C1-C20 linear, branched or cyclic alkyl group or a C6-C20 aryl group, and (b) a C4-C20 linear, branched or cyclic diene. Each copolymer has a specific density, a specific molecular weight distribution, and a specific comonomer content distribution characteristic.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: May 11, 2010
    Inventors: Grant B. Jacobsen, Jozef J. Van Dun, Pak-Wing S. Chum, Larry A. Meiske, Fumio Matsushita, Akira Miyamoto
  • Publication number: 20100113706
    Abstract: This invention relates to an ethylene polymer comprising ethylene and up to 5 mole % of at least one comonomer, wherein the ethylene polymer has an Mw, of 10,000 to 50,000, an Mw/Mn of between 1.5 to 4.5, a density of at least 0.925 g/cc, an unsaturation level of less than 1 per 1000 carbons, a melting point of at least 120° C., a Tc of greater than Z, where Z=0.501×(density in kg/m3)?367, and a Brookfield viscosity o at 140° C. of 100,000 mPas or more.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Inventors: Donna J. Crowther, Kuangyao Brian Peng
  • Publication number: 20100113720
    Abstract: Provided is a process for preparing copolymers of ethylene with ?-olefin. More specifically, provided are transition metal compound being useful as catalyst for preparing those copolymers, a catalyst composition comprising the same, and a process for preparing elastic copolymers of ethylene with ?-olefin, having the density of not more than 0.910, which can be adopted to a wide variety of applications including film, electric wires, and hot-melt adhesives. The catalyst composition is a catalytic system which comprises transition metal catalyst comprising a cyclopentadiene derivative and at least one anionic ligand(s) of aryloxy group with an aryl derivative at ortho-position, and boron or aluminum compound as an activator. Provided is a process for copolymerizing ethylene with ?-olefin to produce copolymer having narrow molecular weight distribution and uniform density distribution with the density of not more than 0.910, with high activity and excellent reactivity on higher ?-olefin.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 6, 2010
    Inventors: Myungahn Ok, Daeho Shin, Seungbum Kwon, Jongsok Hahn, Hoseong Lee, Choonsik Shim, Hyeongtaek Ham, Jisu Jeong, Sungseok Chae
  • Publication number: 20100113719
    Abstract: An olefin metathesis process for converting a reactant olefin or a mixture of reactant olefins into one or more product olefins that are different from the reactant olefin(s). The process employs a catalyst system containing a carbene-generating agent and a bimetallic ruthenium complex comprising one or more ?-hydrido bridging ligands, and optionally containing di(t-butyl)phosphine. The catalyst system is advantageously active at process temperatures greater than 90° C. Cyclization metathesis and ring-opening polymerization metathesis are preferred olefin metathesis processes.
    Type: Application
    Filed: October 27, 2009
    Publication date: May 6, 2010
    Inventors: Jasson T. Patton, Francis J. Timmers
  • Patent number: 7705095
    Abstract: A process for the polymerisation of olefin monomers selected from (a) ethylene, (b) propylene (c) mixtures of ethylene and propylene and (d) mixtures of (a), (b) or (c) with one or more other alpha-olefins is performed in a polymerisation reactor in the presence of a supported polymerisation catalyst characterised in that prior to injection into the reactor said supported polymerisation catalyst in the form of a powder is contacted with an inert hydrocarbon liquid in a quantity sufficient to maintain said catalyst in powder form. The preferred inert hydrocarbon liquid is hexane. The supported polymerisation catalyst is preferably a supported metallocene catalyst. According to the process of the prescrit invention the level of fines associated with the polymer products is reduced in particular the level of fines having a diameter<125 ?m and microfines of diameter<50 ?m.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: April 27, 2010
    Assignee: Ineos Europe Limited
    Inventors: Brian Stephen Kimberley, Gerard Lacane, Sergio Mastroianni
  • Publication number: 20100093955
    Abstract: The present invention relates to a photoreactive polymer that comprises a multi-cyclic compound in a main chain, and a polymerization method thereof. Since the photoreactive polymer according to the present invention comprises a multi-cyclic compound having a high glass transition temperature as a main chain, the thermal stability is excellent, and since the mobility of the main chain is relatively high as compared to that of an additional polymer, a photoreactive group can be freely moved in the main chain of the polymer. Accordingly, it is possible to overcome a slow photoreactive rate that is considered a disadvantage of a polymer material used to prepare an alignment film for known liquid crystal display devices.
    Type: Application
    Filed: March 21, 2008
    Publication date: April 15, 2010
    Inventors: Dai-Seung Choi, Hye-Young Jung, Sung-Ho Chun, Heon Kim, Sung-Don Hong, Dong-Woo Yoo
  • Patent number: 7683147
    Abstract: Olefins are polymerized by novel transition metal complexes of selected iminocarboxylate and iminoamido ligands, sometimes in the presence of cocatalysts such as alkylaluminum compounds or neutral Lewis acids. Olefins which may be (co)polymerized include ethylene, ?-olefins, and olefins containing polar groups such as olefinic esters for example acrylate esters. Also described are certain “Zwitterionic” transition metal complexes as polymerization catalysts for making polar copolymers. The resulting polymers are useful as thermoplastics and elastomers.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: March 23, 2010
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Lin Wang, Lynda K. Johnson, Alex S. Ionkin
  • Patent number: 7671151
    Abstract: A process for making polyethylene having an uncommon but valuable balance of broad molecular weight distribution and a low level of long-chain branching is disclosed. The process comprises polymerizing ethylene in a single reactor in the presence of an ?-olefin and a catalyst comprising an activator and a supported dialkylsilyl-bridged bis(indeno[1,2-b]indolyl)zirconium complex. The polyethylene, which has an Mw/Mn greater than 10 and a viscosity enhancement factor (VEF) of less than 2.5, is valuable for making blown films.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: March 2, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Stephen M. Imfeld
  • Patent number: 7671226
    Abstract: The present invention relates to a transition metal complex represented by the formula (I): wherein M represents a Group 4 transition metal; —Y— represents (a): —C(R1)(R20)-A-, (b): —C(R1)(R20)-A1(R30)—, (c): —C(R1)=A1-, or (d): —C(R1)=A1-A2-R30; A represents a Group 16 element and A1 and A2 each represents a Group 15 element; R1 to R9, R20, and R30 are the same or different and each represents an optionally substituted hydrocarbon group, etc.; and X1 and X2 are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted C1-10 alkyl group, etc., and an intermediate product thereof, and a catalyst for olefin polymerization which comprises said transition metal complex as a component.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: March 2, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hidenori Hanaoka, Eiji Yoshikawa, Yuka Imamoto
  • Patent number: 7662895
    Abstract: Disclosed herein is an elastomeric composition comprising propylene, the composition further comprising a peak melting point temperature below about 110° C., a tensile set of 40% or less, and greater than or equal to about 60% [r]dyads, based on the total number of dyads present in the composition. A process to produce an elastomeric composition is also disclosed.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: February 16, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Publication number: 20100029873
    Abstract: The present application relates to a new catalyst system for the polymerization of olefins, comprising a new ionic activator having the formula: [R1R2R3AH]+ [Y]?, wherein [Y]? is a non-coordinating anion (NCA), A is nitrogen or phosphorus, R1 and R2 are hydrocarbyl groups or heteroatom-containing hydrocarbyl groups and together form a first, 3- to 10-membered non-aromatic ring with A, wherein any number of adjacent ring members may optionally be members of at least one second, aromatic or aliphatic ring or aliphatic and/or aromatic ring system of two or more rings, wherein said at least one second ring or ring system is fused to said first ring, and wherein any atom of the first and/or at least one second ring or ring system is a carbon atom or a heteroatom and may be substituted independently by one or more substituents selected from the group consisting of a hydrogen atom, halogen atom, C1 to C10 alkyl, C5 to C15 aryl, C6 to C25 arylalkyl, and C6 to C25 alkylaryl, and R3 is a hydrogen atom or C1 to C10 alky
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Inventors: Donna J. Crowther, Peijun Jiang, George Rodriguez
  • Patent number: 7655740
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged indeno[1,2-b]indolyl zirconium complex. The process produces polyethylene characterized by good incorporation of the ?-olefin and moderate long-chain branching. The process is capable of forming high molecular weight polyethylene and has good catalyst activity.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 2, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jean A. Merrick-Mack, Natalia Nagy
  • Publication number: 20100022725
    Abstract: The present invention relates to a borohydride metallocene complex of a lanthanide, to its process of preparation, to a catalytic system incorporating it, to a process for the copolymerization of olefins employing this catalytic system and to an ethylene/butadiene copolymer obtained by this process, the butadiene units of which comprise 1,2-cyclohexane or 1,2- and 1,4-cyclohexane links.
    Type: Application
    Filed: October 31, 2006
    Publication date: January 28, 2010
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Publication number: 20100016526
    Abstract: A two-stage cascade polymerization process for the production of multimodal polyethylene film resins with improved bubble stability is provided. The process comprises polymerizing ethylene or a mixture of ethylene and a C4-8 ?-olefin in two reactors arranged in series using a mixed single-site catalyst comprised of a bridged and a non-bridged indenoindolyl transition metal complex to form a multimodal polyethylene resin comprised of a lower molecular weight, higher density component and a higher molecular weight, lower density component.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 21, 2010
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Philip J. Garrison
  • Publication number: 20100016527
    Abstract: A supported metal complex comprising the reaction product of a transition metal complex of a polyvalent heteroaryl donor ligand containing at least one ortho-metallated aromatic ligand group and an ethylenically or poly(ethylenically) functionalized particulated organic or inorganic solid, a method for preparing the same and the use thereof as an addition polymerization catalyst.
    Type: Application
    Filed: March 5, 2008
    Publication date: January 21, 2010
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventor: Edmund M. Carnahan
  • Patent number: 7645835
    Abstract: Blend compositions containing a novel homopolymer, the use of which allows the incorporation of more comonomer in the additional components of the blend (for the same overall density) resulting in increased tie molecule formation and improvement in properties such as ESCR, toughness and impact strength are disclosed. The homopolymers are important for applications where a high density is needed to ensure certain mechanical properties like abrasion resistance, indentation resistance, pressure resistance, topload resistance, modulus of elasticity, or morphology (for the chlorination of PE to CPE) and additional advantages such as melt processability. The blend can be obtained by dry or melt mixing the already produced components, or through in-situ production by in parallel and/or in series arranged reactors. These resins can be used in applications such as films, blow molded, injection molded, and rotomolded articles, fibers, and cable and wire coatings and jacketings and, various forms of pipe.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: January 12, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Jozef J. Van Dun, Akira Miyamoto, Grant B. Jacobsen, Fumio Matsushita, Patrick J. Schouterden, Lee Spencer, Pak-Wing S. Chum, Larry A. Meiske, Peter L. Wauteraerts
  • Patent number: 7645893
    Abstract: Substituted ferrocenium compounds comprising at least one pendant oleophilic substituent on at least one of the cyclopentadienyl groups and an inert, compatible, noncoordinating, anion and processes for use thereof as catalyst activators for addition polymerizations or as oxidizing agents for metal complex syntheses.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: January 12, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Robert K. Rosen, Melissa D. Tankersley
  • Publication number: 20100004412
    Abstract: The present invention provides a method for preparing a polymer by precipitation polymerization, comprising the steps of mixing an antisolvent a), a monomer b), and a catalyst c), and while polymerizing the monomers, simultaneously precipitating a polymer formed by the monomers b) in a solid phase.
    Type: Application
    Filed: December 5, 2007
    Publication date: January 7, 2010
    Inventors: Seung-Young Park, Sung-Cheol Yoon
  • Publication number: 20090318640
    Abstract: This invention relates to a polymacromonomer comprising at least one macromonomer and from 0 to 20 wt % of a C2 to C12 comonomer, wherein the macromonomer has vinyl termination of at least 70%, and wherein the polymacromonomer has: a) a g value of less than 0.6, b) an Mw of greater than 30,000 g/mol, c) an Mn of greater than 20,000 g/mol, d) a branching index (g?)vis of less than 0.5, e) less than 25% vinyl terminations, f) at least 70 wt % macromonomer, based upon the weight of the polymacromonomer, g) from 0 to 20 wt % aromatic containing monomer, based upon the weight of the polymacromonomer and h) optionally, a melting point of 50° C. or more. This invention also relates to processes to make such polymacromonomers.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 24, 2009
    Inventors: Patrick Brant, Andrew G. Narvaez, JR., Donna J. Crowther
  • Publication number: 20090292087
    Abstract: A process for making polyethylene having an uncommon but valuable balance of broad molecular weight distribution and a low level of long-chain branching is disclosed. The process comprises polymerizing ethylene in a single reactor in the presence of an ?-olefin and a catalyst comprising an activator and a supported dialkylsilyl-bridged bis(indeno[1,2-b]indolyl)zirconium complex. The polyethylene, which has an Mw/Mn greater than 10 and a viscosity enhancement factor (VEF) of less than 2.5, is valuable for making blown films.
    Type: Application
    Filed: May 21, 2008
    Publication date: November 26, 2009
    Inventors: Sandor Nagy, Barbara M. Tsuie, Stephen M. Imfeld
  • Patent number: 7601666
    Abstract: A compound represented by the formula: where: M is a transition metal selected from group 4 of the periodic table; each R1 is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted hydrocarbyl and functional group, and any two R1 groups may be linked, provided that if the two R1 groups are linked, then they do not form a butadiene group when M is Zr; R3 is carbon or silicon; R4 is hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group; R5 is hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group, R4 and R5 may be bound together to form a ring; R6 is carbon or silicon; each R7 is hydrogen; each R8 is independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl and the isomers thereof; R10 is -M2(R16)h— where M2 is B, Al, N, P, Si or Ge, h is 1 or 2; each R9, R11, R13 and R14 and R16 is hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group, and two R16 groups may be linked together to f
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 13, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Francis C. Rix, Smita Kacker, Sudhin Datta, Rul Zhao, Vetkav R. Eswaran
  • Patent number: 7592403
    Abstract: The present invention provides ethylene polymers capable of preparing various molded articles such as films, sheets or the like, and having excellent moldability, particularly excellent high-speed moldability. The ethylene polymers of the present invention have a density and molecular weight distribution in specific ranges. The first ethylene polymer is characterized by having (C) a ratio (MFR10/MFR2) of a melt flow rate (MFR10) at 190° C. under a load of 10 Kg to a melt flow rate (MFR2) at 190° C. under a load of 2.16 Kg of from 16.2 to 50. The second ethylene polymer is characterized by having (C) a ratio (MFR10/MFR2) from 12 to 50. The third ethylene polymer is characterized by having (D) a relation of ?2/?1?18 where ?1 and ?2 denote angular velocity (rad/sec) when complex elastic modulus G* (dyne/cm2) at 200° C. is 5.0×105 dyne/cm2 and 2.0×106 dyne/cm2, respectively, which are determined by measurement of the angular velocity dependence of the complex elastic modulus of the copolymer.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: September 22, 2009
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Norio Kashiwa, Shingo Matsuo, Shinichi Kojoh, Mamoru Takahashi
  • Patent number: 7585805
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) a nickel-containing compound, (b) an alkylating agent, (c) a fluorine-containing compound, and (d) a chlorine-containing compound.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: September 8, 2009
    Inventor: Steven Luo
  • Publication number: 20090209712
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido or alcoxy group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex. Compared to a conventional transition metal complex having a silicon bridge and an oxido ligand, the transition metal complex has a phenylene bridge, so that a monomer easily approaches the transition metal complex in terms of structure and a pentagon ring structure of the transition metal complex is stably maintained. The catalyst composition including the transition metal complex is used to synthesize a polyolefin copolymer having a very low density less than 0.910 g/cc.
    Type: Application
    Filed: April 21, 2009
    Publication date: August 20, 2009
    Applicant: LG CHEM., LTD.
    Inventors: Choong Hoon LEE, Eun-Jung LEE, Seungwhan JUNG, Jong Joo HA, Beomdoo SEO, Bun Yeoul LEE, Ui Gab JOUNG, Dae June JOE
  • Patent number: 7557171
    Abstract: A metallocene compound comprising a transition metal, a first substituted or unsubstituted indenyl or fluorenyl ligand pi—bonded to the transition metal, a second monoanionic ligand bonded to the transition metal, and a divalent bridging group bonded to the indenyl ligand and said second monoanionic ligand, wherein said bridging group is connected to the four, five, six or seven position of the indenyl ligand or to the one, two, three, four, five, six, seven or eight position of the fluorenyl ligand, and wherein at least one of one of the first and second ligands comprises at least one halogen substituent directly bonded to any sp2 carbon atom at a bondable ring position of the ligand.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: July 7, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Mikhail V. Nikulin, Vyatcheslav V. Izmer, Andrey F. Asachenko, Alexey N. Ryabov, Catalina L. Coker, Jo Ann M. Canich
  • Patent number: 7550544
    Abstract: A metallocene compound is represented by the formula (1): wherein: M is a Group 3, 4, 5 or 6 transition metal atom, or a lanthanide metal atom, or actinide metal atom, preferably a Group 4 transition metal atom selected from titanium, zirconium or hafnium; E is a substituted or unsubstituted monocyclic or polycyclic arenyl ligand pi-bonded to M; A is a substituted or unsubstituted polycyclic arenyl ligand that is pi-bonded to M and has a different ring structure than the E ligand; at least one of the A and E ligands includes at least one halogen substituent directly bonded to an sp2 carbon at a bondable ring position; Y is a bridging group containing at least one Group 13, 14, 15, or 16 element and any single position of the ring structure of A and to any single position of the ring structure of E; and y is zero or 1, indicating the absence (y=0) or presence (y=1) of Y; and each X is a univalent anionic ligand, or two X are joined and bound to the metal atom to form a metallocycle ring, or two X are joine
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: June 23, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Alexey N. Ryabov, Mikhail V. Nikulin, Alexander V. Lygin, Catalina L. Coker, Jo Ann M. Canich
  • Patent number: 7541412
    Abstract: Disclosed is a method of producing a polyolefin composition comprising contacting a metallocene pre-catalyst with a substoichiometric amount of a co-catalyst; adding a first olefin monomer; and polymerizing the first monomer for a time sufficient to form the polyolefin. The method allows for the use of a minimum amount of activating co-catalyst, and allows for the production of stereoregular and non-stereoregular polyolefins. The use of configurationally stable metallocene pre-catalysts allows for the production of monomodal isotactic polyolefins having narrow polydispersity. The use of configurationally unstable metallocene pre-catalysts allows for the production of monomodal atactic polyolefins having narrow polydispersity. The method of the present invention optionally further comprises contacting the polyolefin with a second amount of said co-catalyst; adding a second olefin monomer; polymerizing said second olefin monomer to form a block-polyolefin composition.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: June 2, 2009
    Assignee: University of Maryland, College Park
    Inventor: Lawrence R. Sita
  • Publication number: 20090131614
    Abstract: A supported polymerisation catalyst system comprises: (a) a polymerisation catalyst, (b) a cocatalyst, and (c) a porous support, and is characterised in that the porous support has been pretreated with (i) a chemical dehydration agent and (ii) a hydroxy compound wherein the hydroxy compound is not a cocatalyst or component thereof. The preferred polymerisation catalyst is a transition metal compound for example a metallocene and by use of the supported catalyst systems improved activity may be achieved.
    Type: Application
    Filed: June 1, 2006
    Publication date: May 21, 2009
    Inventor: Sergio Mastroianni
  • Publication number: 20090105432
    Abstract: The invention relates to a method for polymerising ethylenically unsaturated monomers, wherein ethylenically unsaturated monomers are polymerised in the presence of a solvent-stable transition metal complex having slightly co-ordinating anions as polymer catalysts. The invention also relates to specific solvent-stable transition metal complexes having slightly co-ordinating anions. The invention also relates to highly reactive copolymers which are made of monomers comprising isobutene and at least one vinylaromatic compound which can be obtained according to said inventive method.
    Type: Application
    Filed: August 11, 2006
    Publication date: April 23, 2009
    Applicant: BASF SE
    Inventors: Hans Peter Rath, Hans-Michael Walter, Oskar Nuyken, Fritz Elmar Kuehn, Yanmei Zhang, Hui Yee Yeong
  • Publication number: 20090088537
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridged ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The bridged ?5-cyclopentadienyl-type ligands are connected by a cyclic substituent. The catalysts of the present techniques may be more effective at the incorporation of comonomers into the backbone of a polyolefin polymer.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: Qing Yang, Tony R. Crain
  • Patent number: 7511106
    Abstract: This disclosure relates to olefin polymerization processes for polymerizing ethylene, higher alpha-olefin comonomer and at least one diene, especially vinyl norbornene (VNB), and especially processes for producing amorphous or semi-crystalline polymers such as ethylene propylene diene (EPDM).
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: March 31, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Periagaram Srinivasan Ravishankar
  • Patent number: 7511104
    Abstract: Polymers made by transition metal catalyst systems comprising a bulky noncoordinating anion (NCA) as cocatalyst component. In comparison to polymers containing a conventional NCA, these polymers show a considerably lower dielectric loss, making them suitable for insulation applications such as for power cable.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: March 31, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: George James Pehlert, Bruce A. Harrington, George Rodriguez
  • Patent number: 7501479
    Abstract: A method for the cationic polymerization of unsaturated biological oils (e.g., vegetable oils and animal oils) based on the cationic reaction of double bonds initiated by superacids is provided. The process occurs under very mild reaction conditions (about 70-110° C. and atmospheric pressure) and with short reaction times. The polymerized oils have a viscosity about 10 to 200 times higher than the initial oil and relatively high unsaturation (only about 10-30% lower than that of initial oils).
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: March 10, 2009
    Assignee: Pittsburg State University
    Inventors: Mihail Ionescu, Zoran S. Petrovic
  • Patent number: 7482412
    Abstract: A process for manufacturing a cycloolefin addition polymer includes polymerizing monomers containing a cycloolefin compound using a catalyst containing a nickel compound or a palladium compound by addition polymerization in the presence of a molecular weight controlling agent in two steps, that is a step of a initiating the polymerization reaction using the monomers in an amount of not more than 80 wt % of the total monomers and a step of supplying the remaining monomers to the reaction system during the polymerization reaction. A cycloolefin addition polymer with a uniform quality, having a narrow molecular weight distribution and a controlled molecular weight, and excellently balanced processability and mechanical strength can be obtained at a high polymerization conversion rate using the process. The process can be operated at a highly controlled polymerization temperature, and is thus suitable for industrially manufacturing a cycloolefin addition polymer.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: January 27, 2009
    Assignee: JSR Corporation
    Inventors: Kenzo Ohkita, Nobuyuki Sakabe
  • Patent number: 7476715
    Abstract: The use of high activity “Single Site” polymerization catalysts often causes the fouling of polymerization reactors. The problem is particularly acute with gas phase polymerizations. While not wishing to be bound by theory it is believed that the fouling is initiated by the buildup of static charges in the reactor. The use of anti-static agents mitigates this problem, but typical antistatic agents contain polar species, which can deactivate the polymerization catalyst. We have now discovered that the use of a porous metal oxide support allows large levels of a selected antistatic agent to be used in a manner that reduces static/fouling problems in highly active polymerization catalysts.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 13, 2009
    Assignees: Nova Chemicals(International) S.A., Ineos Europe Limited
    Inventors: Ian McKay, Dusan Jeremic, Paul Mesquita, Grant Berent Jacobsen, Sergio Mastroianni
  • Patent number: 7473751
    Abstract: A polymer film having a thickness of 10 microns or less and improved barrier characteristics to both water vapor and oxygen is formed from a biaxially-oriented polypropylene film of isotactic polypropylene. The polypropylene is prepared by the polymerization of propylene in the presence of an isospecific metallocene catalyst. The film has a permeability to water vapor of less than about 2.5 g/m2day/25 ?m and a permeability to oxygen of less than about 2200 cc/m2day/25 ?m. The film also has a haze properties of less than about 1%. The polypropylene contains 0.1 to 1% 2,1 insertions and has an isotacticity of at least 96% meso pentads. The isotactic polypropylene thus produced is then extruded into a sheet that is biaxially-oriented by stressing the sheet in the transverse and longitudinal directions to a draw ratio of at least about 6:1 in the transverse direction, and at least about 4:1 in the longitudinal direction.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: January 6, 2009
    Assignee: Fina Technology, Inc.
    Inventor: Scott D. Cooper
  • Patent number: 7470759
    Abstract: A method of producing a polymer comprising contacting in a reaction zone under conditions suitable for polymerization of an alpha-olefin monomer with a metallocene catalyst having at least three asymmetric centers, and recovering an alpha-olefin polymer from the reaction zone. A method of polymerizing propylene comprising contacting in a reaction zone propylene, a cocatalyst, and a metallocene catalyst having the formula including stereoisomers: and recovering polypropylene from the reaction zone. A polypropylene composition having a tensile modulus from 40,000 psi to 300,000 psi, a tensile strength at yield from 2,000 psi to 6,000 psi, a tensile strength at break from 1,000 psi to 3,500 psi, a tensile strength from 1,000 psi to 5,000 Kpsi, an elongation at yield of greater than or equal to 10%, and an elongation at break from 50% to 500%.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: December 30, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Vladimir Marin, Abbas Razavi
  • Patent number: 7459510
    Abstract: This invention relates to a process to polymerize olefins comprising contacting, in a reactor, a pyridyl-di-imine compound and an activator with one or more olefin monomer(s) in the presence of a fluorinated hydrocarbon.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: December 2, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Zerong Lin, Pradeep P. Shirodkar
  • Patent number: 7452948
    Abstract: An improved method for the preparation of a supported polymerisation catalyst system comprises the combination of (i) a porous support (ii) a polymerisable monomer, (iii) a polymerisation catalyst, and (iv) a cocatalyst, characterised in that the polymerisable monomer is added to the porous support before addition of one or both of the polymerisation catalyst and the cocatalyst. The preferred polymerisation catalyst is a metallocene complex and the preferred porous support is silica. The resultant supported catalysts are stable over long periods of time. The supported catalyst are particularly suitable for use in the gas phase.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 18, 2008
    Assignee: Ineos Europe Limited
    Inventors: Grant Berent Jacobsen, Brian Stephen Kimberley, Sergio Mastroianni, Michael John Taylor
  • Patent number: 7446073
    Abstract: The present invention relates to a cyclic germanium bridged bulky ligand metallocene-type catalyst compound, a catalyst system thereof, and to its use in a process for polymerizing olefin(s) to produce enhanced processability polymers.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: November 4, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Phillip T. Matsunaga
  • Publication number: 20080269442
    Abstract: The presently disclosed subject matter relates to tris(N,N-diarylamido) transition metal complexes and the use of such complexes as single-site polymerization catalysts. The presently disclosed complexes can be used as catalysts in the preparation of polymers from monomers, such as olefins and propylene oxide, at relatively low pressure and temperature. The polymers produced have a high molecular weight.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 30, 2008
    Inventors: John F. C. Turner, Michael A. Blanchard
  • Publication number: 20080269441
    Abstract: A process for the polymerization of ethylene to provide an ethylene polymer of reduced Yellowness Index. A feed stream, comprising an inert hydrocarbon diluent containing ethylene in a minor amount, is supplied to a polymerization reactor. A chromium-based polymerization catalyst and a triethylboron co-catalyst are incorporated into the feed stream within the reactor. The polymerization catalyst will normally be used in an amount within the range of 0.008-0.1 wt. % of the diluent in the feed stream and the triethylboron co-catalyst is incorporated in an amount within the range of 0.1-50 ppm of the diluent. The polymer fluff from the reactor is heated to a temperature sufficient to melt the fluff which is then extruded to produce a polymer product. The Yellowness Index after high temperature aging is at least 5% less than the corresponding Yellowness Index of a corresponding polymer product produced without the triethylboron co-catalyst.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Gerhard Guenther, David W. Knoeppel, Steven D. Gray, Tim J. Coffy
  • Patent number: 7442667
    Abstract: The present invention relates to a process for preparing a supported cocatalyst for olefin polymerization, which comprises reacting A) a support bearing functional groups, B) triethylaluminum and C) a compound of the formula (I), (R1)x—A—OH)y??(I) where A is an atom of group 13 or 15 of the Periodic Table, R1 are identical or different and are each, independently of one another, hydrogen, halogen, C1-C20-alkyl, C1-C20-haloalkyl, C1-C10-alkoxy, C6-C20-aryl, C6-C20-haloaryl, C6-C20-aryloxy, C7-C40-arylalky, C7-C40-haloarylalkyl, C7-C40-alkylaryl, C7-C40-haloalkylaryl or an OSiR32 group, where R2 are identical or different and are each hydrogen, halogen, C1-C20-alkyl, C1-C20-haloalkyl, C1-C10-alkoxy, C6-C20-aryl, C6-C20-haloaryl, C6-C20-aryloxy, C7-C40-arylalkyl, C7-C40-haloarylalkyl, C7-C40-alkylaryl or C7-C40-haloalkylaryl, y is 1 or 2 and x is 3 minus y.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: October 28, 2008
    Assignee: Bosell Polyolefine GmbH
    Inventors: Naka Seidel, Bodo Richter, Roland Kratzer
  • Patent number: 7442750
    Abstract: Supported catalyst systems are provided comprising (a) a transition metal compound, (b) an activator comprising (iii) an aluminoxane or (iv) a Group lilA metal or metalloid compound, and (c) a support material comprising an inorganic metal oxide, inorganic metal halide or polymeric material or mixtures thereof characterised in that the support material has been pretreated with a source of a transition metal atom. The preferred transition metal compounds are metallocenes and the source of the transition metal atom is typically a ferrous or cupric metal salt. The supported catalyst systems show improved activity and also may reduce fouling in gas phase fluidised bed processes.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: October 28, 2008
    Assignee: Innovene Europe Limited
    Inventors: Grant Berent Jacobsen, Brian Stephen Kimberley, Claudine Viviane Lalanne-Magne, Sergio Mastroianni
  • Patent number: 7429635
    Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 30, 2008
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7429634
    Abstract: This invention relates to a process to polymerize olefins comprising contacting, in a polymerization system, olefins having three or more carbon atoms with a catalyst compound, activator, optionally comonomer, and optionally diluent or solvent, at a temperature above the cloud point temperature of the polymerization system and a pressure no lower than 10 MPa below the cloud point pressure of the polymerization system, where the polymerization system comprises any comonomer present, any diluent or solvent present, the polymer product, where the olefins having three or more carbon atoms are present at 40 weight % or more.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: September 30, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Gerhard Franz Luft, John Richard Shutt, Lawrence Carl Smith, Douglas J. McLain, Terry J. Burkhardt
  • Patent number: 7425601
    Abstract: The invention relates to new polymerization processes including diluents including hydrofluorocarbons and their use to produce novel polymers with new sequence distributions. In particular, the invention relates to copolymers of an isoolefin, preferably isobutylene, and an alkylstyrene, preferably methylstyrene, even more preferably para-methylstyrene, with new sequence distributions. The copolymer may optionally be halogenated.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: September 16, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Yen-Lung Chung, Timothy Daniel Shaffer
  • Publication number: 20080221285
    Abstract: The invention relates to a solvent-stable metal catalyst having slightly coordinating counter anions of formula I [M(L)a(Z)b]m+m(A?)(I), wherein M represents a transition metal of groups 3-12 of the periodic system, a lanthanide or a metal of groups 2 or 13 of the periodic system; L represents a solvent molecule; Z represents a mono or polycharged ligand; A? represents a slightly or non coordinated anion; a represents a whole number which is greater than or equal to 1; b represents a whole number which is greater than or equal to 1, whereby the total from a and b is between 4 and 8, and m represents a whole number from 1 6. The invention also relates to a method for polymerising olefinically unsaturated compounds in the presence of said catalyst and copolymers which are made of monomers comprising isobutene and at least one vinylaromatic compound which is obtained according to said inventive method.
    Type: Application
    Filed: August 11, 2006
    Publication date: September 11, 2008
    Applicant: BASF SE
    Inventors: Hans-Michael Walter, Mirjam Herrlich-Loos, Fritz Elmar Kuehn, Yanmei Zhang, Brigitte Voit, Radha Krishnan Narayanan
  • Patent number: RE40751
    Abstract: The present invention relates to a process for the polymerization of monomers utilizing a bulky ligand hafnium transition metal metallocene-type catalyst compound, to the catalyst compound itself and to the catalyst compound in combination with an activator. The hafnocene comprises at least one cyclopentadienyl ligand including at least one linear or isoalkyl substituent of at least 3 carbon atoms.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: June 16, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Moses O. Jejelowo, Sun-Chueh Kao