Transition Metal Bonded To Carbon Atom Patents (Class 526/160)
  • Patent number: 8921499
    Abstract: The present invention relates to a method of preparing an ethylene-?-olefin-diene copolymer and an ethylene-?-olefin-diene copolymer prepared thereby, by using a transition metal compound based on a cyclopenta[b]fluorenyl group as a catalyst.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: December 30, 2014
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Dong Cheol Shin, Ho Seong Lee, Seong Kyun Kim, Sang Ick Lee, Sun Young Kim, Jong Sok Hahn, Chan Woong Jeon, Jeong Hwan Kim
  • Patent number: 8916662
    Abstract: The present invention relates to a preparation method for olefin-diene copolymer that comprises polymerizing at least one olefin-based monomer and at least one diene-based monomer in the presence of a catalyst comprising a novel transition metal compound. Using the novel transition metal compound as a catalyst, the preparation method for olefin-diene copolymer according to the present invention can not only acquire high catalytic activity for copolymerization of the olefin and diene monomers to achieve high process efficiency but allow it to easily control the fine-structure characteristics of the copolymer, thereby providing an olefin-diene copolymer having desired properties with ease.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 23, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Hwa-Kyu Kim, Jae-Young Park, Seung-Woong Yoon
  • Patent number: 8916494
    Abstract: Methods for the vapor phase preparation of fluorided solid oxide activator-supports, using certain calcining temperatures and fluoriding temperatures, are disclosed.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: December 23, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Collins, Qing Yang, Tony R. Crain
  • Patent number: 8912285
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes use a catalyst system containing three metallocene components, often resulting in polymers having a reverse comonomer distribution and a broad and non-bimodal molecular weight distribution.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: December 16, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu, Yongwoo Inn
  • Patent number: 8901267
    Abstract: The present invention relates to an olefin-based polymer which exhibits superior processability and superior adhesive properties and therefore is desirably applicable to a hot-melt adhesive (HMA) or the like, and a preparation method thereof. The olefin-based polymer has a molecular weight distribution (Mw/Mn, PDI) of 2˜3, and a density of 0.85 to 0.88 g/cm3, and satisfies the relation of Tc?Tm>0, wherein Tc (° C.) is a crystallization temperature and Tm (° C.) is a melting point.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 2, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Don-Ho Kum, Eun-Jung Lee, Jong-Joo Ha, Choong-Hoon Lee
  • Patent number: 8895679
    Abstract: An imine phenol compound having Structure I: wherein O and N represent oxygen and nitrogen respectively; R comprises a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; R2 and R3 can each independently be hydrogen, a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; and Q is a donor group. A method comprising contacting a catalyst composition with a monomer under conditions suitable for the formation of a polymer wherein the catalyst composition comprises a metal salt complex of an imine (bis)phenolate compound, a solid oxide, and an optional metal alkyl and wherein the metal salt complex of an imine (bis)phenolate compound has Structure XIV where M is titanium, zirconium, or hafnium; OEt2 is ethoxide, R comprises a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; and R2 comprises hydrogen, a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: November 25, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Mark L. Hlavinka
  • Patent number: 8895465
    Abstract: This invention provides activator precursor compositions and activator compositions. The activator precursor compositions are formed from a support material, an organoaluminum compound, and polyfunctional compounds having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. The activator compositions are formed from a support material, an organoaluminum compound, an aluminoxane, and a polyfunctional compound having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. Also provided are catalyst compositions, processes for forming catalyst compositions, and polymerization processes utilizing the catalyst compositions of this invention.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: November 25, 2014
    Assignee: Albemarle Corporation
    Inventor: Lubin Luo
  • Patent number: 8895466
    Abstract: The present invention discloses an active metallocene catalyst system prepared with a hafnium-based metallocene catalyst system and an activating agent comprising an aluminoxane and a sterically hindered Lewis base.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: November 25, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Vincenzo Busico, Roberta Cipullo, Roberta Pellecchia, Abbas Razavi
  • Patent number: 8889804
    Abstract: The present invention relates to a preparation method for polypropylene that comprises polymerizing a propylene monomer in the presence of a catalyst comprising a novel transition metal compound. Using the novel transition metal compound as a catalyst, the preparation method for polypropylene according to the present invention can not only acquire high catalytic activity for polymerization to achieve high efficiency of the process but allow it to easily control the fine-structure characteristics of the polymer, thereby providing polypropylene having desired properties with ease.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Hwa-Kyu Kim, Jae-Young Park, Seung-Woong Yoon
  • Patent number: 8889750
    Abstract: Polypropylene resin expanded particles comprises a polypropylene resin as a base material resin, the polypropylene resin having at least three melting peaks on a DSC curve for a second temperature rise measured at a heating rate of 10 g/min with use of a heat flux differential scanning calorimeter (DSC), the at least three melting peaks including (i) a lowest temperature melting peak of 100° C. to 130° C. and (ii) a highest temperature melting peak of 140° C. to 160° C., the polypropylene resin having a resin DSC ratio change rate of 0.5%/° C. to 3.0%/° C., the expanded particles having two melting peaks in a DSC measurement made at a first temperature rise at the heating rate of 10 g/min, the two melting peaks including, (i) on a lower temperature side, a melting peak temperature of 100° C. to 130° C. and, (ii) on a higher temperature side, a melting peak temperature of 140° C. to 160° C.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: November 18, 2014
    Assignee: Kaneka Corporation
    Inventor: Kenichi Senda
  • Patent number: 8889581
    Abstract: The present invention relates to a catalyst composition comprising a novel transition metal compound and a preparation method for polyolefin using the same. The catalyst composition of the present invention has high catalytic activity for polymerization of olefin-based monomers and enables it to control the fine-structure characteristics of the polyolefin, such as molecular weight distribution, in a wide range, thereby easily providing a polyolefin with desired properties.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Young-Kook Kim, In-Sung Nam, Seung-Woong Yoon
  • Patent number: 8877672
    Abstract: A catalyst composition comprising (i) a metal salt complex prepared from an imine phenol compound characterized by Structure 1: wherein O and N represent oxygen and nitrogen respectively; R comprises a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; R2 and R3 are each independently hydrogen, a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; and Q is a donor group; and (ii) a metallocene complex.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: November 4, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang
  • Patent number: 8865847
    Abstract: Olefin polymerization is carried out with a single site polymerization catalyst in the presence of a continuity additive. The continuity additive is a cocktail containing one or more dialkanolamide derived from a fatty acid, an oil soluble sulfonic acid and a dialkanolamine.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 21, 2014
    Assignee: Nova Chemicals (International) S.A
    Inventors: Peter Phung Minh Hoang, Benjamin Milton Shaw, Andy Mak
  • Patent number: 8865846
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can use a dual catalyst system containing a zirconium or hafnium based metallocene compound and a titanium based half-metallocene compound containing an indenyl group.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: October 21, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Qing Yang, Youlu Yu, Lloyd W. Guatney, Jim B. Askew
  • Patent number: 8865849
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8865848
    Abstract: A process for the preparation of a random propylene copolymer comprising polymerizing propylene and at least one C2-10 alpha olefin (especially ethylene) in the presence of a catalyst; wherein said catalyst comprises: (i) a complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-hydrocarbyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 is a C4-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring, optionally containing one or more heteroatoms belonging to groups 14-16, or is a C3-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring where the ?-atom is an Si-atom; n is 0-3; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1-6-h
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: October 21, 2014
    Assignee: Borealis AG
    Inventors: Pascal Castro, Luigi Resconi, Lauri Huhtanen
  • Publication number: 20140309387
    Abstract: The present invention relates to a transition metal catalyst composition which can exhibit high reactivity in a polymerization reaction of a polyolefin and can easily control characteristics such as chemical structure, molecular weight distribution, mechanical properties, and the like of a synthesized polyolefin, and a method of preparing a polyolefin using the catalyst composition.
    Type: Application
    Filed: August 24, 2012
    Publication date: October 16, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Won-Hee Kim, Kyung-Seop Noh, Nan-Young Lee, Sang-Jin Jeon
  • Patent number: 8859451
    Abstract: The present invention refers to a process for the preparation of supported catalysts for the polymerization of olefins comprising at least a late transition metal complex, wherein the process comprises two steps. In the first step a catalytically active component comprising at least one late transition metal complex, optionally in the presence of one or more cocatalysts is mixed with a support; and in the second step the obtained mixture is treated at a reduced pressure under a flow of inert gas at a temperature equal to or below 40° C. to obtain a supported catalyst. The method is especially useful for the preparation of dual supported catalysts, useful in the gas-phase polymerization of olefins.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: October 14, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Volker Fraaije, Harald Schmitz
  • Patent number: 8853339
    Abstract: This invention relates to a method for producing a copolymer of a conjugated diene compound and an unconjugated olefin other than the conjugated diene compound having a high cis-1,4 bond content of a conjugated diene compound portion, and more particularly to a method for producing a copolymer characterized by comprising a step of polymerizing a conjugated diene compound and an unconjugated olefin other than the conjugated diene compound in the presence of a polymerization catalyst composition including at least one complex selected from a metallocene complex represented by the following general formula (I): (wherein M is a lanthanoid element, scandium or yttrium, and CpR is independently a non-substituted or substituted indenyl, and Ra-Rf are independently an alkyl group having a carbon number of 1-3 or a hydrogen atom, and L is a neutral Lewis base, and w is an integer of 0-3) and so on.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 7, 2014
    Assignee: Bridgestone Corporation
    Inventors: Shojiro Kaita, Olivier Tardif, Yasuo Horikawa
  • Publication number: 20140296458
    Abstract: The invention relates to a catalyst system for the polymerization of olefins comprising a metal complex of formula CyLMD and an activating cocatalyst, wherein M is titanium, Cy is a cyclopentadienyl-type ligand, D is a diene, L is a guanidinate-containing ligand of the formula (I) wherein each A is independently selected from nitrogen or phosphorous and R, R1, R2 and R3 are independently selected from the group consisting of hydrogen, hydrocarbyl, silyl and germyl residues, substituted or not with one or more halogen, amido, phosphido, alkoxy, or aryloxy radicals, and Cy is a mono- or polysubstituted cyclopentadienyl-type ligand, wherein the one or more substituents of Cy are selected from the group consisting of halogen, hydrocarbyl, silyl and germyl residues, optionally substituted with one or more halogen, amido, phosphido, alkoxy, or aryloxy residues.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 2, 2014
    Applicant: LANXESS ELASTOMERS B.V.
    Inventors: Van Gerardus Henricus Josephus Doremaele, Martin Alexander Zuideveld, Victor Fidel Quiroga Norambuena, Philip Mountford, Richard Scott
  • Publication number: 20140296453
    Abstract: Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Inventors: Mark L. Hlavinka, Qing Yang, Youlu Yu
  • Patent number: 8846835
    Abstract: A scavenger is used to indirectly control the ratio of polymer components in a polyethylene composition made using a combination catalyst comprising an inorganic chromium catalyst, and a group 4 single site catalyst.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 30, 2014
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Victoria Ker, Peter Phung Minh Hoang, Yan Jiang, Yves Lacombe
  • Publication number: 20140288251
    Abstract: An object of the present invention is to provide a method which can simply suppress fouling in a reactor and, according to the present invention, there is provided a method of polymerizing addition polymerizable monomers using a catalyst formed by bringing (A) a transition metal compound represented by the following general formula [3] or ?-oxo type transition metal compound dimer thereof and (B) an activating agent into contact with one another, the method comprising polymerizing addition polymerizable monomers in a solvent to which a surfactant-containing particle obtained by mixing a particle composed of an inorganic compound or an organic polymer, and at least one surfactant selected from the group consisting of a compound represented by the following general formula [1] and a compound represented by general formula [2] has been added.
    Type: Application
    Filed: December 6, 2012
    Publication date: September 25, 2014
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Naoko Ochi, Shinyo Tamura
  • Publication number: 20140288243
    Abstract: The present invention is directed to a heterogeneous gas phase polymerization process to produce true polyacetylene (PA; C2H2) in powder form, and the resultant PA product. The present invention is additionally directed to a chlorinated polyacetylene (CPA) compound comprised of primarily CHCl units and CH double bond units. The CPA compound can be comprised of at least 67.3 wt % Cl, and have a weight average molecular weight (Mw) as measured by GPC of greater than 30,000 and contain less than 1.0 mol % carbon-carbon branching. The CPA compound according to the invention can exhibit a glass transition temperature (Tg) of at least about 185° C. to about 270° C.
    Type: Application
    Filed: October 15, 2012
    Publication date: September 25, 2014
    Inventors: Garry L. Fields, James D. Burrington, Andrew M. Olah
  • Patent number: 8841393
    Abstract: Catalyst compositions for the polymerization of olefins having improved flowability properties are provided.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: September 23, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, Agapios Kyriacos Agapiou, David M. Glowczwski, Ghanshyam Ganu H. Patel
  • Patent number: 8841394
    Abstract: This invention relates to a vinyl terminated higher olefin copolymer having an Mn of 300 g/mol or more (measured by 1H NMR) comprising: (i) from about 20 to about 99.9 mol % of at least one C5 to C40 higher olefin monomer; and (ii) from about 0.1 to about 80 mol % of propylene; wherein the higher olefin copolymer has at least 40% allyl chain ends. The copolymer may also have an isobutyl chain end to allyl chain end ratio of less than 0.7:1 and/or an allyl chain end to vinylidene chain end ratio of greater than 2:1.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: September 23, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Matthew W. Holtcamp, John R. Hagadorn, Charles J. Ruff, George Rodriguez, Patrick Brant
  • Patent number: 8835577
    Abstract: A polymerization catalyst system and polymerization processes using the catalyst systems are disclosed. The polymerization catalyst systems may include a) a first catalyst compound, and b) a second catalyst compound, wherein the first catalyst compound comprises a biphenyl phenol compound having essentially no hydrogen response.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: September 16, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Sun-Chueh Kao, Rainer Kolb, Dongming Li, Cesar A. Garcia-Franco
  • Patent number: 8829128
    Abstract: Process for the preparation of a polypropylene, wherein propylene is polymerized optionally with a comonomer selected from the group consisting of ethylene, a C4-C20 ?-olefin and mixtures thereof, in the presence of a catalyst system comprising solid catalyst particles, wherein the solid catalyst particles (a) comprise a transition metal compound of formula (I) LmRnMXq (I) wherein “M” is a transition metal of anyone of the groups 3 to 10 of the periodic table (IUPAC), each “X” is independently a monovalent anionic ?-ligand, each “L” is independently an organic ligand which coordinates to the transition metal (M), each “R” is a bridging group linking two organic ligands (L), “m” is 2 or 3, preferably 2, “n” is 0, 1 or 2, preferably 1, “q” is 1, 2 or 3, preferably 2, m+q is equal to the valency of the transition metal (M), (c) comprise a cocatalyst (Co) comprising an element (E) of group 13 of the periodic table (IUPAC), preferably a cocatalyst (Co) comprising a compound of A1, wherein further the loss of activ
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: September 9, 2014
    Assignee: Borealis AG
    Inventors: Lauri Huhtanen, Kalle Kallio, Pascal Castro
  • Patent number: 8829115
    Abstract: An ethylene-based polymer composition has been discovered and is characterized by a Comonomer Distribution Constant greater than about 45. The new ethylene-based polymer compositions are useful for making many articles, especially including films. The polymers are made using a metal complex of a polyvalent aryloxyether.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: September 9, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Theresa J. Hermel-Davidock, Mehmet Demirors, Sarah M. Hayne, Rongjuan Cong, Lori L. Kardos, Teresa P. Karjala
  • Patent number: 8829137
    Abstract: Polyethylene films having a good balance of optical and mechanical properties are disclosed. The films are derived from ethylene copolymer compositions made with a suitably substituted phosphinimine catalyst. The ethylene copolymers have very narrow molecular weight distributions and broadened comonomer distributions.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Patrick Lam, Victoria Ker, Charles Ashton Garret Carter, Benjamin Milton Shaw, Cliff Robert Baar, Alexei Kazakov, Ian Douglas McKay, Dusan Jeremic
  • Patent number: 8828901
    Abstract: Process for the preparation of a solid catalyst system comprising the steps of generating an emulsion by dispersing a liquid clathrate in a solution wherein (i) the solution constitutes the continuous phase of the emulsion and (ii) the liquid clathrate constitutes in form of droplets the dispersed phase of the emulsion, solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst system, wherein the liquid clathrate comprises a lattice being the reaction product of aluminoxane, an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, and a further compound being effective to form with the aluminoxane and the organometallic compound the lattice, and a guest being an hydrocarbon compound, and the solution comprises a silicon fluid and a hydrocarbon solvent.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 9, 2014
    Assignee: Borealis AG
    Inventors: Kalle Kallio, Marja Mustonen, Pertti Elo, John Severn, Peter Denifl
  • Patent number: 8822365
    Abstract: Process for the preparation of a solid olefin polymerization catalyst system, comprising an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) in the form of solid particles comprising the steps of I) generating an emulsion by dispersing a liquid clathrate in a solvent (S) wherein (i) the solvent (S) constitutes the continuous phase of the emulsion and comprises a nonreactive fluorinated synthetic oil having a viscosity at 20° C.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 2, 2014
    Assignee: Borealis AG
    Inventors: Jenni Valonen, Marja Mustonen
  • Patent number: 8822611
    Abstract: Rotomoulded articles and methods of forming the same are described herein. The rotomoulded articles generally have a permeability of less than 1 g/day. The rotomoulded articles generally include polyethylene obtained by injecting into a reactor a catalyst system including a metallocene catalyst component of specific formula and an activating agent; injecting into the reactor ethylene monomer at a concentration of at least 6.5 wt %; injecting an amount of hydrogen such that a ratio of hydrogen to ethylene (H2/C2) in the feed is less than 85 g/106 g; maintaining the reactor under polymerisation conditions at a temperature of less than 90° C.; and retrieving polyethylene exhibiting a melt index (MI2) of at least 3.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: September 2, 2014
    Assignee: Total Research & Technology Feluy
    Inventor: Eric Maziers
  • Patent number: 8816027
    Abstract: This invention relates to a homogenous process for making a vinyl terminated propylene polymer, wherein the process comprises: contacting, propylene, under polymerization conditions, with a catalyst system comprising an activator and at least one metallocene compound, where the metallocene compound is represented by the formula: where: M is hafnium or zirconium; each X is a group bound to M as described herein; each R1 and R2 is, independently, a C1 to C10 alkyl group; each R3 is, independently, hydrogen; each R4, R5, and R6, is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; T is a bridging group as described herein; and further provided that any of adjacent R4, R5, and R6 groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated, wherein the activator comprises a non-coordinating anion.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: August 26, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Patrick Brant, Carlos U. De Garcia, Jacqueline A. Lovell
  • Patent number: 8809462
    Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 860 to 950 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a single melting peak measured by a differential scanning calorimeter (DSC).
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 19, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshinobu Nozue, Naoko Ochi
  • Patent number: 8802797
    Abstract: Vinyl-terminated macromonomer oligomerization, namely, a process to produce polymacromonomers comprising contacting a vinyl-terminated macromonomer with a catalyst system capable of oligomerizing vinyl-terminated macromonomer, in the presence of an aluminum containing compound, a zinc containing compound, or a combination thereof, under polymerization conditions to produce a polymacromonomer, and polymacromonomers produced thereby. Also, polymacromonomers having a degree of polymerization greater than 10, a glass transition temperature Tg of less than 60° C., and an Mn of greater than or equal to about 5000 Da.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: August 12, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R Hagadorn, Patrick Brant, Robbert Duchateau, Rafael Sablong
  • Patent number: 8796409
    Abstract: The invention describes the preparation of long chain branching in high density polyethylene by using metallocene catalysts in the presence of ethylene.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: August 5, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mosha H. Zhao, Cesar A. Garcia-Franco, Patrick Brant
  • Patent number: 8791217
    Abstract: Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization or oligomerization of alpha olefins also are provided.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: July 29, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang, Brooke L. Small, Youlu Yu
  • Patent number: 8791042
    Abstract: Process for the preparation of an unsupported, heterogeneous olefin polymerization catalyst system, comprising an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) in the form of solid particles comprising the steps of a) preparing a solution (A) comprising ai) an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, a2) a cocatalyst comprising an element of group 13 of the Periodic Table (IUPAC 2007) and a3) a solvent (A-1), b) preparing a liquid/liquid emulsion system by dispersing the solution (A) in a solvent (B) essentially immiscible with said solution (A) in the presence of a polystyrene-b-fluoro polystyrene copolymer of the formula (I) in which n is a number from 10 to 100, m is a number from 1 to 40, x is a number from 5 to 16, y is a number from 11 to 33, provided that m, n, x and y are selected in a way that the block copolymer is soluble in the solvent B or the solution A in
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 29, 2014
    Assignee: Borealis AG
    Inventors: Nicolas Ronan, Peter Denifl
  • Patent number: 8785576
    Abstract: Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang
  • Patent number: 8785575
    Abstract: A polymerization process comprising contacting under polymerization conditions ethylene and at least propylene to obtain a copolymer containing from 96% by mol to 71% by mol of ethylene derived units, in the presence of a catalyst system obtainable by contacting: b) at least a metallocene compound of formula (I), b) alumoxane or a compound capable of forming an alkyl metallocene cation; and optionally c) an organo aluminum compound; wherein the groups R1-R4, L, M and W are described in the text.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: July 22, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Francesca Focante
  • Patent number: 8785574
    Abstract: According to the invention, a single or plural kinds of bridged metallocene compounds having differing cyclopentadienyl-derived groups afford macromonomers that are a source of long-chain branches and simultaneously catalyze the repolymerization of the macromonomers into olefin polymers having a large number of long-chain branches, small neck-in in the T-die extrusion, small take-up surge and superior mechanical strength. The olefin polymerization catalysts and the polymerization processes can efficiently produce the olefin polymers.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: July 22, 2014
    Assignees: Mitsui Chemicals, Inc., Prime Polymer Co., Ltd.
    Inventors: Hideki Bando, Yasuo Satoh, Takashi Yukita, Yasuyuki Harada, Yoshiho Sonobe, Yasushi Tohi, Yusuke Sekioka, Masao Suzuki, Daisuke Tanifuji
  • Patent number: 8779067
    Abstract: This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: July 15, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Donna J. Crowther, Andrew G. Narvaez, Jr.
  • Publication number: 20140194277
    Abstract: An object of the present invention is to provide a polyethylene-based resin composition excellent in the moldability and at the same time, excellent in the balance between impact strength and stiffness as well as in the transparency, and a molded product and a film, which are obtained by the molding of the polyethylene-based resin composition. The polyethylene-based resin composition of the present invention comprises from 41 to 99 wt % of (A) an ethylene-based polymer satisfying specific conditions and from 1 to 59 wt % of (B) an ethylene-based polymer satisfying specific conditions, wherein MFR of the composition as a whole is from 0.05 to 50 g/10 min and the density is from 0.910 to 0.960 g/cm3.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 10, 2014
    Applicant: JAPAN POLYETHYLENE CORPORATION
    Inventors: Yoshiyuki Ishihama, Ryousuke Asakawa, Tsutomu Sakuragi, Tetsurou Fukuda, Kazuya Sakata, Masaru Aoki, Kenji Kawagishi, Keiichi Yoshimoto
  • Patent number: 8772426
    Abstract: Copolymers of ethylene and ?-olefins having (a) a density (D) in the range 0.900-0.940 g/cm3, (b) a melt index MI2 (2.16 kg, 190° C.) in the range of 0.01-50 g/10 min, (c) a melt index MI2 (2.16 kg, 190° C.) and Dow Rheology Index (DRI) satisfying the equation [DRI/MI2]>2.65, and (d) a Dart Drop Impact (DDI) in g of a blown film having a thickness of 25 ?m produced from the copolymer satisfying the equation DDI?1900×{1?Exp [?750(D?0.908)2]}×{Exp [(0.919?D)/0.0045]}. The copolymers may be prepared using metallocene catalysis and are preferably prepared in multistage processes carried out in loop reactors in the slurry phase. The copolymers exhibit long chain branching as defined by Dow Rheology Index (DRI) and exhibit unexpected improvements in mechanical properties, in particular dart drop impact, when extruded into blown films.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: July 8, 2014
    Assignee: Ineos Manufacturing Belgium NV
    Inventors: Choon Kooi Chai, Luc Marie Ghislain Dheur, Benoit Koch, Stefan Klaus Spitzmesser
  • Patent number: 8765886
    Abstract: The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Thomas P. Clark, Nahrain E. Kamber, Sara B. Klamo, Phillip D. Hustad, David R. Wilson
  • Patent number: 8765627
    Abstract: The present invention relates to a catalyst system, to a method of manufacturing this system, and also to uses of this system. The catalyst system of the invention is characterized in that it comprises molecules of a polymer having, at one of its ends or along the chain, one or more polar functional groups; a solvent, said solvent, due to the fact of said polar functional group of said polymer, provoking and maintaining, when said molecules of the polymer are introduced thereinto, an organization of said molecules of the polymer into aggregates, micelles or vesicles so that the polar functional groups of said polymer are located inside the aggregates, micelles or vesicles formed; and a catalyst activator and a catalyst trapped in said aggregates, micelles or vesicles of said polymer. The catalyst system of the present invention may be used, for example, for catalyzing a (co)polymerization of olefins.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: July 1, 2014
    Assignee: Centre National de la Recherche Scientifique—CNRS
    Inventors: Henri Cramail, Cécile Bouilhac, Eric Cloutet, Daniel Taton, Alain Deffieux
  • Patent number: 8759466
    Abstract: The present invention relates to an ethylene-alpha olefin copolymer comprising long chain branches (LCB), while having a narrow molecular weight distribution. The ethylene-alpha olefin copolymer can be prepared by a continuous solution polymerization process using an activated catalyst composition containing a Group 4 transition metal compound having a monocyclopentadienyl ligand, to which a quinoline amino group is introduced.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: June 24, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Choong-Hoon Lee, Byung-Kwon Lim, Eun-Jung Lee, Jong-Joo Ha, Seung-Whan Jung, Jung-A Lee, Ki-Su Ro, Don-Ho Kum, Dong-Kyu Park
  • Patent number: 8759246
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: June 24, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Joel L. Martin, Albert P. Masino, Qing Yang, Youlu Yu
  • Patent number: RE45219
    Abstract: Provided are a photoreactive polymer that includes a multi-cyclicmulticyclic compound at as its main chain and a method of preparing the same. The photoreactive polymer exhibits excellent thermal stability since it includes a multi-cyclicmulticyclic compound having a high glass transition temperature at as its main chain. In addition, the photoreactive polymer has a relatively large vacancy so that a photoreactive group can move relatively freely in the main chain therein. As a result, a slow photoreaction rate, which is a disadvantage of a conventional polymer material used to form an alignment layer for a liquid crystal display device, can be overcome.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 28, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Heon Kim, Sung Ho Chun, Keon Woo Lee, Sung Joon Oh, Kyungjun Kim, Jungho Jo, Byung Hyun Lee, Min Young Lim, Hye Won Jeong