Transition Metal Is Group Viii Patents (Class 526/169.1)
  • Patent number: 6727330
    Abstract: The present invention is directed to a process for forming a high-cis polydiene. The process includes catalyzing a diene polymerization, and terminating the polymerization with a termination mixture comprising an inorganic base and at least one of an amine and a carboxylic acid. The catalyst system is a mixture of (a) organoaluminum compounds; (b) organonickel compounds; and (c) fluorine-containing compounds. The use of an inorganic base reduces the amount of more expensive amine necessary to effectively terminate the polymerization as well as reducing the corrosion in the reaction container. The use of an inorganic base with a carboxylic acid results in a very low gel content as well as reducing the corrosion in the process systems.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: April 27, 2004
    Assignee: Firestone Polymers, LLC
    Inventors: Mark N. DeDecker, Harry L. Wright, Jason M. Pyle
  • Patent number: 6723807
    Abstract: A catalyst obtained by contacting a transition metal compound (A) of the general formula [1]: [LpXoCpjM(N2)nM′XmLl]X′k  [1], wherein M and M′ independently represent a transition metal of Group 3 to 10; X independently represents a hydrogen atom, halogen atom, a specific hydrocarbon group or the like; Cp is a cyclopentadienyl group; L represents a group which bonds to M or M′ by lone pair of electrons or a &pgr; electron; X′ represents a counter anion; k, l, m, o and p each independently represent an integer of 0 to 5; j represents an integer of 0 to 2; n+o+p+j≦6; n represents an integer of 1 to 3; and n+l+m≦6, with an organoaluminum, and an aluminoxane and/or boron compound, or with an aluminoxane and/or boron compound, and a process for producing an addition polymerization with the catalyst.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: April 20, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masanobu Hidai, Masaaki Nabika
  • Patent number: 6720397
    Abstract: A process for synthesizing syndiotactic 1,2-polybutadiene, the process comprising the steps of (1) polymerizing monomer consisting essentially of 1,3-butadeine monomer within an organic solvent that includes at least 50% by weight of aliphatic solvent by using an iron-based catalyst composition, where said step of polymerizing occurs at a temperature above about 65° C., thereby forming a supersaturated solution of syndiotactic 1,2-polybutadiene, (2) maintaining the supersaturated solution of syndiotactic 1,2-polybutadiene at a temperature above about 65° C. until isolation of the syndiotactic 1,2-polybutadiene is desired, and (3) isolating the syndiotactic 1,2-polybutadiene from the supersaturated solution.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: April 13, 2004
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6693154
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. It comprises an activator and an organometallic complex. The complex includes a Group 3-10 transition or lanthanide metal and a 1,3-bis(arylimino)isoindoline or 1,3-bis(heteroarylimino)isoindoline ligand. Activities of the Group 8-10 catalyst systems rival or exceed those of late transition metal bis(imines). The resulting polyolefins typically have high molecular weights, broad molecular weight distributions, and a high degree of crystallinity, which makes them valuable for film applications.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: February 17, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Jia-Chu Liu, Jonathan L. Schuchardt
  • Publication number: 20040010105
    Abstract: A slurry ethylene polymerization process is disclosed. The process uses an unsupported late transition metal catalyst that comprises an acenaphthene N,N′-bis(arylimine) ligand. The process is conducted in the presence of a non-aromatic hydrocarbon diluent. The process produces polyethylene having high molecular weight in powder form and it gives high catalyst activity at relatively high temperatures.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 15, 2004
    Inventors: Linda N. Winslow, Michael W. Lynch
  • Patent number: 6670433
    Abstract: Substituted cyclopentenes, such as alkyl cyclopentenes, are polymerized by selected &agr;-imine complexes of nickel and palladium. The polymers are useful as molding resins or elastomers. Also disclosed herein are novel catalysts for the polymerization of cyclopentenes to form novel higher melting homopolycyclopentenes.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: December 30, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Stephan James McLain, Elizabeth Forrester McCord, Alison Margaret Anne Bennett, Steven Dale Ittel, Karl Jeffrey Sweetman, Mark F. Teasley
  • Publication number: 20030236367
    Abstract: This invention relates generally synthetic procedures that include the step of ring-opening metathesis of cyclic olefins and reaction with an acyclic diene co-reactant to produce olefin macrocycles by ring expansion, or alternatively. The ring expansion of the cyclic olefin is provided by three types of sequential olefin metathesis (ring-opening, cross, and ring-closing olefin metathesis). More particularly, the invention pertains to synthesis of olefin macrocycles via olefin metathesis reactions using a Group 8 transition metal complex as the metathesis catalyst. Macrocycles provided herein have a variety of uses in the pharmaceutical, biomedical, organic synthesis and chemical industries, such as the production of crown ethers that are useful as metal complexing species.
    Type: Application
    Filed: February 19, 2003
    Publication date: December 25, 2003
    Inventors: Tae-Lim Choi, Choon Woo Lee, Hyunjin M. Kim, Robert H. Grubbs
  • Patent number: 6664350
    Abstract: The invention relates to supported ligands and catalysts for use in the polymerization of olefinically unsaturated monomers such as vinylic monomers, comprising the use of a compound attached to support, the compound being capable of complexing with a transitional metal. Preferably the compound capable of complexing with a transition metal is a diimine such as a 1,4-diaza-1,3-butadiene, a 2-pyridinecarbaldehyde imine, an oxazolidone or a quinoline carbaldeyde. Preferably the catalysts are used in conjunction with an initiator comprising a homolytically cleavable bond with a halogen atom. The application also discloses processes for attaching ligands to supports, and processes for using the catalysts disclosed in the application.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: December 16, 2003
    Assignee: University of Warwick
    Inventors: David M. Haddleton, Arnaud Radigue, Dax Kukulj, David Duncalf
  • Patent number: 6627713
    Abstract: A process for producing polymer in a gas phase reactor by introducing a stream of monomer and gas into a polymerization zone while providing at least one liquid component in the polymerization zone.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: September 30, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Robert Joseph Noel Bernier, Robert Lorenz Boysen, Robert Cecil Brown, Mark Gregory Goode, John Henry Moorhouse, Robert Darrell Olson, Leonard Sebastian Scarola, Thomas Edward Spriggs, Duan-Fan Wang, Gary Harry Williams, Kevin Joseph Cann, Maria Angelica Apecetche, Natarajan Muruganandam, Gregory George Smith
  • Patent number: 6620896
    Abstract: Mixed olefin polymerization catalysts, methods for preparing olefin polymers using the catalysts, and polymers obtained therefrom are disclosed. The mixed catalyst system comprises the combination of (a) a Group 8-10 transition metal complex of a bidentate or tridentate ligand comprising at least one nitrogen donor selected from Set 1, (b) either a Group 8-10 transition metal complex of a bidentate or tridentate ligand comprising at least one nitrogen donor selected from Set 1 or a bidentate ligand comprising a nitrogen-nitrogen donor selected from Set 2, or a Group 4 transition metal complex of a multidnentate ligand comprising at least 1 cyclopentadienyl or indenyl ring selected from Set 3 or a titanium or chromium Ziegler-Natta catalyst selected from Set 4, and optionally (c) a compound Y.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: September 16, 2003
    Assignee: Eastman Chemical Company
    Inventors: Christopher Moore Killian, Peter Borden Mackenzie, Gino Georges Lavoie, James Allen Ponasik, Jr., Leslie Shane Moody
  • Patent number: 6617406
    Abstract: This invention is based upon the unexpected discovery that elastomeric trans-1,4-polybutadiene can be made by utilizing a catalyst system that is comprised of an organocobalt compound, an organoaluminum compound, a para-alkyl substituted phenol, and ortho-phenyl phenol wherein the molar ratio of the para-substituted phenol to the organoaluminum compound is within the range of about 1.2:1 to about 1.8:1, and wherein the molar ratio of the ortho-phenyl phenol to the organoaluminum compound is within the range of about 0.7:1 to about 1.3:1. Accordingly, the elastomeric trans-1,4-polybutadiene made by the process of this invention does not need to be heated, such as in a hot-house, before being used in making rubber stocks.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: September 9, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Kenneth Floyd Castner
  • Patent number: 6610804
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an iron-containing compound, (b) an &agr;-acylphosphonate diester, and (c) an organoaluminum compound.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: August 26, 2003
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, David E. Zak
  • Publication number: 20030134996
    Abstract: Novel catalyst systems which comprise diimine nickel complexes comprising additional ligands selected from the group consisting of acetylacetonate, hexaflourylacetylacetonate, halogens and mixtures thereof can be used with methylaluminoxane in slurry polymerization processes to polymerize mono-1-olefins and, optionally one or more higher mono-1-olefin comonomer(s), to produce high molecular weight polymers.
    Type: Application
    Filed: January 27, 2003
    Publication date: July 17, 2003
    Applicant: Phillips Petroleum Company
    Inventors: Nancy W. Eilerts, Gil R. Hawley
  • Patent number: 6593437
    Abstract: A process for preparing 1,2-diimine compounds of the formula I where R1 and R2 are, independently of one another, alkyl, aryl or metallocenyl radicals, and R3, R4 are, independently of one another, H, alkyl or aryl radicals or R3 and R4 are joined so as to form, with inclusion of the two imine carbon atoms, a 5- to 8-membered ring which may be saturated or unsaturated and may be unsubstituted or substituted by any hydrocarbon radicals. The process involves reacting 1,2-dicarbonyl compounds with primary amines, which have been activated with trialkylaluminum compounds prior to the reaction with the 1,2-dicarbonyl compounds. 1,2-Diimine compounds of the formula I in which R1 and R2 are, independently of one another, metallocenyl radicals can be used to prepare metal complexes which can be used as catalysts in a process for the polymerization of unsaturated compounds.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: July 15, 2003
    Assignee: Basell Polyolefine GmbH
    Inventors: Andrei Gonioukh, Wolfgang Micklitz, Benno Bildstein, Michael Malaun, Andreas Hradsky
  • Patent number: 6586542
    Abstract: Disclosed is a process of controlling the degree of branch of high 1,4-cis polybutadiene without any alternation in the 1,4-cis content and the polymerization yield, in which a dialkylzinc compound represented by the following formula I is added in a controlled amount as an agent for controlling the degree of branch of high 1,4-cis polybutadiene, thus guaranteeing the optimum processability and physical properties of polymer according to the use purpose. R1—Zn—R2  Formula I wherein R1 and R2 are same or different and include an alkyl group containing 1 to 5 carbon atoms.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: July 1, 2003
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Young-Chan Jang, Pil-Sung Kim, Gwang-Hoon Kwag, A-Ju Kim, Seung-Hwon Lee
  • Patent number: 6576725
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising an iron-containing compound, an organomagnesium compound, and an &agr;-acylphosphonate diester.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: June 10, 2003
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Michael W. Hayes, Dennis R. Brumbaugh, David E. Zak
  • Patent number: 6576724
    Abstract: A catalytic composition for the dimerization, the codimerization or the oligomerization of olefins results from the dissolution of at least one nickel complex that contains a heterocyclic carbene in a liquid mixture that comprises at least one ammonium halide or quaternary phosphonium halide, at least one aluminum halide and optionally at least one organometallic aluminum compound. It is used in a process of dimerization, codimerization or oligomerization of olefins.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: June 10, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Helene Olivier-Bourbigou, Dominique Commereuc, Stephane Harry
  • Patent number: 6573345
    Abstract: The present invention is directed to processes of polymerizing olefin monomers and copolymerizing olefin monomer(s) with functionalized alpha-olefin monomers in the presence of certain late transition metal pyrrolaldimine chelates, especially bidenate or in the presence of a combination of a transition metal in its zero valence and a pyrrolaldimine represented by the formula: wherein each R1, R2, R3, R4, R5, R6, M and L are defined in the specification herein below.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: June 3, 2003
    Assignee: Cryovac, Inc.
    Inventors: Donald Albert Bansleben, Stefan K. Friedrich, Todd Ross Younkin, Robert Howard Grubbs, Chunming Wang, Robert Tan Li
  • Publication number: 20030073790
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an iron-containing compound, (b) an &agr;-acylphosphonate diester, and (c) an organoaluminum compound.
    Type: Application
    Filed: August 24, 2001
    Publication date: April 17, 2003
    Applicant: Bridgestone Corp.
    Inventors: Steven Luo, David E. Zak
  • Publication number: 20030073570
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) (i) a halogen-containing iron compound or (ii) an iron-containing compound and a halogen-containing compound, (b) an &agr;-acylphosphonate diester, and (c) an organoaluminum compound.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 17, 2003
    Applicant: Bridgestone Corp.
    Inventors: Steven Luo, David E. Zak
  • Publication number: 20030050494
    Abstract: Alpha-olefins are manufactured in high yield and with very high selectivity by contacting ethylene with an iron complex of a selected 2,6-pyridinedicarboxaldehyde bisimine or a selected 2,6-diacylpyridine bisimine, and in some cases a selected activator compound such as an alkyl aluminum compound. Novel bisimines and their iron complexes are also disclosed. The &agr;-olefins are useful as monomers and chemical intermediates.
    Type: Application
    Filed: September 5, 2002
    Publication date: March 13, 2003
    Inventors: Maurice S. Brookhart, Brooke L. Small
  • Patent number: 6521727
    Abstract: Novel catalyst systems which comprise diimine nickel complexes comprising additional ligands selected from the group consisting of acetylacetonate, hexaflourylacetylacetonate, halogens and mixtures thereof can be used with methylaluminoxane in slurry polymerization processes to polymerize mono-1-olefins and, optionally one or more higher mono-1-olefin comonomer(s), to produce high molecular weight polymers.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: February 18, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Nancy W. Eilerts, Gil R. Hawley
  • Publication number: 20030027957
    Abstract: Selected nickel complexes of the anions of certain 2-aminotropones are olefin polymerization catalysts. Novel 2-aminotropones and their nickel complexes are also disclosed together with methods of making these 2-aminotropones.
    Type: Application
    Filed: July 22, 2002
    Publication date: February 6, 2003
    Inventors: Frederick Hicks, Maurice Brookhart
  • Publication number: 20030018147
    Abstract: A complex of a transition metal complying with the general formula (I) 1
    Type: Application
    Filed: May 20, 2002
    Publication date: January 23, 2003
    Applicant: SOLVAY POLYOLEFINS EUROPE-BELGIUM
    Inventors: Federica Benvenuti, Philipe Francois
  • Patent number: 6506861
    Abstract: Olefins are polymerized by novel transition metal complexes of selected iminocarboxylate and iminoamido ligands, sometimes in the presence of cocatalysts such as alkylaluminum compounds or neutral Lewis acids. Olefins which may be (co)polymerized include ethylene, &agr;-olefins, and olefins containing polar groups such as olefinic esters for example acrylate esters. Also described are certain “Zwitterionic” transition metal complexes as polymerization catalysts for making polar copolymers. The resulting polymers are useful as thermoplastics and elastomers.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: January 14, 2003
    Assignee: E. I. du Pont de Nmeours and Company
    Inventors: Lin Wang, Lynda Kaye Johnson, Alex Sergey Ionkin
  • Patent number: 6489414
    Abstract: A single-site catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an optional activator and a complex that incorporates a Group 3 to 10 transition metal and at least one neutral or anionic chelating pyrimidine ligand. The ligands are easy to make, and they are readily incorporated into transition metal complexes, including those based on late transition metals. By modifying the chelating groups and other substituents on the pyrimidine ring, polyolefin makers can increase catalyst activity and control polymer properties.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: December 3, 2002
    Assignee: Equistar Chemicals, LP
    Inventor: Jonathan L. Schuchardt
  • Patent number: 6479422
    Abstract: Novel catalyst systems which comprise at least two diimine nickel complexes can be used with a co-catalyst such as methylaluminoxane in polymerization processes to produce polymers having multimodal molecular weight distributions. Also disclosed are the novel polymers obtained by the use of such catalyst systems.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: November 12, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Nancy W. Eilerts
  • Publication number: 20020156210
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an iron-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Application
    Filed: February 19, 2001
    Publication date: October 24, 2002
    Applicant: Bridgestone Corp.
    Inventor: Steven Luo
  • Patent number: 6451934
    Abstract: This invention relates to a process for preparation of high 1,4-cis polybutadiene and more particularly, to the process for preparing polybutadiene by polymerizing 1,3-butadiene monomer in the presence of a catalyst prepared by aging a mixture of a neodymium salt compound, a nickel salt compound, an organoaluminium compound and a borontrifluoride complex compound in the presence or absence of a conjugated diene compound. With much remarked catalytic activity, polybutadiene with a very high 1,4-cis content can be prepared in a high yield using a small amount of catalyst.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: September 17, 2002
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Young Chan Jang, A Ju Kim, Gwang Hoon Kwag, Seung Hwon Lee
  • Patent number: 6451940
    Abstract: Selected nickel complexes of the anions of certain 2-aminotropones are olefin polymerization catalysts. Novel 2-aminotropones and their nickel complexes are also disclosed together with methods of making these 2-aminotropones. Suitable complexes have the following structure: wherein: R2 is hydrocarbyl or substituted hydrocarbyl, provided that R2 is attached to said nitrogen atom in (I) by an atom that has at least 2 other atoms that are not hydrogen attached to it; and R3, R4, R5, R6 and R7 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group, provided that any two of R3, R4, R5, R6 and R7 vicinal to one another may form a ring; L1 is a monodentate monoanionic ligand and L2 is a monodentate neutral ligand or an empty coordination site, or L1 and L2 taken together are a monoanionic bidentate ligand.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: September 17, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Frederick Hicks, Maurice S. Brookhart
  • Patent number: 6451939
    Abstract: Catalyst systems for the polymerization or copolymerization of 1-olefins which contain nitrogen-containing transition metal compounds comprising the skeletal unit depicted in formula (B), wherein M is Fe[II] Fe[III], Co[I], Co[II], Co[III], Mn[I], Mn[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; X is an atom or group covalently or ionically bonded to the transition metal M; T is the oxidation state of the transition metal M and b is the valency of the atom or group X; and R1-R7 are independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: September 17, 2002
    Assignee: BP Chemicals Limited
    Inventors: George Johan Peter Britovsek, Birgit Angelika Dorer, Vernon Charles Gibson, Brian Stephen Kimberley, Gregory Adam Solan
  • Patent number: 6417305
    Abstract: Ethylene is oligomerized with certain catalysts based on iron and cobalt complexes of 2,6-pyridinecarboxaldehydebis(imine) and 2,6-diacylpyridine-bis(imine) tridentate ligands.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: July 9, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Alison Margaret Anne Bennett
  • Publication number: 20020082366
    Abstract: Mixtures of different polyolefins may be made by direct, preferably simultaneous, polymerization of one or more polymerizable olefins using two or more transition metal containing active polymerization catalyst systems, one of which contains nickel complexed to selected ligands. The polyolefin products may have polymers that vary in molecular weight, molecular weight distribution, crystallinity, or other gala factors, and are useful as molding resins and for films.
    Type: Application
    Filed: February 27, 2002
    Publication date: June 27, 2002
    Inventors: Lynda Kaye Johnson, Joel David Citron
  • Patent number: 6410664
    Abstract: The present invention is directed to processes of polymerization of olefins and copolymerization of olefins and functionalized olefins in the presence of certain late transition metal bidentate salicylaldimine chelates represented by the formula: wherein each of the symbols R, R1, R2, R3, R4, R5, R6, L, M, A, X and z are defined within the specification herein below.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: June 25, 2002
    Assignee: Cryovac, Inc.
    Inventors: Donald Albert Bansleben, Stefan K. Friedrich, Todd Ross Younkin, Robert Howard Grubbs, Chunming Wang, Robert Tan Li
  • Patent number: 6407026
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients including an iron-containing compound, a hydrogen phosphite, and a mixture of two or more organoaluminum compounds. This catalyst composition is particularly useful for polymerizing conjugated dienes. When this catalyst composition is used to polymerize 1,3-butadiene into syndiotactic 1,2-polybutadiene the ratio of the organoaluminum compounds can be adjusted to vary the melting temperature and molecular weight of the polymer product.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: June 18, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6407188
    Abstract: A branched polyolefin, preferably a polyethylene, and containing branches with even and odd numbers of carbon atoms, may be made by oligomerizing ethylene to an &agr;-olefin using a selected iron containing catalyst, and then copolymerizing that &agr;-olefin with ethylene and one or more other added &agr;-olefins which have odd numbers of carbon atoms. The polymers are useful, for example, as molding resins.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: June 18, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Zhibin Guan, Lin Wang
  • Patent number: 6399732
    Abstract: A process for preparing conjugated diene polymers by polymerizing conjugated diene monomers in the presence of a catalyst composition that is formed by combining an iron-containing compound, a hydrogen phosphite, and an organoaluminum compound.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: June 4, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6388032
    Abstract: A cyclic olefin polymer having a small content of a catalyst residue, a production process for the same and use of the same as an optical material. Catalysts used for polymerization and/or hydrogenation reaction for forming the cyclic olefin polymer are decomposed efficiently by adding at least one compound selected from the group consisting of an &agr;-oxyacid and &bgr;-oxyacid having one hydroxyl group and one carboxyl group in the molecule and derivatives obtained by substituting hydroxyl group thereof by an alkoxyl group, and the decomposition products are removed by rendering them insoluble in a reaction solvent used for the polymerization and/or hydrogenation reaction and precipitating them efficiently.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: May 14, 2002
    Assignee: Teijin Limited
    Inventors: Michio Yamaura, Kiyonari Hashidzume, Hideaki Nitta, Masaki Takeuchi, Kaoru Iwata
  • Patent number: 6388030
    Abstract: A catalyst composition comprising (a) an iron-containing compound, (b) an organomagnesium compound and (c) a dihydrocarbyl hydrogen phosphite is disclosed for polymerizing 1,3-butadiene into syndiotactic 1,2-polybutadiene. The use of the catalyst composition of this disclosure avoids the use of environmentally detrimental components such as carbon disulfide and halogenated solvents. The melting temperature of the syndiotactic 1,2-polybutadiene can be varied from about 100 to about 190° C. by variations in the catalyst components and the component ratios. The ability to vary the melting temperature with a single catalyst composition is very desirable. The syndiotactic 1,2-polybutadiene can be used as a plastic or as an additive for rubber compositions wherein it can crosslink with conventional rubbers using conventional crosslinking agents.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: May 14, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6372869
    Abstract: The molecular weight of polyolefins produced using selected late transition metal complexes of bidentate ligands may be lowered by carrying out the polymerization in the presence of hydrogen, a selected silane, or CBr4.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: April 16, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Samuel David Arthur, Stephan James McLain
  • Publication number: 20020013431
    Abstract: Ethylene is oligomerized with certain catalysts based on iron and cobalt complexes of 2,6-pyridinecarboxaldehydebis(imine) and 2,6-diacylpyridine-bis(imine) tridentate ligands.
    Type: Application
    Filed: December 4, 2000
    Publication date: January 31, 2002
    Inventor: Alison Margaret Anne Bennett
  • Patent number: 6342621
    Abstract: Penta-coordinated ruthenium catalysts for the metathesis reactions of olefins, in particular ring opening metathesis polymerization (ROMP) of cyclo-olefin monomers, which are cationic complexes represented by formula I, II or III: wherein each of X1 and X2, which may be the same or different, is an optionally substituted C3-C20 hydrocarbon group having an allyl moiety as an end group bonded to the ruthenium atom, or X1 and X2 together form a group, optionally substituted, which results from dimerization of an alkene and has at each end an allyl group bonded to the ruthenium atom; L1 and L2 are mono-dentate neutral electron donor ligands, preferably highly sterically encumbered neutral electron donor ligands such as alkyl phosphines or amines; L{circumflex over ( )}L is a bidentate neutral electron donor ligand, preferably phosphine, amino, imino, arsine or arphos; L3 is a solvent molecule or a neutral mono-dentate electron donor ligand; L{circumflex over ( )}L{circumflex over ( )}L is a trid
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: January 29, 2002
    Assignee: Nippon Zeon Co., Ltd.
    Inventors: Shakti L. Mukerjee, Vernon L. Kyllingstad
  • Patent number: 6320004
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising a iron-containing compound, an organomagnesium compound, and a silyl phosphonate.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: November 20, 2001
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6310152
    Abstract: This invention is based upon the unexpected discovery that elastomeric trans-1,4-polybutadiene can be made by utilizing a catalyst system that is comprised of an organocobalt compound, an organoaluminum compound, a para-alkyl substituted phenol, and ortho-phenyl phenol wherein the molar ratio of the para-substituted phenol to the organoaluminum compound is within the range of about 1.2:1 to about 1.8:1, and wherein the molar ratio of the ortho-phenyl phenol to the organoaluminum compound is within the range of about 0.7:1 to about 1.3:1. Accordingly, the elastomeric trans-1,4-polybutadiene made by the process of this invention does not need to be heated, such as in a hot-house, before being used in making rubber stocks.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: October 30, 2001
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Kenneth Floyd Castner
  • Patent number: 6310151
    Abstract: Conjugated diolefins, optionally in combination with other unsaturated compounds which may be copolymerized with the diolefins, are polymerized by performing the polymerization of the diolefins in the presence of catalysts based on cobalt compounds, organoaluminum compounds and modifiers in the presence of aromatic vinyl compounds at temperatures of −30° C. to +80° C. By means of the process according to the invention, it is possible straightforwardly to produce solutions of polydiolefins, such as polybutadiene, having different 1,2 unit contents in aromatic vinyl compounds, which solutions may then, for example, be further processed to yield ABS or HIPS.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: October 30, 2001
    Assignee: Bayer Aktiengesellschaft
    Inventors: Heike Windisch, Werner Obrecht, Gisbert Michels, Norbert Steinhauser
  • Patent number: 6303717
    Abstract: Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C5-C24 &agr;-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ()of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ()of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C5-C24 &agr;-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: October 16, 2001
    Assignee: The Penn State Research Foundation University Park PA
    Inventors: Ayusman Sen, Jang Sub Kim, James H. Pawlow, Shahid Murtuza, Smita Kacker, Louis M. Wojcinski, III
  • Patent number: 6303724
    Abstract: Copolymers containing repeating units polymerized from at least one polycyclic monomer and at least one acrylic monomer are disclosed. The copolymer is formed by addition polymerization in the presence of a Group VIII transition metal catalyst. The copolymers contain hydrocarbyl and/or functional substituents pendant from the polymer backbone. In one embodiment the copolymer contains pendant ester substituents containing acid labile groups. The copolymers are useful as resist materials that are sensitive to imaging radiation.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: October 16, 2001
    Assignee: The B. F. Goodrich Company
    Inventors: Brian Leslie Goodall, Lester Howard McIntosh, III
  • Patent number: 6303710
    Abstract: The polymerization rate of olefins polymerizations using late transition metal catalysts which are coordinated to various ligands may be controlled by the amount of hydrogen present in the polymerization. The effect of hydrogen on polymerization rate is reversible.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: October 16, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Tuyu Xie
  • Patent number: 6288183
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients including an iron-containing compound, a hydrogen phosphite, and a mixture of two or more organoaluminum compounds. This catalyst composition is particularly useful for polymerizing conjugated dienes. When this catalyst composition is used to polymerize 1,3-butadiene into syndiotactic 1,2-polybutadiene the ratio of the organoaluminum compounds can be adjusted to vary the melting temperature and molecular weight of the polymer product.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: September 11, 2001
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Publication number: 20010016634
    Abstract: Transition metal imine complexes can be prepared by reacting the imine precursors, a carbonyl compound and a primary amine, in the presence of a selected transition metal compound. The complexes may be used as catalysts for olefin polymerization.
    Type: Application
    Filed: February 7, 2001
    Publication date: August 23, 2001
    Inventors: Steven D. Ittel, Samuel D. Arthur, Joel D. Citron