Low Density Patents (Class 526/352.2)
  • Publication number: 20130137839
    Abstract: A polymer having a long chain branching content peaking at greater than about 20 long chain branches per million carbon atoms, and a polydispersity index of greater than about 10 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution. A polymer having a long chain branching content peaking at greater than about 8 long chain branches per million carbon atoms, a polydispersity index of greater than about 20 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution. A polymer having a long chain branching content peaking at greater than about 1 long chain branches per chain, and a polydispersity index of greater than about 10 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Youlu YU, Eric D. SCHWERDTFEGER, Max P. MCDANIEL, Alan L. SOLENBERGER, Kathy S. COLLINS
  • Patent number: 8415442
    Abstract: Disclosed is an ethylene-based polymer with a density from about 0.90 to about 0.94 in grams per cubic centimeter, with a molecular weight distribution (Mw/Mn) from about 2 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, and further comprising sulfur from about 5 to about 4000 parts per million. The amount of sulfur is also determined based upon the total weight of the ethylene-based polymer. Also disclosed is process for making an ethylene-based polymer which includes the steps of splitting a process fluid for delivery into a tubular reactor; feeding an upstream process feed stream into a first reaction zone and at least one downstream process feed stream into at least one other reaction zone, where the process fluid has an average velocity of at least 10 meters per second; and initiating a free-radical polymerization reaction.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 9, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Christopher R. Eddy, Mehmet Demirors, Wallace W. Yau, Sarat Munjal, Stefan Hinrichs, Jian Wang, Otto J. Berbee, Werner Zschoch, Cornelis J. Hosman, Lonnie G. Hazlitt
  • Patent number: 8409681
    Abstract: A process is disclosed for producing a multi-modal linear low density polyethylene in at least two staged reactors connected in series, comprising (i) polymerizing in a first slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a first polyethylene fraction component (A); and (ii) polymerizing in a second gas or slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a second polyethylene fraction component (B). The Ziegler-Natta polymerization catalyst system comprises: 1) a solid procatalyst formed by contacting at least: a) a Mg-alcoholate complex of formula (I) b) an aluminum compound of formula (II); and c) a vanadium compound and a titanium compound having a molar ratio (V:Ti) from 10:90 to 90:10; and 2) one or more organometallic cocatalvsts of formula (III). The linear low density polyethylene shows an improved comonomer composition distribution Formulas (I), (II), and (III) are described herein.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Borealis AG
    Inventors: Thomas Garoff, Paivi Waldvogel, Kalle Kallio, Virginie Eriksson, Aki Aittola, Esa Kokko
  • Publication number: 20130059982
    Abstract: A composition comprising a polyethylene wherein the composition is enriched in polymer molecules having topological variations by an enrichment factor ? and wherein the composition displays a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms. A composition comprising an isolated Ziegler-catalyzed polyethylene having a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms at the high molecular weight end.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Youlu YU, Chung C. TSO, David C. ROHLFING, Paul J. DESLAURIERS, Melvin HILDEBRAND, Max P. MCDANIEL, Qing YANG
  • Publication number: 20130051710
    Abstract: Methods of stretching thermoplastic films in the machine direction include elongating the films in the machine direction without significantly reducing the films' machine-direction tear resistance. In one or more implementations, methods of stretching thermoplastic films include reducing the gauge of the films while substantially maintaining the films' machine-direction tear resistance. The methods can involve uniformly cold stretching the films by stretching the films to a draw of about one hundred and eighty percent, or less, of the films' original length.
    Type: Application
    Filed: August 26, 2011
    Publication date: February 28, 2013
    Inventors: Michael G. Borchardt, Robert Thomas Dorsey, Shaun T. Broering
  • Publication number: 20130046069
    Abstract: The invention relates to a method and an apparatus for producing a film web made of thermoplastic material in which the thermoplastic material is extruded in at least one layer as plastic melt from a wide-slit nozzle in an extrusion direction and subsequently led away over at least roller, wherein tensile forces are exerted in the extrusion direction and transversely to the extrusion direction in order to stretch the film web longitudinally and transversely, wherein during application of the tensile forces in and transversely to the extrusion direction the film web has a temperature at least corresponding to the melting temperature of the same.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 21, 2013
    Applicant: Reifenhaeuser GmbH & Co. KG Maschinenfabrik
    Inventors: Helmut MEYER, Jochen HENNES
  • Publication number: 20130032046
    Abstract: The present invention relates to a prestretched polyethylene film having a longitudinal stretch ratio of from about 1:2 to about 1:4 and having a longitudinal elongation capability of at least 170%, said elongation capability comprising an elastic component. The invention also relates to a method for producing said film and to a method of wrapping compressed bulk material such as a round bale using said film, the method comprising further stretching the prestretched film and applying the film around the compressed bulk material in direct contact therewith. The film according to the invention may be used as a net replacement film and allows increasing the efficiency and the economics in the baling process by allowing faster baling, use of a lesser amount of wrapping film and/or improved protection of the product.
    Type: Application
    Filed: December 17, 2010
    Publication date: February 7, 2013
    Applicant: TRIOPLAST AB
    Inventors: Lars Öhrn, Inger Byström, Torbjörn Runesson, Andreas Lindberg
  • Publication number: 20130029066
    Abstract: Methods of incrementally stretching thermoplastic films in the machine direction include elongating the films in the machine direction without reducing the films' machine-direction tear resistance. In one or more implementations, methods of incrementally stretching thermoplastic films include reducing the gauge of the films without reducing the films' machine-direction tear resistance. The methods can involve cold stretching the films and imparting transverse-direction extending linear rib pattern into the film. The linear ribs can have alternating thick and thin gauges. Incrementally stretched thermoplastic films can have a machine-direction tear resistance that is approximately equal to or greater than the machine-direction tear resistance of the film prior to stretching.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Inventor: Michael G. Borchardt
  • Patent number: 8344040
    Abstract: A process produces a block of polyolefin material with uniform crosslinking, which may be uniform between and within polymer chains in the polyolefin material. Steps include: providing an oven; placing the block into the oven; preheating the block to a uniform temperature above the melting point; further heating the block to a temperature at least 30 degrees Centigrade above the melting point; cooling the block to room temperature under an inert gas; and removing oxidized material from surface of the block. Optional steps include: subjecting the block to radiation before placing the block into the oven; removing the gases from the oven on a continuous or stepwise basis; controlling the purge gas flow out of the oven; and determining a heating time period for the block by subjecting control blocks to the same process and analyzing them after various heating times.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: January 1, 2013
    Inventor: Dehchuan Sun
  • Publication number: 20120329948
    Abstract: Disclosed herein are methods of injection molding at low, substantially constant melt pressures. Embodiments of the disclosed method now make possible a method of injection molding that is more energy—and cost—effective than conventional high-velocity injection molding processes. Embodiments of the disclosed method surprisingly allow for the filling of a mold cavity at low melt pressure without undesirable premature hardening of the thermoplastic material in the mold cavity and without the need for maintaining a constant temperature or heated mold cavity. Heretofore, it would not have been expected that a constant pressure method could be performed at low pressure without such premature hardening of the thermoplastic material when using an unheated mold cavity or cooled mold cavity.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 27, 2012
    Inventors: Gene Michael ALTONEN, Charles John Berg, JR., Ralph Edwin Neufarth, Gary Francis Schiller, John Moncrief Layman, Rainer Scharrenberg
  • Patent number: 8338557
    Abstract: Olefin polymer with narrow molecular weight distribution and specific molecular weight, olefin polymer having functional group introduced at terminal, tapered polymer containing segment wherein monomer composition continuously changes in the polymer chain, olefin polymer having different segments bonded to each other, and process for preparing these polymers. The olefin polymers are polymers of C2-20 carbon atom olefins and have a number-average molecular weight of ?500 and Mw/Mn of ?1.5. In syntheses, an olefin of 2-20 carbon atoms is polymerized in the presence of a catalyst comprising a transition metal compound represented by the formula LmMXn wherein M is a transition metal atom of Group 3-11, m is 1-5, n is a number satisfying a valence of M, L is a ligand—coordinated to the central metal M—which contains a heteroatom having no direct bond to the central metal, and X is e.g. halogen or a hydrocarbon.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: December 25, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Makoto Mitani, Yasunori Yoshida, Junichi Mohri, Kazutaka Tsuru, Seiichi Ishii, Shinichi Kojoh, Tomoaki Matsugi, Junji Saito, Naoto Matsukawa, Shigekazu Matsui, Takashi Nakano, Hidetsugu Tanaka, Norio Kashiwa, Terunori Fujita
  • Publication number: 20120285722
    Abstract: A polymer composition with improved DC electrical properties, a method for producing the polymer composition, and a cable surrounded by at least one layer comprising the polymer composition are provided.
    Type: Application
    Filed: November 3, 2010
    Publication date: November 15, 2012
    Applicant: BOREALIS AG
    Inventors: Ulf Nilsson, Annika Smedberg, Alfred Campus, Achim Blok, Bjorn Voigt
  • Publication number: 20120252990
    Abstract: A high pressure polymerization process to form an ethylene-based polymer comprises the steps of: A. Injecting a first feed comprising ethylene and optionally a chain transfer agent system (CTA system) into a first autoclave reactor zone operating at polymerization conditions to produce a first zone reaction product, the CTA system of the first reactor zone having a transfer activity Z1; and B. (1) Transferring at least part of the first zone reaction product to a second reactor zone selected from a second autoclave reactor zone or a tubular reactor zone and operating at polymerization conditions, and, optionally, (2) freshly injecting a second feed into the second reactor zone to produce a second zone reaction product, with the proviso that the second reactor zone contains a CTA system having a transfer activity Z2; and with the proviso that the ratio of Z1/Z2 is less than 1.
    Type: Application
    Filed: December 14, 2010
    Publication date: October 4, 2012
    Inventors: Otto J. Berbee, Cornelis Den Doelder, Egbert Nijhof, Mehmet Demirors, Sjoerd A. De Vries
  • Patent number: 8278393
    Abstract: According to one aspect, the present invention relates to a low-density polyethylene having a melt index MFR2 of 2.5 to 10.0 g/10 min, a density of 910 to 935 kg/m3, and a dynamic viscosity ?0.05 at a shear rate of 0.05 rad/s and a dynamic viscosity ?300 at a shear rate of 300 rad/s which satisfy the following relationship: ?300?108 Pa*s+0.0253*?0.05. According to a second aspect, the present invention relates to a low-density polyethylene having a melt index MFR2 of 2.5 to 10.0 g/10 min, a density of 910 to 935 kg/m3, and a phase shift ?0.5 at a frequency of 0.5 rad/s and a phase shift ?300 at a frequency of 300 rad/s, which satisfy the following relationship: tan ?300?0.45+0.164*tan ?0.5.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: October 2, 2012
    Assignee: Borealis Technology Oy
    Inventors: Auli Nummila-Pakarinen, Oivind Moen, Pertti Mikkola, Janne Jamsen
  • Publication number: 20120220738
    Abstract: A novel LDPE from radical, high pressure polymerization is devised.
    Type: Application
    Filed: November 10, 2010
    Publication date: August 30, 2012
    Applicant: BASELL POLYOLEFINE GMBH
    Inventors: Gerd Mannebach, Catherine Beuzelin, Christian-Ulrich Schmidt, Thomas Maurer, Jörn Müller, Alexander Wörz, Mike Freudenstein
  • Publication number: 20120214956
    Abstract: The present invention relates to a process of producing an ethylene polymer composition in multiple stages, of which the first stage is preferably a slurry polymerization stage, in the presence of a catalyst system, comprising: a) a solid catalyst precursor, comprising a transition metal selected from titanium and vanadium; magnesium; a halide, optionally an electron donor; and a solid particulate material comprising an inorganic oxide, and wherein the median particle diameter, D50, of the solid catalyst precursor, based upon the total volume of solid catalyst precursor, is from 1 to 13 micrometers; and b) an organoaluminium compound.
    Type: Application
    Filed: May 3, 2012
    Publication date: August 23, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Patrick J.C. Schouterden, Ruddy Nicasy, Sarat Munjal, Burkhard E. Wagner, Robert J. Jorgensen
  • Publication number: 20120130019
    Abstract: An ethylene-based polymer characterized as having a density from about 0.9 to about 0.94 grams per cubic centimeter, a molecular weight distribution (Mw/Mn) from about 4 to about 10, a melt index (I2) from about 0.05 to about 2 grams per 10 minutes, a gpcBR value greater than 0.05 as determined by a gpcBR Branching Index and a Y value greater than 0.4 is disclosed. This ethylene-based polymer is especially useful for blending with other polymers such as LLDPE. When converting the blends into film, especially shrink film, the film shows good optics, good shrink tension, high stiffness, high tensile modulus, and tensile strength. When this resin is blended at with a LLDPE on a blown film line, improvements are seen in haze, gloss, clarity, and MD and CD tear as compared to a comparative LDPE.
    Type: Application
    Filed: August 4, 2010
    Publication date: May 24, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Colleen M. Tice, Lori L. Kardos, Jose Ortega, Wallace W. Yau, Jian Wang
  • Patent number: 8153734
    Abstract: The present invention discloses a process for preparing polyethylene resins in a double loop reactor wherein the catalyst system comprises a bis-tetrahydroindenyl and a bis-indenyl catalyst component deposited on the same support. It also discloses the polyethylene resins obtained by the process and their use to prepare films having a good compromise of haze, processing and mechanical properties.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: April 10, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jacques Michel, Martine Slawinski, Guy Debras
  • Publication number: 20120082860
    Abstract: The present invention provides an irradiated crosslinked polyethylene containing reduced free radicals, preferably containing substantially no residual free radical. Disclosed is a process of making irradiated crosslinked polyethylene by irradiating the polyethylene in contact with a sensitizing environment at an elevated temperature that is below the melting point, in order to reduce the concentration of residual free radicals to an undetectable level. A process of making irradiated crosslinked polyethylene composition having reduced free radical content, preferably containing substantially no residual free radicals, by mechanically deforming the polyethylene at a temperature that is below the melting point of the polyethylene, optionally in a sensitizing environment, is also disclosed herein.
    Type: Application
    Filed: December 8, 2011
    Publication date: April 5, 2012
    Inventors: Orhun K. Muratoglu, Stephen H. Spiegelberg, Gareth H. Mckinley
  • Publication number: 20120053305
    Abstract: Disclosed is a method for making LLDPE grades having different xylene solubles or hexane extractables with the same Ziegler-Natta catalyst by varying the amount of alkylaluminum used for polymerization. The method comprises copolymerizing ethylene with a C3-10 ?-olefin in the presence of a Ziegler-Natta catalyst, an alkylaluminum, and an electron donor; determining the dependency of the xylene solubles or hexane extractables on the alkylaluminum/electron donor ratio; and adjusting the alkylaluminum/electron donor ratio to achieve a desired xylene solubles or hexane extractables.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicant: Equistar Chemicals, LP
    Inventors: Harilaos Mavridis, Debra L. Beran, Jeffrey R. Golden, Joachim T.M. Pater, Giampiero Morini
  • Patent number: 8084560
    Abstract: A process for the production of an ethylene alpha-olefin copolymer is disclosed, the process including polymerizing ethylene and at least one alpha-olefin by contacting the ethylene and the at least one alpha-olefin with a metallocene catalyst in at least one gas phase reactor at a reactor pressure of from 0.7 to 70 bar and a reactor temperature of from 20° C. to 150° C. to form an ethylene alpha-olefin copolymer. The resulting ethylene alpha-olefin copolymer may have a density D of 0.927 g/cc or less, a melt index (I2) of from 0.1 to 100 dg/min, a MWD of from 1.5 to 5.0. The resulting ethylene alpha-olefin copolymer may also have a peak melting temperature Tmax second melt satisfying the following relation: Tmax second melt>D*398?245.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: December 27, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, Agapios K. Agapiou, James M. Farley, Eric J. Markel, Bruce J. Savatsky, Christopher R. Davey, Richard B. Pannell
  • Publication number: 20110313119
    Abstract: A catalyst composition comprising one or more metal complexes of a multifunctional Lewis base ligand comprising a bulky, planar, aromatic- or substituted aromatic-group and polymerization processes employing the same, especially continuous, solution polymerization of one or more ?-olefins at high catalyst efficiencies are disclosed.
    Type: Application
    Filed: April 24, 2007
    Publication date: December 22, 2011
    Inventors: Wayde V Konze, Daniel D. VanderLende
  • Publication number: 20110265797
    Abstract: The present disclosure describes systems and methods that utilize an extendable tracheal tube system. The extendable tracheal tube system includes an extendable tracheal tube having a distal end portion and a proximal end portion. The proximal end portion and the distal end portion of the extendable tracheal tube are capable of moving axially relative to each other. An obturator is also provided that is capable of aiding in the intubation and/or extubation of the extendable tracheal tube. The use of the extendable tracheal tube system and methods enables the secure attachment of the extendable tracheal tube to a patient airway while allowing for certain movements of the patient, such as neck and head movements.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicant: Nellcor Puritan Bennett LLC
    Inventor: Paul Waldron
  • Patent number: 8039554
    Abstract: An ethylene-?-olefin copolymer having monomer units derived from ethylene and monomer units derived from an ?-olefin of 3 to 20 carbon atoms, a melt flow rate (MFR) of 0.01 to 4 g/10 minutes, a density of 890 to 970 kg/m3, an activation energy of flow of 50 kJ/mol or more and a molecular weight distribution measured by gel permeation chromatography of 3 or more, wherein a characteristic relaxation time (?) determined by a melt viscoelasticity measurement or an external haze ratio (EHR) satisfies a relationship of the following formula (1) or (2), respectively: 3×MFR?0.75+1.1>?>1.3×MFR?0.5+1.4??(1) EHR??15×log MFR+0.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: October 18, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yuki Iseki, Katsuhiro Yamada, Yasutoyo Kawashima, Yoshinobu Nozue
  • Patent number: 8013086
    Abstract: Provided is a process for preparing copolymers of ethylene with ?-olefin. More specifically, provided are transition metal compound being useful as catalyst for preparing those copolymers, a catalyst composition comprising the same, and a process for preparing elastic copolymers of ethylene with ?-olefin, having the density of not more than 0.910, which can be adopted to a wide variety of applications including film, electric wires, and hot-melt adhesives. The catalyst composition is a catalytic system which comprises transition metal catalyst comprising a cyclopentadiene derivative and at least one anionic ligand(s) of aryloxy group with an aryl derivative at ortho-position, and boron or aluminum compound as an activator. Provided is a process for copolymerizing ethylene with ?-olefin to produce copolymer having narrow molecular weight distribution and uniform density distribution with the density of not more than 0.910, with high activity and excellent reactivity on higher ?-olefin.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: September 6, 2011
    Assignee: SK Energy Co., Ltd.
    Inventors: Myungahn Ok, Daeho Shin, Seungbum Kwon, Jongsok Hahn, Hoseong Lee, Choonsik Shim, Hyeongtaek Ham, Jisu Jeong, Sungseok Chae
  • Publication number: 20110178253
    Abstract: Disclosed is an ethylene-based polymer with a density from about 0.90 to about 0.94 in grams per cubic centimeter, with a molecular weight distribution (Mw/Mn) from about 2 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, and further comprising sulfur from about 5 to about 4000 parts per million. The amount of sulfur is also determined based upon the total weight of the ethylene-based polymer. Also disclosed is process for making an ethylene-based polymer which includes the steps of splitting a process fluid for delivery into a tubular reactor; feeding an upstream process feed stream into a first reaction zone and at least one downstream process feed stream into at least one other reaction zone, where the process fluid has an average velocity of at least 10 meters per second; and initiating a free-radical polymerization reaction.
    Type: Application
    Filed: October 1, 2009
    Publication date: July 21, 2011
    Applicant: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Christopher R. Eddy, Mehmet Demirors, Wallace W. Yau, Sarat Munjal, Stefan Hinrichs, Jian Wang, Otto J. Berbee, Werner Zschoch, Cornelis J. Hosman, Lonnie G. Hazlitt
  • Publication number: 20110168427
    Abstract: The invention relates to a method for producing a polymer using a chain transfer agents. In particular, the invention relates to a process for polymerizing a polymer in the presence of a mixture of at least two chain transfer agents, which mixture comprises a polar chain transfer agent (polar CTA), and a non-polar (non-polar CTA).
    Type: Application
    Filed: July 8, 2009
    Publication date: July 14, 2011
    Applicant: BOREALIS AG
    Inventors: Annika Smedberg, Ulf Nilsson, Alfred Campus, Hermann Schild, Markus Huber, Bjorn Voigt
  • Patent number: 7947367
    Abstract: A fiber is obtainable from or comprises an ethylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and (1) cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481?1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: May 24, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Benjamin C. Poon, Yunwa W. Cheung, Shih-Yaw Lai, Ashish Sen, Hongyu Chen, Yuen-Yuen D. Chiu, Rajen M. Patel, Andy C. Chang, Antonios K. Doufas, Hong Peng
  • Patent number: 7943700
    Abstract: Disclosed are polyethylene (“PE”) compositions, articles comprising PE compositions, and methods of making blended PE compositions, wherein the blended composition comprises from about 80 to about 95 weight % of a first PE and from about 5 to about 20 weight % of a second PE. The first PE has a density greater than or equal to about 0.945 g/cc and a MWD greater than about 5. The second PE has a density less than about 0.945 g/cc, a melt index less than about 0.70 g/10 minutes and less than or equal to the melt index of the first PE, a MWD ranging from about 1 to about 5, a weight average molecular weight less than about 400,000, and a CDBI greater than about 50%. The PE composition has an ESCR greater than the ESCR of the first PE.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: May 17, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna Jean Crowther, Stanley J. Katzen, Zerong Lin, Arnold Lustiger, Jeanne Marie MacDonald, Thomas T. Sun
  • Publication number: 20110045295
    Abstract: A novel adhesive composition suitable for composing multilayered coatings onto large, industrial equipment such as pipeline tubes is devised. The composition is a blend based on a polyethylene which determines the blend's favorable properties, which polyethylene itself can be used further in coating cables and for producing mouldings, especially rotomoulded articles.
    Type: Application
    Filed: February 18, 2009
    Publication date: February 24, 2011
    Applicant: Basell Polyolefine GmbH
    Inventors: Heinz Vogt, Shahram Mihan, Gerd Mannebach, Gerhardus Meier, Joachim Berthold, Manfred Hecker
  • Publication number: 20110034570
    Abstract: The present invention provides, e.g., methods to recycle and/or reduce plastic, non-plastic, or a combination thereof, from a waste stream. The methods of the present invention include contacting the plastic waste with infrared (IR) energy at one or more frequencies and at one or more intensities, over a period of time effective to heat plastic present in the plastic waste.
    Type: Application
    Filed: September 20, 2010
    Publication date: February 10, 2011
    Inventors: Peter Anthony Smith, Adam J. Koffler, Philip Mark Smith
  • Publication number: 20110003099
    Abstract: The invention relates to the use linear polyethylene having an MIR indicative of the presence of some long chain branching having a density of 0.91 to 0.94 g/cm3 determined according to ASTM D4703/D1505, an I2.16 (MI) of from 0.05 to 1 g/10 min, and I21.6/I2.16 (MIR) of more than 35, the MI and MIR being determined according to ASTM 1238 D at 190° C., and a difference between the MD Tensile force based on ASTM D882-02 at 100% elongation and MD 10% Offset yield of a reference film as defined herein having a thickness of 25 ?m of at least 15 MPa. The invention also relates to coextruded film structures made using such linear polyethylene in the core layer of a multi-layer structure to provide easily processes, strong, highly transparent films.
    Type: Application
    Filed: March 4, 2009
    Publication date: January 6, 2011
    Inventor: Michael J. Vinck
  • Patent number: 7863386
    Abstract: The instant invention is an improved low-density ethylenic polymer composition and method of making the same. The polymer composition according to instant invention includes a major component, and a minor component. The major component is an LDPE resin having a melt index (I2) in the range of about 0.01 dg/min to about 100 dg/min, a MW(abs)/MW(GPC) ratio of about 2.6 or less, and a melt strength of less than (14.0 e(?1.05*log 10(MI)))cN Jj16 mmor component is an LDPE resin having a melt index (I2) of less than about 5 dg/min, a molecular weight distribution of greater than about 7, and a MW(abs)/MW(GPC) ratio of at least 2.7. The polymer composition of the instant invention may further include additional components.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: January 4, 2011
    Assignee: Dow Global Technologies Inc.
    Inventors: Thomas Oswald, Christopher R. Eddy, Andrea M. Rhodius, Christopher W. Conrad
  • Patent number: 7858723
    Abstract: Ethylene-based resin, which exhibits a satisfactorily high melt tension and can provide a molded object excellent in mechanical strength, the ethylene-based resin characterized in simultaneously satisfying the requirements [1] to [5] described below: [1] melt flow rate (MFR) under a loading of 2.16 kg at 190° C. is in the range of 0.1 to 100 g/10 minutes; [2] density (d) is in the range of 875 to 970 kg/m3; [3] ratio [MT/?*(g/P)] of melt tension [MT(g)] at 190° C. to shearing viscosity [?*(P)] at 200° C. at an angular velocity of 1.0 rad/sec. is in the range of 1.50×10?4 to 9.00×10?4; [4] sum [(A+B)(/1000C)] of the number of methyl branches [A(/1000C)] and the number of ethyl branches [B(/1000C)] per 1000 carbon atoms measured by 13C-NMR is 1.8 or less; and [5] zero shear viscosity [?0(P)] at 200° C. and weight-average molecular weight (Mw) measured by GPC-viscosity detector method (GPC-VISCO) satisfy the following relational expression (Eq-1): 0.01×10?13×Mw3.4??0?4.5×10?13×Mw3.4??(Eq-1).
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: December 28, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasuo Satoh, Hideki Bando, Yoshiho Sonobe, Masao Suzuki, Daisuke Tanifuji, Chiaki Tomata, Makoto Mitani
  • Patent number: 7847029
    Abstract: This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention comprise an elastomeric polyolefin resin and a high pressure low density type resin. The preferred compositions of the present invention comprise from 88 to 99 percent elastomer or plastomer and from 1 to 12 percent by weight of a high pressure low density type resin.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: December 7, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Thomas I. Butler, Andy C. Chang, Jozef J. I. Van Dun, Ronald J. Weeks, Jeffrey D. Weinhold, Rajen M. Patel, David T. Gillespie
  • Patent number: 7838611
    Abstract: An object of the present invention relates to provide an ethylene polymer having excellent mechanical strength and excellent molding processability in a wide molding processing temperature range. The invention relates to use an ethylene polymer comprising a repeating unit derived from ethylene, or a repeating unit derived from ethylene and a repeating unit derived from a C3-8 ?-olefin, the ethylene polymer being satisfied with the following (A) to (F). (A) Density (d (kg/m3)) is from 910 to 970, (B) MFR (g/10 min)) is from 0.01 to 50, (C) terminal vinyl number is 0.2 or less per 1,000 carbon atoms, (D) melt strength (MS160 (mN)) measured at 160° C. and MFR are satisfied with MS160>90?130×log(MFR), (E) melt strength (MS190 (mN)) measured at 190° C. and MS160 are satisfied with MS160/MS190<1.8, and (F) fluidized activation energy (Ea (kJ/mol)) and d are satisfied with 127?0.107d<Ea<88?0.060d.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: November 23, 2010
    Assignee: Tosoh Corporation
    Inventors: Satoru Yamada, Kei Inatomi, Yasutake Wakabayashi, Shigehiko Abe, Morihiko Sato, Masao Tanabiki, Satoshi Hamura, Ryuji Ikeda
  • Publication number: 20100267909
    Abstract: Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
    Type: Application
    Filed: May 11, 2010
    Publication date: October 21, 2010
    Applicant: Fina Technology, Inc.
    Inventors: Tim Coffy, Steven Gray, David Knoeppel, Cyril Chevillard, David Rauscher, Carlos Corleto, Gerhard Guenther, Brian B. Cole, Stan Biesert, Vincent Barre, Ruby L. Curtis, Son Nguyen, Danielle Childress
  • Patent number: 7776987
    Abstract: A composition is disclosed which is particularly suited for use in extrusion coating. The composition comprises a polymeric material having a rheology such that the slope S of a natural log-natural log plot of loss modulus (or G?) versus storage modulus (or G?) is greater than [0.635*(melt index)+13.2]/[(melt index)+16.6], and wherein the polymeric material has a CDF RI fraction less than 0.23 of a GPC chromatogram which has a molecular weight above 85,000 g/mol, and a CDF LS fraction of more than 0.07 at a conventional GPC molecular weight of 1,750,000 g/mol or greater. The compositions exhibit reduced neck-in when used in extrusion coating and the neck-in is independent of melt strength, thereby facilitating improved extrusion processes.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: August 17, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Thomas Oswald, James L. Cooper, Jeffrey D. Weinhold, David T. Gillespie
  • Patent number: 7741415
    Abstract: The present invention relates to an ethylene homo or copolymer characterized as having long chain branching, and having a molecular weight distribution, Mw/Mn, and a GPC-LALLS CDF, which satisfies the following relationship: y?0.0663x?0.015, wherein y=GPC-LALLS CDF and x=Mw/Mn measured by conventional GPC, a line drawn from where the LS chromatogram intersects with molecular weight 350,000 and molecular weight 1,150,000 has a positive slope, preferably with a melt index between 0.15 and 2000 g/10 minutes and having long chain branching. In addition, the invention relates to a free radical initiation polymerization process for the preparation of ethylene polymers or copolymers, comprising reacting ethylene and optionally one or more comonomers at a high pressure, conveniently between 13,000 psig and 100,000 psig, and at reactor temperatures of 115° C. to 400° C., preferably 125-400° C., more preferably 140-350° C., especially 165-320° C.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: June 22, 2010
    Assignee: Dow Global Technologies Inc
    Inventors: Christopher W. Conrad, David T. Gillespie, Christopher R. Eddy
  • Publication number: 20100113706
    Abstract: This invention relates to an ethylene polymer comprising ethylene and up to 5 mole % of at least one comonomer, wherein the ethylene polymer has an Mw, of 10,000 to 50,000, an Mw/Mn of between 1.5 to 4.5, a density of at least 0.925 g/cc, an unsaturation level of less than 1 per 1000 carbons, a melting point of at least 120° C., a Tc of greater than Z, where Z=0.501×(density in kg/m3)?367, and a Brookfield viscosity o at 140° C. of 100,000 mPas or more.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Inventors: Donna J. Crowther, Kuangyao Brian Peng
  • Patent number: 7705094
    Abstract: The present invention relates to a process for controlling the gas-phase co-polymerisation of olefins in a fluidised bed reactor. The present invention further relates to a method for the continuous gas-phase (co-)polymerisation of olefins in a fluidised bed reactor in the presence of a polymerisation catalyst wherein the density SPAN of the polymer powder particles leaving the reactor is maintained below certain values throughout the polymerisation.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: April 27, 2010
    Assignee: Ineos Europe Limited
    Inventors: Sebastien Hutchette, Patrick Leaney, Frederic Morterol
  • Publication number: 20100093961
    Abstract: The instant invention is a free radical initiator system, and a high pressure, free radical polymerization process for producing a low density polyethylene polymer. The free radical initiator system according to instant invention includes at least one peroxide initiator, at least one hydrocarbon solvent, and at least one polar co-solvent. The high pressure, free radical polymerization process for producing a low density polyethylene polymer includes the steps of polymerizing ethylene and optionally at least one comonomer under high pressure conditions using a free radical initiator system comprising at least one peroxide initiator, at least one hydrocarbon solvent, and at least polar co-solvent.
    Type: Application
    Filed: February 12, 2008
    Publication date: April 15, 2010
    Inventors: Peter E. Aerts, Otto J. Berbee
  • Publication number: 20100087606
    Abstract: Disclosed is an ethylene-based polymer with a density from about 0.90 to about 0.94 in grams per cubic centimeter, with a molecular weight distribution (Mw/Mn) from about 2 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, and further comprising sulfur from about 5 to about 4000 parts per million. The amount of sulfur is also determined based upon the total weight of the ethylene-based polymer. Also disclosed is process for making an ethylene-based polymer which includes the steps of splitting a process fluid for delivery into a tubular reactor; feeding an upstream process feed stream into a first reaction zone and at least one downstream process feed stream into at least one other reaction zone, where the process fluid has an average velocity of at least 10 meters per second; and initiating a free-radical polymerization reaction.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 8, 2010
    Inventors: Teresa P. Karjala, Christopher R. Eddy, Mehmet Demirors, Wallace W. Yau, Sarat Munjal, Stefan Hinrichs, Jian Wang, Otto J. Berbee, Werner Zschoch, Cornelis J. Hosman, Lonnie G. Hazlitt, John O. Osby
  • Publication number: 20100082101
    Abstract: The present invention relates to methods for making highly crystalline polymeric material, for example, highly crystalline cross-linked and not cross-linked ultra-high molecular weight polyethylene (UHMWPE). The invention also provides methods of making additive-doped highly crystalline polymeric material using high pressure and high temperature crystallization processes, medical implants made thereof, and materials used therein.
    Type: Application
    Filed: August 18, 2006
    Publication date: April 1, 2010
    Applicant: The General Hospital Corporation dba Massachusetts General Hospital
    Inventors: Orhun K. Muratoglu, Ebru Oral
  • Patent number: 7650930
    Abstract: A process for the solution polymerization of olefins with improved on-stream time is provided. The solution polymerization process of the current invention comprises a method for the on-line removal of foulant material from one or more heat exchangers downstream of a polymerization reactor. Removal of foulant material is accomplished by deliberately applying a positive pressure differential across a heat exchanger. In the process of the current invention, reactor shut down is not required for the purpose of cleaning foulant material from a heat exchanger.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: January 26, 2010
    Assignee: NOVA Chemical (International) S.A.
    Inventors: Eric Cheluget, Arun Sood, Rob VanAsseldonk, Ryan McCabe
  • Publication number: 20100015422
    Abstract: Pre-stretched films may be used to increase the rate at which loads can be wrapped and to minimize the exertion required when using conventional stretch films. However, pre-stretched films must generally be stretched in a separate step and stored for several days in order for cling to fully develop. The present disclosure describes compositions, devices, systems, and methods for producing film that eliminate the stretching and storage steps. In particular, the present disclosure relates to the use of selected resins and an angled die to increase the level of orientation in the film as it is formed, thus eliminating the need to stretch the film in a separate step. The present disclosure also relates to the use of a cling agent which eliminates the storage time traditionally required to develop the film's cling properties.
    Type: Application
    Filed: May 21, 2009
    Publication date: January 21, 2010
    Applicant: Paragon Films, Inc.
    Inventors: Shaun Eugene Pirtle, Khurrum Shamsi
  • Patent number: 7625982
    Abstract: A multimodal polyethylene composition having at least two polyethylene components, wherein each component has a molecular weight distribution of equal to or less than about 5, one component has a higher molecular weight than the other component, and the higher molecular weight component has an “a” parameter value of equal to or greater than about 0.35 when fitted to the Carreau-Yasuda equation with n=0.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: December 1, 2009
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel L. Martin, Kumudini Jayarante, Matthew G. Thorn, J. Todd Lanier, Max P. McDaniel, Qing Yang, Michael D. Jensen, Paul J. DesLauriers, Rajendra K. Krishnaswamy
  • Publication number: 20090260378
    Abstract: Alternative means of inhibiting frosting in the interior heat exchanger of a DX system when switching from the heating mode to the cooling mode, plus an improved insulation and heat transfer means for vertically oriented sub-surface geothermal heat transfer tubing, as well as a means to protectively coat the sub-surface metal tubing of a DX system in a corrosive environment.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 22, 2009
    Applicant: EARTH TO AIR SYSTEMS, LLC
    Inventor: B. Ryland Wiggs
  • Patent number: 7569620
    Abstract: The present invention provides an irradiated crosslinked polyethylene containing reduced free radicals, preferably containing substantially no residual free radical. Disclosed is a process of making irradiated crosslinked polyethylene by irradiating the polyethylene in contact with a sensitizing environment at an elevated temperature that is below the melting point, in order to reduce the concentration of residual free radicals to an undetectable level. A process of making irradiated crosslinked polyethylene composition having reduced free radical content, preferably containing substantially no residual free radicals, by mechanically deforming the polyethylene at a temperature that is below the melting point of the polyethylene, optionally in a sensitizing environment, is also disclosed herein.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: August 4, 2009
    Assignees: Massachusetts General Hospital, Cambridge Polymer Group, Inc.
    Inventors: Orhun K. Muratoglu, Stephen H. Spiegelberg, Gareth H. McKinley
  • Patent number: 7566761
    Abstract: The present invention provides an olefin polymer having a narrow molecular weight distribution and a specific molecular weight, an olefin polymer having a functional group introduced at the terminal, a tapered polymer containing a segment wherein monomer composition continuously changes in the polymer chain, an olefin polymer having different segments which are bonded to each other, and a process for preparing these polymers. The olefin polymers of the invention are polymers of olefins of 2 to 20 carbon atoms and have a number-average molecular weight of not less than 500 and Mw/Mn of not more than 1.5.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: July 28, 2009
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Makoto Mitani, Yasunori Yoshida, Junichi Mohri, Kazutaka Tsuru, Seiichi Ishii, Shinichi Kojoh, Tomoaki Matsugi, Junji Saito, Naoto Matsukawa, Shigekazu Matsui, Takashi Nakano, Hidetsugu Tanaka, Norio Kashiwa, Terunori Fujita
  • Patent number: 5220471
    Abstract: A thin film magnetic head comprises a slider and a reading/writing element attached to an end surface of the slider, wherein the reading/writing element is disposed at an end surface in the longitudinal direction of the slider when the longitudinal direction and the width direction are determined on the surface which faces a magnetic recording medium, of the slider, and the slider has a linear groove in the surface opposite the surface which faces the magnetic recording medium, at the intermediate portion in the width direction of the slider and along the longitudinal direction.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: June 15, 1993
    Assignee: TDK Corporation
    Inventor: Mikio Matsuzaki