Adding Monomer Patents (Class 526/87)
  • Patent number: 10576456
    Abstract: Direct polymerization of lipid monomers or polymer scaffolding of non-lipid monomers coupled with irradiation or redox polymerization performed at neutral pH resulted in stabilized lipid assemblies. An initiator-buffer component and NaHS03 redox mixture polymerizes reactive lipid monomers at near neutral pH conditions to preserve functionality of reconstituted membrane proteins. Improved stability of black lipid membranes (BLMs) is attained by chemical cross-linking of polymerizable, hydrophobic and commercially available non-lipid monomers partitioned into the suspended lipid membranes, and by suspending the BLMs across low surface energy apertures. Substrate apertures having low surface energy modifiers with amphiphobic properties facilitated a reproducible formation of BLMs by promoting interactions between the lipid tail and the substrate material.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 3, 2020
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Steven Scott Saavedra, Craig A. Aspinwall, Saliya N. Ratnayaka, Leonard Bright
  • Patent number: 8969496
    Abstract: The present invention provides a method for controlling the chain structure of a copolymer. The disclosed method is capable of controlling the arrangement of monomeric units in a copolymer, and of selectively forming a random copolymer, tapered copolymer, multiblock copolymer and block copolymer. In the method for controlling the chain structure of a copolymer of a conjugated diene compound and a non-conjugated olefin, the introduction of the conjugated diene compound is controlled in the presence of the non-conjugated olefin so as to control the chain structure of the copolymer.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 3, 2015
    Assignee: Bridgestone Corporation
    Inventor: Shojiro Kaita
  • Patent number: 8916650
    Abstract: The present invention relates to an inner-plasticized vinyl chloride-based copolymer resin not requiring plasticizers and a preparation method thereof. Specifically, the vinyl chloride-based copolymer resin is prepared by a suspension polymerization method of initiating the polymerization of vinyl chloride monomer, feeding a certain amount of butyl acrylate continuously or discontinuously thereinto and carrying out the additional polymerization at the temperature higher than the polymerization initiation temperature so as to prepare a core-shell type vinyl chloride-based random copolymer resin. The vinyl chloride-based copolymer resin of core-shell structure prepared by the present invention includes vinyl chloride-butyl acrylate copolymer, and it can provide a vinyl chloride-butyl acrylate copolymer product which can be processed without plasticizers positively necessary to produce a soft product.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 23, 2014
    Assignee: Hanwha Chemical Corporation
    Inventors: Ji-Woo Kim, Jee-Hyong Lee, Jung-Ho Kong, Yong-Kook Jung, Sang-Hyun Cho
  • Patent number: 8754151
    Abstract: The present invention relates to aqueous multistage polymer dispersions obtainable by free-radically initiated aqueous emulsion polymerization, having a soft phase and a hard phase, and a hard-to-soft stage ratio of 25% to 95% by weight to 75% to 5% by weight, the glass transition temperature (Tg) of the soft phase, as first stage, being ?30 to 0° C. and that of the hard phase, as second stage, being 20 to 60° C., comprising at least one monomer of the general formula I in which the variables have the following definitions: n=0 to 2, R1, R2, R3=independently of one another hydrogen or methyl group, X=O or NH, Y=H, alkali metal or NH4, to processes for preparing these aqueous polymer dispersions, and to the use thereof as binders in coatings, and also to coatings comprising the polymer dispersion of the invention.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: June 17, 2014
    Assignee: BASF SE
    Inventors: Sebastian Roller, Ekkehard Jahns, Hans-Juergen Denu
  • Patent number: 8686055
    Abstract: The present invention relates to a method for the production of improved shell functionalized ion exchange resins from core/shell copolymer having a highly crosslinked core.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: April 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventor: William Harris
  • Patent number: 8569432
    Abstract: A method for producing aqueous polymer dispersions by means of radically initiated emulsion polymerisation, in an aqueous medium, of vinyl ester and ethylene, in series-connected polymerisation reactors, wherein in a first discontinuous polymerisation phase at least some of the reactants are introduced into the first polymerisation reactor and the remainder is added in a metered fashion. The reactor is filled up to more than 90% by volume, and at least 90 wt % of the monomers are reacted; in a second continuous polymerisation phase, the reactants are continuously supplied to the first polymerisation reactor and product is continuously withdrawn, and the product is continuously transferred into a second polymerisation reactor, and in the second polymerisation reactor the polymerisation is continued until at least 98 wt % of the monomers used have reacted.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: October 29, 2013
    Assignee: Wacker Chemie AG
    Inventors: Hans-Peter Weitzel, Robert Braunsperger
  • Patent number: 8557934
    Abstract: Disclosed is a copolymer latex obtained by emulsion polymerization of a monomer mixture containing (a) 30-70% by mass of a conjugated diene monomer, (b) 0.1-15% by mass of an ethylenically unsaturated carboxylic acid monomer and (c) 15-69.9% by mass of one or more other copolymerizable monomers. The copolymer latex is characterized in that the toluene in-soluble content in the dried product obtained by drying the copolymer latex is 95-100% by mass; the mass ratio of the toluene-swollen toluene insoluble content to the dried toluene insoluble content (the toluene swelling degree) is 3.0-6.5; the number average particle diameter of the copolymer latex is 180-400 nm; and the glass transition starting temperature of the dried copolymer latex is within the range from ?70° C. to ?20° C. and the glass transition ending temperature thereof is within the range from 10° C. to 100° C. in differential scanning calorimetry.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 15, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Kazutaka Takeno, Toshiya Ohkubo, Kunio Naoi, Mitsugu Tsuruta
  • Patent number: 8552126
    Abstract: The present invention relates to an aqueous polymer dispersion whose dispersed addition polymer P comprises, copolymerized in free-radically polymerized form, at least one polar monomer having a water solubility of greater than 50 g/liter (measured at 20° C.), and obtainable by free-radically initiated aqueous emulsion polymerization, the polar monomer being metered to the reaction mixture during the polymerization process at a variable, i.e., nonconstant rate, for example in the sense of a rate gradient. The present invention further relates to processes for preparing these aqueous polymer dispersions, to their use as binders and/or in coatings, and also to coatings comprising the polymer dispersion of the invention.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 8, 2013
    Assignee: BASF SE
    Inventors: Ekkehard Jahns, Sebastian Roller
  • Patent number: 8524649
    Abstract: An aqueous dispersion of a copolymer with copolymerized units a) of at least one ethylenically unsaturated carboxylic acid, b) of at least one nonionic ethylenically unsaturated surfactant monomer, c) of at least one C1-C2-alkyl methacrylate, d) of at least one C2-C4-alkyl acrylate, where the alkyl chain length averaged over the number of alkyl groups of the alkyl acrylate is 2.1 to 4.0, is described. Following neutralization with alkali, the dispersion serves as associative thickener, in particular for liquid detergent and cleaner formulations. The thickeners are characterized by high transparency and high thickening effect coupled with high shear dilution.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: September 3, 2013
    Assignee: BASF SE
    Inventors: Reinhold J Leyrer, Kati Schmidt
  • Patent number: 8519076
    Abstract: A UV-crosslinkable polyacrylate pressure-sensitive adhesive composition having a polyacrylate having photoinitiator units incorporated therein by polymerization and being produced by a free-radical solvent-free polymerization process.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: August 27, 2013
    Assignee: tesa SE
    Inventors: Jessica Erwin, Klaus Massow, Stephan Zollner
  • Patent number: 8455596
    Abstract: The present invention provides a method for production of a copolymer for photoresists in which the bias of the monomer composition ration is small. This method for production is a method for production of a copolymer for photoresists, which copolymer containing at least two types of repeating units, the method having a supplying step of supplying a monomer solution and a solution containing a polymerization initiator into a polymerization reaction system, wherein the range of fluctuation of the monomer composition ratio of unreacted monomers is within the range between minus 15% and plus 15% or the standard deviation of the monomer composition ratio of unreacted monomers is within 2 in the polymerization reaction system during the period from the start of the polymerization reaction to the end of supplying of the monomer solution.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: June 4, 2013
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Tomo Oikawa, Eiichi Ikawa
  • Patent number: 8410230
    Abstract: Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: April 2, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Patrick Brant, James Richardson Lattner
  • Patent number: 8334350
    Abstract: The present invention relates to an aqueous polymer dispersion whose dispersed addition polymer P comprises, copolymerized in free-radically polymerized form, at least one polar monomer having a water solubility of greater than 50 g/liter (measured at 20° C.), and obtainable by free-radically initiated aqueous emulsion polymerization, the polar monomer being metered to the reaction mixture during the polymerization process at a variable, i.e., nonconstant rate, for example in the sense of a rate gradient. The present invention further relates to processes for preparing these aqueous polymer dispersions, to their use as binders and/or in coatings, and also to coatings comprising the polymer dispersion of the invention.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: December 18, 2012
    Assignee: BASF SE
    Inventors: Ekkehard Jahns, Sebastian Roller
  • Patent number: 8329822
    Abstract: A polymer composition comprising A) a first polymer comprising (a) hydrophobized nanoparticle; (b) C1 to C18, straight, branched, or cyclic alkyl(meth)acrylate; (c) N-methylol(meth)acrylamide or a monomer of formula (I) R—(OCH2CH2)a—O—C(O)—C(R1)?CH2??(I) ?wherein R is hydrogen, C1-C4 alkyl, or —C(O)—C(R1)?CH2, and R1 is H or —CH3; said first polymer in contact with B) a second polymer comprising (d) a fluorinated monomer of formula (II) Rf1-L-X—C(O)—C(R)?CH2??(II) ?wherein Rf1 is a monovalent, partially or fully fluorinated, linear or branched, alkyl radical having 2 to about 100 carbon atoms; optionally interrupted by 1 to about 50 oxygen atoms; wherein the ratio of carbon atoms to oxygen atoms is at least 2:1 and no oxygen atoms are bonded to each other; L is a bond or a linear or branched divalent linking group having 1 to about 20 carbon atoms, said linking group optionally interrupted by 1 to about 4 hetero-radicals selected from the group consisting of —O—, —NR6—, —S—, —SO—, —SO2—, and —N(R6)
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 11, 2012
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Gerald Oronde Brown, Victoria A. Helinski
  • Patent number: 8324335
    Abstract: A propylene-based polymer comprising the following component (A) insoluble in p-xylene at 25° C. and component (B) soluble in p-xylene at 25° C., wherein (i) the weight average molecular weight (Mw) measured with GPC is 100,000 to 1,000,000, (ii) the content of the component insoluble in hot p-xylene is 0.3% by weight or lower, and (iii) the degree of strain hardening (? max) in measurement of elongational viscosity is 2.0 or higher; and a method for producing the same, along with a resin composition comprising a propylene-ethylene copolymer (Z) in an amount of 50.0 to 99.9% by weight and a propylene-based polymer (M) in an amount of 0.1 to 50.0% by weight. Component (A): a component (CXIS) insoluble in p-xylene at 25° C., having requirements specified by (A1) to (A5). Component (B): a component (CXS) is soluble in p-xylene at 25° C., having requirements specified by (B1) to (B4).
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: December 4, 2012
    Assignee: Japan Polypropylene Corporation
    Inventors: Masaaki Ito, Hideshi Uchino, Kazuya Sakata, Masaru Aoki, Masato Nakano, Shinichi Kitade
  • Patent number: 8242218
    Abstract: Preparing a non-ionic copolymer having a hydrolysable monomer residue and a polyether macromonomer residue in a semicontinuous mode in a polymerization reactor associated with a metering device, including introducing polyether macromonomer and water into the reactor, wherein hydrolysable monomer which is added thereto forms a polymerization reaction mixture; introducing hydrolysable monomer into the metering device; adding hydrolysable monomer into the reactor from the metering device; passing a free radical polymerization initiator into the reactor before and/or during the addition of the hydrolysable monomer, the hydrolysable monomer and the polyether macromonomer reacting by free radical polymerization to form the non-ionic copolymer; and, subjecting the reaction mixture to polymerization while an addition rate of the hydrolysable monomer and/or at least a component of the polymerization initiator is varied stepwise or continuously.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 14, 2012
    Assignee: Construction Research & Technology GmbH
    Inventors: Klaus K. Lorenz, Alexander Kraus, Barbara Wimmer, Petra Wagner, Christian Scholz, Manfred Bichler
  • Patent number: 8232356
    Abstract: A method is described for producing an aqueous thickener dispersion from a monomer composition made of at least one ethylenically unsaturated carboxylic acid and at least one ethylenically unsaturated hydrophobic monomer, (i) an at least partially polymerized pre-emulsion being produced from 10 to 80 wt.-% of said monomer composition, and (ii) the residual quantity of said monomer composition being added completely to the at least partially polymerized pre-emulsion and initiating a radical polymerization. The monomer composition preferably also comprises an associative monomer. The method avoids disadvantages of batch polymerization, such as inadequate batch-to-batch reproducibility and safety problems.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: July 31, 2012
    Assignee: BASF SE
    Inventors: Reinhold J. Leyrer, Kati Schmidt
  • Patent number: 8188200
    Abstract: Disclosed is a method of producing a polyolefin composition comprising contacting a metallocene pre-catalyst, co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; and polymerizing the first monomer for a time sufficient to form the polyolefin. The method allows for the use of minimum amounts of activating co-catalyst and metallocene pre-catalyst. Also disclosed is a method of producing a block polyolefin composition comprising contacting a metallocene pre-catalyst, a co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; polymerizing the first monomer for a time sufficient to form the polyolefin; adding a second monomer; and polymerizing the second olefin monomer for a time sufficient to form said block polyolefin composition. Also disclosed are amorphous atactic polymer and copolymer compositions made according to the present invention.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: May 29, 2012
    Assignee: University of Maryland, College Park
    Inventors: Lawrence R. Sita, Wei Zhang
  • Patent number: 8163852
    Abstract: Solving problems in the prior art, provided are a resist polymer which is small in lot-to-lot, reactor-to-reactor and scale-to-scale variations, and contains no high polymer, is excellent in solubility and storage stability, and is suitable for fine pattern formation, and a method for production thereof. The present invention provides the resist polymer at least having a repeating unit having a structure which is decomposed by an acid to become soluble in an alkali developer and a repeating unit having a polar group to enhance adhesion to a substrate, characterized in that a peak area of a high molecular weight component (high polymer) with molecular weight of 100,000 or more is 0.1% or less based on an entire peak area in a molecular weight distribution determined, by gel permeation chromatography (GPC).
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: April 24, 2012
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Takanori Yamagishi, Tomo Oikawa, Ichiro Kato, Kazuhiko Mizuno, Satoshi Yamaguchi
  • Patent number: 8153735
    Abstract: The invention provides a process for preparing polymers based on vinyl ester, ethylene and optionally further comonomers in the form of aqueous polymer dispersions thereof or of water-redispersible polymer powders by means of free-radically initiated continuous emulsion polymerization and optionally drying of the resulting polymer dispersions, characterized in that the emulsion polymerization is carried out in a cascade comprising at least one upstream heat exchanger and at least two downstream pressurized stirred tank reactors connected in series, such that the conversion on leaving the heat exchanger is at least 10% of the overall polymerization conversion.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: April 10, 2012
    Assignee: Wacker Chemie AG
    Inventors: Hans-Peter Weitzel, Robert Braunsperger
  • Patent number: 8101693
    Abstract: This invention relates to the polymerization of ethylene polymers using a continuously stirred tank reactor (CSTR) that is connected in series to a tubular reactor. The tubular reactor receives a polymer solution from the CSTR. Further polymerization in the tubular reactor improves production efficiencies, particularly with respect to lowering the amount of energy required to recover the polymer and residual comonomer from the solution. The use of tempered i.e. (heated) ethylene in the tubular reactor has been discovered to mitigate gel problems and lower/reduce levels of hexane extractables.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: January 24, 2012
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Lauwrence Martin Jozef Van Asseldonk, Stephen John Brown
  • Publication number: 20110319574
    Abstract: The present invention relates to hexafluoropropylene oxide polymer composition and a process of preparing of hexafluoropropylene oxide polymer by an anionic polymerization, and in particular the hexafluoropropylene oxide polymer composition comprises an anionic initiator, a polar solvent, hexafluoropropylene and hexafluoropropylene oxide. The hexafluoropropylene oxide polymer is prepared under particular reaction conditions by using the composition, hexafluoropropylene oxide polymer prepared by using the composition according to a preparation process herein has a weight average molecular weight (Mw) of 1,500-4,000 at ?10-20° C.
    Type: Application
    Filed: July 28, 2009
    Publication date: December 29, 2011
    Applicant: Korea Research Institute of Chemical Technology
    Inventors: Soo-Bok Lee, In Jun Park, Jong-Wook Ha, Kwang Won Lee, Sang Goo Lee
  • Patent number: 8063153
    Abstract: A functionalized polymer includes an elastomer, a terminal functional group including at least one heteroatom, and a unit intermediate the elastomer and the functional group; the intermediate unit includes a terminal moiety which, in its anionic form, is less basic than a secondary amino radical ion. Methods of making the functionalized polymer and of using it with particulate filler to make, e.g., a tire tread composition also are disclosed.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: November 22, 2011
    Assignee: Bridgestone Corporation
    Inventors: Yuan-Yong Yan, David F. Lawson
  • Patent number: 8053542
    Abstract: The invention provides a process for polymerizing a polymer comprising monomeric units derived from styrene and 1,3-butadiene, said process comprising: A) adding less than 60 weight percent of the total amount of the butadiene used in the polymerization, to a reactor comprising the total amount of styrene used in the polymerization and solvent; B) adding at least one initiator to the reactor, and allowing the reaction to proceed for a time t; C) adding the remaining amount of butadiene to the reactor in two or more separate additions; and wherein for each butadiene addition, the amount of subsequent butadiene added is less than, or equal to, the amount of butadiene added in the immediately prior addition; and wherein for each butadiene addition, the butadiene is added over a time, tnc, and after each addition, the reaction is allowed to proceed for a time, tnr, wherein n is the number of the butadiene addition, and for each addition, n is independently greater than, or equal to, 1.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: November 8, 2011
    Assignee: Styron Europe GmbH
    Inventors: Evemarie Hamann, Hagen Bartossek
  • Patent number: 8034885
    Abstract: The present invention provides a novel one-step process for preparing an aqueous polymer dispersion by the free radical aqueous emulsion polymerization comprising mixing at least water, a dispersant, and an oil-soluble initiator; raising a temperature from the starting to the end reaction temperature while metering at least ethylenically unsaturated monomers and a water-soluble initiator into a reaction vessel, conducting polymerization of the monomers in the presence of the water-soluble initiator at a temperature up to the end reaction temperature, and when the temperature has reached the end reaction temperature, conducting polymerization by the oil-soluble initiator. The oil-soluble initiator is inactive at the starting reaction temperature and becomes more active as a temperature approaches the end reaction temperature at which the oil-soluble initiator is fully active.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: October 11, 2011
    Assignee: BASF SE
    Inventors: Jun Gao, Xiang-Ming Kong, Klaus-Dieter Hungenberg, Juergen Schmidt-Thuemmes
  • Publication number: 20110245437
    Abstract: A method for the polymerization of free radically polymerizable vinyl monomers involves polymerizing free radically (co)polymerizable vinyl monomers in a batch reaction under essentially adiabatic conditions, and utilizing scavenger monomer to reduce undesirable residual monomer.
    Type: Application
    Filed: June 14, 2011
    Publication date: October 6, 2011
    Inventor: Mark F. Ellis
  • Patent number: 8013081
    Abstract: A polymer particle (10) useful for opacifying includes a polymer core (12) and a polymer sheath (16) surrounding the polymer core (12). The polymer core (12) is produced by polymerizing the polymer sheath (16) around the polymer core (12) in an emulsion. After at least a portion of the polymer core (12) is formed, a non-homopolymerizing monomer is added to the emulsion.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: September 6, 2011
    Assignee: Valspar Sourcing, Inc.
    Inventors: Martin Peter Joseph Heuts, Archie W. Garner
  • Publication number: 20110204536
    Abstract: A styrenic monomer-diolefin copolymer comprises polystyrenic monomer micro-blocks and polydiolefin micro-blocks, in which the content of styrenic monomer units is 10-80 wt %, the ratio of diolefin units of 1,2-structure is less than 30% in the total diolefin units, and the number-average molecular weight (Mn) of the copolymer is 25,000-500,000. The preparation methods and uses in foam products thereof are also disclosed.
    Type: Application
    Filed: July 15, 2009
    Publication date: August 25, 2011
    Inventors: Hongwen Liang, Aimin Zhang, Lixin Zhou, Jinkui Xia, Zhibin Zhang, Weiping Zhou
  • Patent number: 7973110
    Abstract: Preparing a non-ionic copolymer having a hydrolysable monomer residue and a polyether macromonomer residue in a semicontinuous mode in a polymerization reactor associated with a metering device, including introducing polyether macromonomer and water into the reactor, wherein hydrolysable monomer which is added thereto forms a polymerization reaction mixture; introducing hydrolysable monomer into the metering device; adding hydrolysable monomer into the reactor from the metering device; passing a free radical polymerization initiator into the reactor before and/or during the addition of the hydrolysable monomer, the hydrolysable monomer and the polyether macromonomer reacting by free radical polymerization to form the non-ionic copolymer; and, subjecting the reaction mixture to polymerization while an addition rate of the hydrolysable monomer and/or at least a component of the polymerization initiator is varied stepwise or continuously.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: July 5, 2011
    Assignee: Construction Research & Technology GmBH
    Inventors: Klaus K. Lorenz, Alexander Kraus, Barbara Wimmer, Petra Wagner, Christian Scholz, Manfred Bichler
  • Patent number: 7834115
    Abstract: The present invention relates to an improved method for preparing an ethylene-silane copolymer comprising hydrolysable silane groups by radical-initiated polymerisation of ethylene and an olefinically unsaturated silane compound, such as vinyl trimethoxysilane (VTMS). Said method is performed in a multi-zone reactor comprising two or more reaction zones, wherein advantageously essentially all of the silane compound is introduced into the first reaction zone to provide a higher conversion of silane monomer into polymer.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: November 16, 2010
    Assignee: Borealis Technology Oy
    Inventors: Kenneth Johansson, Roger Carlsson
  • Patent number: 7820776
    Abstract: The invention relates to a process for the preparation of a copolymer of ethylene and a monomer copolymerizable therewith. The polymerization takes place in a tubular reactor at a peak temperature between 290° C. and 350° C., the co monomer is a di- or higher functional (meth)acrylate and the co monomer is applied in an amount between 0.008 mol % and 0.200 mol % relative to the amount of ethylene copolymer.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: October 26, 2010
    Assignee: Saudi Basic Industries Corporation
    Inventors: Peter Neuteboom, Geert Imelda Valeer Bonte, Jacobus Christinus Josephus Franciscus Tacx, Marcellinus Guilliam Marie Neilen
  • Publication number: 20100261857
    Abstract: An olefin/(meth)acrylate block copolymer in which a polyolefin segment obtained by polymerization of an olefin is covalently-bonded to a poly(meth)acrylate segment obtained by polymerization of a (meth)acrylate compound, and a morphology has a micro phase-separation structure.
    Type: Application
    Filed: September 12, 2008
    Publication date: October 14, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Taichi Senda, Hidenori Hanaoka
  • Publication number: 20100204418
    Abstract: The invention relates to a process for the preparation of a polymeric mixture, comprising a first polymerization step in which substantially monomer M is reacted by atom transfer radical polymerization in a mixture which contains a transition metal salt, a ligand having at least two chelating sites, an atom transfer radical polymerization initiator, a reducing agent and monomer M, and a second polymerization step in which monomer S substituted by silyl groups is added to the mixture obtained from the first polymerization step, so that monomer S substituted by silyl groups is reacted by atom transfer radical polymerization in the mixture obtained from the first polymerization step. The polymeric mixture obtained is used as a binder additive for sealants.
    Type: Application
    Filed: September 1, 2008
    Publication date: August 12, 2010
    Inventors: Laurent Marc, Michael Duetsch, Helmut Mack
  • Patent number: 7754831
    Abstract: A vinyl-based polymer having a mass average molecular weight of 1500 to 10000, which is prepared by a first step of continuously feeding a material mixture containing a vinyl-based monomer to a continuous tank type first reactor, and polymerizing the vinyl-based monomer under the conditions of a polymerization temperature of 150° to 300° C. and a retention time of 1 to 60 minutes at a rate of polymerization of 50 to 99% to obtain a reaction intermediate mixture; and a second step of feeding a polymerization initiator in the amount of 0.01 to 5 parts by mass based on 100 parts by mass of the vinyl-based monomer and the reaction intermediate mixture to a second reactor, and further polymerizing the vinyl-based monomer under the conditions of a polymerization temperature of 100° to 200° C. and a retention time of 10 to 240 minutes at a rate of polymerization of 80% or more.
    Type: Grant
    Filed: December 25, 2002
    Date of Patent: July 13, 2010
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Yoshihide Nagafuchi, Hirotoshi Mizota, Yasuo Hiromoto, Hisaaki Yoshimura, Yoichi Nagai, Hiroyuki Kumaoka, Takeshi Kato, Tatsuki Yajima
  • Patent number: 7700234
    Abstract: A binder for electrode of lithium ion secondary battery, comprised of a copolymer composed of 15 to 80 weight % of units from ethylenically unsaturated monomer (A) whose homopolymerization yields a polymer soluble in N-methylpyrrolidone (NMP) and 20 to 85 weight % of units from ethylenically unsaturated monomer (B) whose homopolymerization yields a polymer insoluble in NMP, which copolymer exhibits a swelling degree of 4 or below, in an electrolyte obtained by dissolving LiPF6 in the concentration of 1 mol/liter into a solvent of 1:2 (volume ratio at 20° C.) mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). This binder for electrode of lithium ion secondary battery enables obtaining an electrode having a flexible electrode layer excelling in binding properties with industrial advantage.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: April 20, 2010
    Assignee: Zeon Corporation
    Inventors: Akira Nakayama, Takao Suzuki
  • Patent number: 7695889
    Abstract: A copolymer for semiconductor lithography, comprising at least a recurring unit (A) having a carboxylic acid ester structure whose solubility in alkali increases by the action of an acid and a carboxyl group-containing recurring unit (B), which copolymer is obtained via a step (P) of (co)polymerizing at least a monomer giving a recurring unit (A) and a step (Q) of forming a recurring unit (B) in the co-presence of a recurring unit (A)-containing (co)polymer and/or a monomer giving a recurring unit (A), and an acid. The copolymer is used in production of semiconductor as a resist polymer which is small in roughness, little in development defect and superior in lithography properties such as DOF and the like.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: April 13, 2010
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Takanori Yamagishi, Tomo Oikawa, Masaaki Muroi, Kota Atsuchi, Takahiro Nakamura, Masakazu Yamada, Kensuke Saisyo, Masaru Takeshita
  • Patent number: 7691260
    Abstract: The present invention provides method for recovering fossil-based materials from oil sources using multifunctional, multipolymeric continuous composition spectrum surfactant mixtures. The invention also provides methods for reducing the loss of volatile organic compounds (VOCs) from oil storage containers using multifunctional, multipolymer surfactants. The multifunctional, multipolymer surfactants are characterized by a hydrophobic part and a hydrophilic part. The hydrophobic part of the polymer surfactants includes functionalities that impart a polarity of greater than 0 Debye to the hydrophobic part. The polymer surfactants are further characterized by molecular weights that are above their entanglement weights. The result is polymer surfactants and their continuous composition surfactant-thickener mixtures with demulsifying characteristics.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: April 6, 2010
    Assignee: Nanochemical Oil Company
    Inventor: Gerard Caneba
  • Patent number: 7649067
    Abstract: The present invention relates to a vinyl ester based polymer latex composition obtainable by free radical emulsion polymerization in substantial absence of a protective colloid and in the presence of no or small amounts of a surfactant, and to a process of making the same. The invention further pertains to a dispersion incorporating said vinyl ester based polymer latex composition, products comprising said dispersion, and various uses of the dispersion.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: January 19, 2010
    Assignee: Wacker Polymers, L.P.
    Inventors: Helmut Zecha, Holger Kuenstle
  • Patent number: 7589158
    Abstract: The present invention relates to polymers polymerized sequentially or in stages and having varied functionality and/or monomer content as the polymerization progresses, as well as the methods for making these polymers. The polymers according to the invention can advantageously be present in aqueous emulsion or latex form and can advantageously be used in paint compositions.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: September 15, 2009
    Assignee: Columbia Insurance Company
    Inventors: Yong Yang, Navin Tilara, Robert J. Sheerin, Dan Sayre
  • Publication number: 20090208681
    Abstract: A polypropylene with a low amount of impurities, in particular a low amount of aluminum and boron residues.
    Type: Application
    Filed: July 10, 2006
    Publication date: August 20, 2009
    Inventors: Eberhard Ernst, Petri Lehmus, Michael Bartke, Lauri Huhtanen
  • Publication number: 20090197028
    Abstract: Copolymer comprising at least 50 mol percent up to 85 mol percent tetrafluoroethylene (TFE), from 10-35 mol percent 3,3,3-trifluoropropylene (TFP), and from 0.5-15 mol percent of a fluorinated ethylenically unsaturated monomer of the formula RCF?CR2 wherein R, which can be the same or different, is selected from the group consisting of H, F, Cl, Br, I, alkyl of from 1 to 8 carbon atoms, perfluoroalkyl of from 1 to 8 carbon atoms, and perfluoroalkylether of from 1 to 8 carbon atoms are useful as process aids and for fuel barrier applications in flexible hose constructions.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Inventors: Donald F. Lyons, Steven R. Oriani, Ronald D. Stevens
  • Patent number: 7566761
    Abstract: The present invention provides an olefin polymer having a narrow molecular weight distribution and a specific molecular weight, an olefin polymer having a functional group introduced at the terminal, a tapered polymer containing a segment wherein monomer composition continuously changes in the polymer chain, an olefin polymer having different segments which are bonded to each other, and a process for preparing these polymers. The olefin polymers of the invention are polymers of olefins of 2 to 20 carbon atoms and have a number-average molecular weight of not less than 500 and Mw/Mn of not more than 1.5.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: July 28, 2009
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Makoto Mitani, Yasunori Yoshida, Junichi Mohri, Kazutaka Tsuru, Seiichi Ishii, Shinichi Kojoh, Tomoaki Matsugi, Junji Saito, Naoto Matsukawa, Shigekazu Matsui, Takashi Nakano, Hidetsugu Tanaka, Norio Kashiwa, Terunori Fujita
  • Publication number: 20090149578
    Abstract: A comprising conjugated diene monomer units, and at least one polymer block B comprising conjugated diene monomer units and aromatic vinyl monomer units. This block copolymer is characterized in that (1) the polymer block A has a glass transition temperature of ?88° C. to ?45° C., (2) the polymer block B has a glass transition temperature of 30° C. to 90° C., (3) the content of aromatic vinyl monomer units in the whole block copolymer is 3-52 wt. %, (4) the aromatic vinyl block ratio in the whole block copolymer is smaller than 69 wt. %, and (5) the viscosity of a 5 wt. % solution of the block copolymer in styrene is 30-80 mPa·s. The block copolymer is useful as a resin modifier.
    Type: Application
    Filed: July 27, 2006
    Publication date: June 11, 2009
    Inventors: Masao Nakamura, Kazuya Ito, Hidenori Yamagishi
  • Publication number: 20090143547
    Abstract: This invention offers a functional vinyl halide polymer that has excellent processing properties for the end-user processing without any extra processing aid. This functional vinyl halide polymer has good fusion, lubrication and melting strength in processing. The finished products show a good characterization of high transparence, low air-mark and low flow-mark. The functional vinyl halide polymer is produced by a solution, bulk or suspension polymerization. Vinyl halide or a monomer mixture comprising mainly vinyl halide is polymerized in an aqueous medium in the presence of an acrylic copolymer latex/powder to obtain the functional vinyl halide polymer. The functional vinyl halide polymer manufacturing process mainly comprises the copolymerization or graft-polymerization of: (A) 90.0 wt %˜99.9 wt % based on the total composition of the vinyl halide or the monomer mixture, and (B) 10.0 wt %˜0.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Inventors: Cheng-Jung Lin, Kwang-Ming Chen, Hung Wan-Tun, Ming-Pin Kuo, Te-Shuan Su, Yu-Chen Chen, Chung-Chan Chen, Ming-Chung Huang
  • Patent number: 7541412
    Abstract: Disclosed is a method of producing a polyolefin composition comprising contacting a metallocene pre-catalyst with a substoichiometric amount of a co-catalyst; adding a first olefin monomer; and polymerizing the first monomer for a time sufficient to form the polyolefin. The method allows for the use of a minimum amount of activating co-catalyst, and allows for the production of stereoregular and non-stereoregular polyolefins. The use of configurationally stable metallocene pre-catalysts allows for the production of monomodal isotactic polyolefins having narrow polydispersity. The use of configurationally unstable metallocene pre-catalysts allows for the production of monomodal atactic polyolefins having narrow polydispersity. The method of the present invention optionally further comprises contacting the polyolefin with a second amount of said co-catalyst; adding a second olefin monomer; polymerizing said second olefin monomer to form a block-polyolefin composition.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: June 2, 2009
    Assignee: University of Maryland, College Park
    Inventor: Lawrence R. Sita
  • Patent number: 7482412
    Abstract: A process for manufacturing a cycloolefin addition polymer includes polymerizing monomers containing a cycloolefin compound using a catalyst containing a nickel compound or a palladium compound by addition polymerization in the presence of a molecular weight controlling agent in two steps, that is a step of a initiating the polymerization reaction using the monomers in an amount of not more than 80 wt % of the total monomers and a step of supplying the remaining monomers to the reaction system during the polymerization reaction. A cycloolefin addition polymer with a uniform quality, having a narrow molecular weight distribution and a controlled molecular weight, and excellently balanced processability and mechanical strength can be obtained at a high polymerization conversion rate using the process. The process can be operated at a highly controlled polymerization temperature, and is thus suitable for industrially manufacturing a cycloolefin addition polymer.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: January 27, 2009
    Assignee: JSR Corporation
    Inventors: Kenzo Ohkita, Nobuyuki Sakabe
  • Patent number: 7473334
    Abstract: A method of preparing a modified diallyl-N,N-disubstituted ammonium halide polymer and use of the polymer in combination with one or more high molecular weight, water soluble cationic, anionic, nonionic, zwitterionic or amphoteric polymers for increasing retention and drainage in a papermaking furnish.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: January 6, 2009
    Assignee: Nalco Company
    Inventors: Jane B. Wong Shing, Alessandra Gerli, Xavier S. Cardoso, Angela P. Zagala, Przem Pruszynski, Cathy C. Doucette
  • Patent number: 7449532
    Abstract: A cycloolefin copolymer obtained by ring opening polymerization according to the present invention is characterized by comprising a specific structural unit and exhibiting a single peak in a derivative differential scanning calorimetry curve obtained by differential scanning calorimeter (DSC), having a temperature width of the rising part in the peak of 35° C. or below, and having a glass transition temperature (Tg) of 110° C. or above. The cycloolefin copolymer provided by the present invention has excellent heat resistance and optical properties, is suitable for the formation of a film or sheet therefrom, and can be stretched even at a relatively low temperature around the Tg without causing troubles such as cloudiness. A film or sheet comprising the cycloolefin copolymer, which has excellent optical properties and heat resistance and is also suitable for stretching even at a relatively low temperature, is also provided.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: November 11, 2008
    Assignee: JSR Corporation
    Inventors: Motoki Okaniwa, Ichiro Kajiwara, Yoshimi Suwa, Yoichiro Maruyama, Yuichi Hashiguchi
  • Patent number: 7435784
    Abstract: A method for continuous ethylene polymerization under high pressure using a polymerization reaction zone comprises a primary reaction zone and a secondary reaction zone wherein the secondary reaction zone has a length of 1.5-6.5 times the length of the primary reaction zone and a cross-sectional area of 1.2-4 times the cross-sectional area of the primary reaction zone. Ethylene is fed continuously into the primary reaction zone at the starting point of the primary reaction zone. Low temperature initiator alone, or an initiator mixture containing mainly low temperature initiator is introduced into the primary reaction zone at the starting point of the primary reaction zone. Initiator alone or an initiator mixture is introduced into the secondary reaction zone at two or more different points of the secondary reaction zone. Ethylene polymer products of various physical properties are produced with high productivity, while the pressure drop is minimized.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: October 14, 2008
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Jin-Suk Lee, Byoung-Yong Chung, Myung-Jae Lee, Kun Lo
  • Patent number: 7427651
    Abstract: A process for producing a conjugated diene copolymer rubber which comprises initiating a copolymerization reaction in a reaction system containing a first conjugated diene compound and a first aromatic vinyl compound and completing the reaction, adding a first polyfunctional monomer to the reaction system, optionally further adding a second conjugated diene compound and a second aromatic vinyl compound, and further conducting copolymerization reaction, and adding a modifier to the reaction system to react the modifier with the copolymer. A rubber composition having excellent processability, exhibiting sufficient hardness even after vulcanization, and possessing reduced rolling resistance can be obtained.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: September 23, 2008
    Assignee: JSR Corporation
    Inventors: Masahiro Shibata, Naokazu Kobayashi, Toshihiro Tadaki
  • Patent number: 5220471
    Abstract: A thin film magnetic head comprises a slider and a reading/writing element attached to an end surface of the slider, wherein the reading/writing element is disposed at an end surface in the longitudinal direction of the slider when the longitudinal direction and the width direction are determined on the surface which faces a magnetic recording medium, of the slider, and the slider has a linear groove in the surface opposite the surface which faces the magnetic recording medium, at the intermediate portion in the width direction of the slider and along the longitudinal direction.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: June 15, 1993
    Assignee: TDK Corporation
    Inventor: Mikio Matsuzaki