Contains Elemental Transition Metal Or A Non-oxide Compound Of A Transition Metal Patents (Class 526/96)
  • Patent number: 8541520
    Abstract: The method of making high-density polyethylene with titania-iron nanofillers involves mixing a TiO2/Fe titania-iron nanofiller with a vanadium (III) complex bearing salicylaldiminato ligands polymerization catalyst in a reactor. The reactor is then charged with toluene and heated to a temperature of about 30° C. Following heating, ethylene is fed into the reactor at a fixed pressure, and a methyl aluminum dichloride cocatalyst is added to initiate in situ polymerization. Polymerization is quenched to yield high-density polyethylene with titania-iron nanofillers, which is then washed and dried. Through the addition of a TiO2/Fe nanofiller, the molecular weight, the crystallinity and the melting temperature of high-density polyethylene are all increased, while the polydispersity index (PDI) is decreased.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: September 24, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mamdouh Ahmad Al-Harthi, Omer Yahya Bakather, Sadhan Kumar De, Reyad Awwad Khalaf Shawabkeh
  • Patent number: 8436091
    Abstract: Through the use of an improved iron-based redox system it is possible to prepare special new, optionally hydrogenated, nitrile rubbers which feature a more uniform monomer distribution and a lower fraction of long-chain branches and hence are distinguished by enhanced flow properties at the same time as very good properties on processing.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 7, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Sven Brandau, Hans Magg, Michael Klimpel
  • Patent number: 8404788
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprises reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: March 26, 2013
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, Nicolay V. Tsarevsky, James Spanswick
  • Patent number: 8232357
    Abstract: The present invention relates to a catalytic composition for producing a 1-alkene-acrylate copolymer that includes a metal nano catalyst, and a method for producing a 1-alkene-acrylate copolymer. In the catalytic composition for producing a 1-alkene-acrylate copolymer, since the content of the polar comonomer is high, it may be used to produce the 1-alkene-acrylate copolymer that has no crystallinity and is capable of being used as an optical material. The method for producing the 1-alkene-acrylate copolymer may be produced by using a simple process of a mild polymerization condition without a polymerization condition of high temperature and high pressure, and it is easy to control physical properties.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: July 31, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Won-Hee Kim, Byoung-Ho Jeon, Kyung-Seop Noh, Eun-Kyoung Song, Ki-Su Ro, Bae-Kun Shin
  • Publication number: 20120108769
    Abstract: Polymerization processes and polymers formed therefrom are described herein. The polymerization processes generally include contacting ethylene and propylene with a multi-component catalyst composition including a first catalyst component including a chromium oxide based catalyst and a second catalyst component selected from metallocene and Ziegler-Natta catalysts within a polymerization reaction vessel to form a random copolymer, wherein the second catalyst component exhibits a higher comonomer response than the first catalyst component.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Applicant: Fina Technology, Inc.
    Inventors: Ricky McCormick, Steven Gray, Tim Coffy, David Knoeppel
  • Publication number: 20120088890
    Abstract: The present invention provides polymerization processes utilizing an ansa-metallocene catalyst system for the production of olefin polymers. Polymers produced from the polymerization processes have properties that vary based upon the presence or the absence of hydrogen and/or comonomer in the polymerization process.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Richard M. Buck, Qing Yang, Albert P. Masino, Christopher E. Wittner
  • Publication number: 20110237763
    Abstract: Disclosed herein are various methods and systems for gas and liquid phase polymer production. In certain embodiments, the methods comprise manipulating properties of polymers produced by adjusting the hydrogen feed rate.
    Type: Application
    Filed: December 17, 2009
    Publication date: September 29, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Mark G. Goode, Maria Pollard, Kevin J. Cann, Ronald S. Eisinger, Barbara J. Kopp, John H. Moorhouse
  • Patent number: 7893174
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprise reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 22, 2011
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay V. Tsarevsky
  • Publication number: 20100324235
    Abstract: The present invention relates to a catalytic composition for producing a 1-alkene-acrylate copolymer that includes a metal nano catalyst, and a method for producing a 1-alkene-acrylate copolymer. In the catalytic composition for producing a 1 -alkene-acrylate copolymer, since the content of the polar comonomer is high, it may be used to produce the 1-alkene-acrylate copolymer that has no crystallinity and is capable of being used as an optical material. The method for producing the 1-alkene-acrylate copolymer may be produced by using a simple process of a mild polymerization condition without a polymerization condition of high temperature and high pressure, and it is easy to control physical properties.
    Type: Application
    Filed: November 28, 2008
    Publication date: December 23, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Won-Hee Kim, Byoung-Ho Jeon, Kyung-Seop Noh, Eun-Kyoung Song, Ki-Su Ro, Bae-Kun Shin
  • Publication number: 20100093953
    Abstract: A multimodal polyethylene having an inverse comonomer distribution, as well as a process carried out in a single reactor in the presence of a mixed catalyst composition comprising two different polymerization catalysts, are described. The multimodal polyethylene has a density of 0 915-0 970 g/cm3, a weight average molar mass Mw of 100 000-900 000 g/mol, and a polydispersity Mw/Mn, of at least 15. The at least one homopolymer has a density of 0 950-0 975 g/cm3, a weight average molar mass Mw of 10 000-90 000 g/mol and a polydispersity Mw/Mn, higher than 3 and lower than 10, and the at least one copolymer has a polydispersity Mw/Mn between 8 and 80.
    Type: Application
    Filed: April 17, 2008
    Publication date: April 15, 2010
    Applicant: Basell Polyolefine GmbH
    Inventors: Lars Kölling, Shahram Mihan
  • Publication number: 20100056735
    Abstract: The invention relates to a method for producing alkyl polyglycol carboxylic acids and polyglycol dicarboxylic acids by means of direct oxidation.
    Type: Application
    Filed: April 7, 2008
    Publication date: March 4, 2010
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Achim Stankowiak, Oliver Franke, Ulf Pruesse, Nadine Decker, Klaus-Dieter Vorlop
  • Publication number: 20100016526
    Abstract: A two-stage cascade polymerization process for the production of multimodal polyethylene film resins with improved bubble stability is provided. The process comprises polymerizing ethylene or a mixture of ethylene and a C4-8 ?-olefin in two reactors arranged in series using a mixed single-site catalyst comprised of a bridged and a non-bridged indenoindolyl transition metal complex to form a multimodal polyethylene resin comprised of a lower molecular weight, higher density component and a higher molecular weight, lower density component.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 21, 2010
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Philip J. Garrison
  • Patent number: 7632901
    Abstract: Methods of making supported chromium catalyst systems and processes of polymerizing ethylene using the supported chromium catalyst systems are disclosed. A method of forming a catalyst system in a polymerization reactor includes contacting a supported chromium catalyst and a metal alkyl cocatalyst by cofeeding the catalyst and cocatalyst to the reactor or feeding the catalyst and cocatalyst separately to the reactor, to form a catalyst system. The catalyst and cocatalyst are not pre-contacted prior to the feeding or cofeeding step. The catalyst system can be contacted with ethylene and optional alpha-olefin comonomer to form polyethylene.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: December 15, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stanley J. Katzen, Zerong Lin, Anthony N. Speca, James A. Kendrick, Scott T. Roger
  • Publication number: 20080312389
    Abstract: The invention is directed to a process for the preparation of a catalyst component wherein a compound with formula Mg(OAlk)xCly wherein x is larger than 0 and smaller than 2, y equals 2-x and each Alk, independently represents an alkyl group, is contacted with a titanium tetraalkoxide and/or an alcohol in the presence of an inert dispersant to give an intermediate reaction product and wherein the intermediate reaction product is contacted with titanium tetrachloride in the presence of an internal donor. The invention also relates to a polymerization catalyst comprising the catalyst component and furthermore the invention relates to the polymerization of an olefin in the presence of the polymerization catalyst comprising the catalyst component.
    Type: Application
    Filed: November 11, 2005
    Publication date: December 18, 2008
    Inventors: Yves Johann Elizabeth Ramjoie, Sergei Andreevich Sergeev, Mark Vlaar, Vladimir Aleksandrovich Zakharov, Gennadii Dimitrievich Bukatov
  • Publication number: 20040167015
    Abstract: Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also comprise various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.
    Type: Application
    Filed: January 22, 2004
    Publication date: August 26, 2004
    Inventors: Kevin J. Cann, Minghui Zhang, John H. Moorhouse, Maria A. Apecetche
  • Patent number: 6699813
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an lanthanide compound, (b) an alkylating agent, (c) a nickel-containing compound, and optionally (d) a halogen-containing compound, with the proviso that the halogen-containing compound must be present where none of the lanthanide compound, the alkylating agent, and the nickel-containing compound contain a labile halogen atom.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: March 2, 2004
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Yoichi Ozawa, Koji Masaki, David Lawson
  • Publication number: 20030232715
    Abstract: Methods of making supported chromium catalyst systems and processes of polymerizing ethylene using the supported chromium catalyst systems are disclosed. A method of forming a catalyst system in a polymerization reactor includes contacting a supported chromium catalyst and a metal alkyl cocatalyst by cofeeding the catalyst and cocatalyst to the reactor or feeding the catalyst and cocatalyst separately to the reactor, to form a catalyst system. The catalyst and cocatalyst are not pre-contacted prior to the feeding or cofeeding step. The catalyst system can be contacted with ethylene and optional alpha-olefin comonomer to form polyethylene.
    Type: Application
    Filed: June 6, 2003
    Publication date: December 18, 2003
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Stanley J. Katzen, Zerong Lin, Anthony N. Speca, James A. Kendrick, Scott T. Roger
  • Patent number: 6649711
    Abstract: A polymerisation process for the preparation of vinylic polymers from the corresponding vinylic monomers which process comprises the step of reacting a vinylic monomer in the presence of a catalyst system comprising a) a metal complex of general formula (I) where A is selected from the group consisting of nickel, iron, cobalt, chromium, manganese, titanium, zirconium, vanadium and the rare earth metals; L1, L2, L3 and L4 are ligands and b) a Lewis acid of general formula (II) wherein at least one of W, Y or Z is capable of forming a co-ordination bond with A and the others of W, Y and Z are bulky groups; D is selected from the group consisting of aluminium, magnesium, zinc and boron.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: November 18, 2003
    Assignee: Imperial Chemical Industries PLC
    Inventors: Paul Alexander Cameron, Vernon Charles Gibson, Derek John Irvine
  • Patent number: 6639029
    Abstract: The present invention relates to a process for synthesis of polymer compositions, wherein ethylenically unsaturated monomers are polymerized by means of initiators containing a transferable atom or group of atoms and of one or more catalysts comprising at least one transition metal in the presence of ligands which can form a coordination compound with the metal catalyst or catalysts, the process being characterized in that the polymerization takes place by means of continuous process operation.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 28, 2003
    Assignee: Rohmax Additives GmbH
    Inventors: Markus Scherer, Joseph Martin Bollinger, David J. Cooper, Jr., Larry Stephen Tillery, Robert Woodruff
  • Patent number: 6632896
    Abstract: Ths invention provides a process for the preparation of a polyethylene, in particular an HDPE suitable for blow moulding of HIC, which comprises polymerizing ethylene and, optionally an ethylenically unsaturated comonomer copolymerizable therewith, in the presence of a catalyst comprising a first silica-supported chromium catalyst having a pore volume of at least 2 mL/g, a surface area of at least 350 m2/g and a chromium content of 0.1 to 1.0% by weight and a second silica-supported chromium catalyst having a pore volume of at least 2 mL/g, a surface area of at least 450 m2/g and a chromium content of 0.1 to 1.0% by weight, wherein the silica support of said first catalyst also comprises alumina and the silica support of said second catalyst also comprises titanium, and preferably a co-catalyst.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: October 14, 2003
    Assignee: Borealis Technology Oy
    Inventors: Vidar Almquist, Paul Allemeersch, Roger Goris, Ann Kristin Lindahl
  • Patent number: 6600011
    Abstract: This invention relates to a method for purifying and drying a polymer hydrogel. This invention is based in part upon the discovery that rapid drying of polymer hydrogels can eliminate the problem of unacceptable levels of soluble oligomers caused by prolonged thermal treatment. Rapid drying techniques allow drying hydrogels containing more water than was previously considered possible without a loss in product quality. Furthermore, it was discovered that slurries comprising polymer hydrogels and large quantities of water can be spray dried and that spray drying can be conducted with only minimal oligomer formation.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: July 29, 2003
    Assignee: Genzyme Corporation
    Inventors: Peter D. McDonnell, Gary S. Rea, Peter W. Thomas, Mark F. Larrousse, Richard V. Bodmer, Jr.
  • Patent number: 6573344
    Abstract: A process to produce a propylene polymer is provided. The process comprising contacting at least one organometal compound, at least one organoaluminum compound, at least one treated solid oxide compound, propylene, and ethylene in a polymerization zone under polymerization conditions to produce the propylene polymer.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: June 3, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Gil R. Hawley, Max P. McDaniel, Michael D. Jensen, Christopher E. Wittner
  • Patent number: 6534605
    Abstract: A polymerization process for the preparation of vinylic polymers from the corresponding vinylic monomers which process comprises the step of reacting a vinylic monomer in the presence of a catalyst system comprising a) a compound of general formula (I) where M is any metal capable of coordinating to an enolate or delocalized enolate-like species; B1, B2, B3 and B4 are chosen from nitrogen, oxygen, sulphur or phosphorus containing moieties wherein each of said nitrogen, oxygen, sulphur or phosporus is linked to at least one carbon atom of an organic group and to M; X1 is selected from the group consisting of alkyl, H, halogen, alkoxy, thiol aryloxy, ester, b) a metal, complex of general formula (II) where A is selected from the group consisting of nickel, iron, cobalt, chromium, manganese, titanium, zirconium, vanadium and the rare earth metals; L1, L2, L3 and L4 are ligands and c) a Lewis acid of general formula (III) wherein at least one of W, Y or Z is capable of forming a co-ordination bond with A and the
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: March 18, 2003
    Assignee: Imperial Chemical Industries Plc
    Inventors: Paul Alexander Cameron, Vernon Charles Gibson, Derek John Irvine
  • Publication number: 20030018141
    Abstract: A process for the polymerisation and copolymerisation of olefins is disclosed, comprising contacting the monomeric olefin under polymerisation conditions with a polymerisation catalyst or catalyst system which comprises (a) a source of a Group VIII metal; (b) a bidentate phosphine ligand having the formula (R1)(R1)P—X—P(R1)(R1), where each R1 is independently selected from a phenyl group or a substitued phenyl group with the proviso that at least one of the R1 groups is a phenyl group having at least one ortho substituent, and X is a bridging group of the structure —[N]x—[P]9—[N]— where x and y are independently 0 or 1, or —C(R4)2—where R4 may be the same or different and is hydrogen or a monovavlent hydrocarbyl, substituted hydrocarbyl or hetero-hydrocarbyl group; and optionally (c) a promoter.
    Type: Application
    Filed: February 5, 2002
    Publication date: January 23, 2003
    Inventor: Duncan Frank Wass
  • Patent number: 6489428
    Abstract: The present invention relates to a supported chromium-based catalyst titanated under specific conditions and used for the homopolymerisation or the copolymerisation of ethylene. The polyethylene obtained with this catalyst has high shear resirance and environmental stress crack resistance, and can be used for manufacturing films with improved tear properties.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: December 3, 2002
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Jean-Pierre Dath
  • Publication number: 20020137861
    Abstract: The present invention relates to a process for polymerizing olefin(s) in the presence of a catalyst composition in a slurry or suspension to which an aluminum alkyl is added prior to being introduced to a polymerization reactor.
    Type: Application
    Filed: December 4, 2000
    Publication date: September 26, 2002
    Inventor: Woo Min Song
  • Patent number: 6384154
    Abstract: A process for preparing halogen-free, reactive polyisobutene having a terminal double bond content of more than 60 mol % and an average molecular weight Mn of 800-3000 dalton by cationic polymerization in the liquid phase of isobutene over an acidic, essentially halogen-free heterogeneous catalyst, where a) a hydrocarbon mixture of essentially C4-hydrocarbons comprising isobutene in an amount of from 10 to 80% by weight is used as the starting material and b) polymerization is carried out continuously at from −30 to 0° C. with average starting material residence times of one hour or less, where the temperature and the residence time are selected such that the isobutene conversion is less than 60% and, after separation from the resulting polyisobutene, the isobutene is either enriched in the partially converted hydrocarbon mixture and returned to the polymerization or passed to another isobutene reaction coupled with the polymerization.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: May 7, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Christoph Sigwart, Thomas Narbeshuber, Eugen Gehrer, Rolf Fischer, Ulrich Steinbrenner, Shelue Liang
  • Publication number: 20020004566
    Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with at least one metallocene catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provided is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, at least one metallocene catalyst and a compound specified herein. Further provided are novel polyolefins, and films and articles produced therefrom.
    Type: Application
    Filed: August 22, 2001
    Publication date: January 10, 2002
    Inventors: Randal Ray Ford, Richard Kingsley Stuart
  • Patent number: 6265500
    Abstract: A process for producing a polyethylene resin having improved mechanical properties, the process comprising polymerising ethylene in the presence of a chromium-based catalyst to make polyethylene homopolymer in a first polymerisation reactor and in a second polymerisation reactor downstream of the first polymerisation reactor copolymerising ethylene in the presence of the chromium-based catalyst and a co-catalyst from ethylene monomer and comonomer generated in-situ in the second polymerisation reactor to make polyethylene copolymer.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: July 24, 2001
    Assignee: Fina Research, S.A.
    Inventor: Guy Debras
  • Patent number: 6214947
    Abstract: A process for preparing a supported chromium-based catalyst for the production of high density polyethylene, by polymerising ethylene, or copolymerising ethylene and an alpha-olefinic comonomer comprising 3 to 10 carbon atoms, which comprises the steps of: a) providing an alumina-containing support; b) depositing a chromium compound on the support to form a chromium-based catalyst; c) dehydrating the chromium-based catalyst to remove physically adsorbed water by heating the catalyst at a temperature of at least 300° C. in an atmosphere of dry, inert gas; d) titanating the chromium-based catalyst at a temperature of at least 300° C.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: April 10, 2001
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Bodart Philippe
  • Publication number: 20010000035
    Abstract: A process for the reaction of an organic compound in the presence of a catalyst comprising, as active metal, ruthenium alone or together with at least one Group Ib, VIIb, or VIIIb metal in an amount of from 0.01 to 30 wt %, based on the total weight of the catalyst, applied to a support, wherein from 10 to 50% of the pore volume of the support comprises macropores having a pore diameter in the range of from 50 nm to 10,000 nm and from 50 to 90% of the pore volume of the support comprises mesopores having a pore diameter in the range of from 2 to 50 nm, the sum of said pore volumes being 100%, and said catalyst as such.
    Type: Application
    Filed: November 30, 2000
    Publication date: March 15, 2001
    Inventors: Thomas Ruhl, Boris Breitscheidel, Jochem Henkelmann, Andreas Henne, Rolf Lebkucher, Konard Knoll, Paul Naegele, Hermann Gausepohl, Sabine Weiguny, Norbert Niessner
  • Patent number: 6200920
    Abstract: The present invention relates to a supported chromium-based catalyst titanated under specific conditions and used for the homopolymerization or the copolymerization of ethylene. The polyethylene obtained with this catalyst has high shear resirance and environmental stress crack resistance, and can be used for manufacturing films with improved tear properties.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: March 13, 2001
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Jean-Pierre Dath
  • Patent number: 6069108
    Abstract: Process for preparing a supported metallocene catalyst, in which a hydrophilic, macroporous, finely divided aluminum oxide, silicon oxide, titanium oxide or zirconium oxide or a mixture or mixed oxide thereof is dried at from 110 to 800.degree. C., then reacted with an aluminoxane and subsequently with polyfunctional organic crosslinkers. In a further step, the catalyst support can be mixed with a reaction product of metallocenes and activators, giving a supported metallocene catalyst which is used, in particular, for the polymerization of olefins.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: May 30, 2000
    Assignee: Borealis GmbH
    Inventors: Eberhard Ernst, Jens Reussner, Wolfgang Neissl
  • Patent number: 5965675
    Abstract: A polymerization process is provided comprising contacting under polymerization conditions a catalyst, a taming agent, ethylene and optionally a comonomer, wherein the catalyst comprises chromium oxide, titanium oxide and an inorganic refractory oxide, wherein the taming agent is selected from the group consisting of water, alcohols, aldehydes, ketones, esters, and organic acids and mixtures thereof. The process is especially suited for polymerizing ethylene resins suitable for blow molding use.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: October 12, 1999
    Assignee: Chevron Chemical Company
    Inventors: Gene E. Kellum, Robert L. Batchelor
  • Patent number: 5916982
    Abstract: A process for the production of polyolefins is provided which comprises polymerizing or copolymerizing olefins in the presence of a catalyst composition which includes a catalyst component (I) resulting from mutual contact of sub-components (A) and (B), and a catalyst component (II). Sub-component (A) is of the formulaR.sup.1.sub.p Me.sup.1 X.sup.1.sub.4-p and/or R.sup.1.sub.2 Me.sup.1 X.sup.1'and sub-component (B) is a modified organoaluminum compound having Al--O--Al bonds. Catalyst component (II) is an admixture of sub-component (C), which is a transition metal elemental compound of Groups VII-VIII, and one or more of triethylaluminum, triisobutylaluminum, diethyl zinc, n-butyllithium, and butylmagnesiumchloride. The catalyst components (I) and/or (II) are contacted with a carrier during or after the preparation of the components (I) and/or (II).
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: June 29, 1999
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Osamu Nakazawa, Akira Sano, Kazuo Matsuura
  • Patent number: 5849852
    Abstract: Support for catalysts, containing at least two constituents chosen from silica, alumina and aluminium phosphate, having a specific surface of 100 to 800 m.sup.2 /g, a crystallization temperature greater than or equal to 700.degree. C. and a pore volume of 1.5 to 4 cm.sup.3 /g, the specific surface (SS) and the pore volume (PV) corresponding to the relationship:SS<(PV.times.564-358).Process for the manufacture of such a support, according to which an alcohol, water, a silicon alkoxide and an acid are mixed under conditions such that gelling or precipitation of silica is prevented, an acidic solution of an aluminium compound and/or a solution of a source of phosphate ions are added thereto, a gelling agent is added thereto, a gel is recovered which is washed with water and then by means of an organic liquid, the gel is then dried until a powder is obtained, and the powder is calcined. Polymerization of olefins in the presence of a catalyst containing chromium on a support as described above.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: December 15, 1998
    Assignee: Solvay Polyolefins Europe--Belgium (Societe Anonyme)
    Inventors: Benoit Koch, Andre Rulmont, Fabienne Wijzen
  • Patent number: 5786431
    Abstract: Novel chromium-containing compounds are prepared by forming a mixture of a chromium salt, a metal amide, and an ether. These novel chromium-containing, or chromium pyrrolide, compounds, with a metal alkyl and an unsaturated hydrocarbon, can be used as a cocatalyst system in the presence of an olefin polymerization catalyst system to produce a comonomer in-situ. The resultant polymer, although produced from predominately one monomer, has characteristics of a copolymer.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 28, 1998
    Assignee: Phillips Petroleum Company
    Inventors: William K. Reagen, Ted M. Pettijohn, Jeffrey W. Freeman, Elizabeth A. Benham
  • Patent number: 5686542
    Abstract: Branched low-pressure polyethylenes are prepared by oligomerization of ethylene on a nickel-containing catalyst and polymerization of the oligomers obtained, if appropriate in the presence of ethylene, on a chromium-containing catalyst.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: November 11, 1997
    Assignee: Bayer Aktiengesellschaft
    Inventors: Karl-Heinz Aleksander Ostoja-Starzewski, Josef Witte, Herbert Bartl, Karl-Heinz Reichert, Georgios Vasiliou
  • Patent number: 5648439
    Abstract: A process is provided to produce polyolefins having a multimodal molecular weight distribution at the molecular level by contacting at least one mono-1-olefin in a polymerization zone, under polymerization conditions, with two different types of supported chromium catalyst systems. The first catalyst system comprises a chromium oxide catalyst system which comprises chromium oxide supported on an inorganic oxide. The second catalyst system comprises a chromocene catalyst system which comprises chromocene supported on an inorganic oxide. The resultant, recovered polymer has a multimodal, or at least a bimodal, molecular weight distribution.
    Type: Grant
    Filed: July 14, 1995
    Date of Patent: July 15, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Joseph J. Bergmeister, Scott E. Kufeld, Max P. McDaniel
  • Patent number: 5641842
    Abstract: A process is provided comprising copolymerizing, under copolymerizing conditions, ethylene with one or more alpha-olefins, using a catalyst system, where said catalyst system has been sized, to produce a lower-density-copolymer, where said lower-density-copolymer has a density lower than a similar copolymer produced by copolymerizing, under said copolymerizing conditions, ethylene with said one or more alpha-olefins, using said catalyst system, where said catalyst system has not been sized, where said catalyst system that has been sized has had substantially all particles removed that produce, under said copolymerizing conditions, a higher-density-copolymer, where said higher-density-copolymer has a density higher than said similar copolymer.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 24, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Rickey D. Badley, Bruce E. Kreischer, Joseph S. Shveima
  • Patent number: 5616529
    Abstract: Branched low-pressure polyethylenes are prepared by oligomerization of ethylene on a nickel-containing catalyst and polymerization of the oligomers obtained, if appropriate in the presence of ethylene, on a chromium-containing catalyst.
    Type: Grant
    Filed: February 27, 1996
    Date of Patent: April 1, 1997
    Assignee: Bayer AG
    Inventors: Karl-Heinz A. Ostoja-Starzewski, Josef Witte, Herbert Bartl, Karl-Heinz Reichert, Georgios Vasiliou
  • Patent number: 5461126
    Abstract: Catalytic compositions and catalytic processes are provided. The catalytic compositions are produced by the process that comprises contacting an organonickel compound with a cyclicazacarbyl compound. Optionally, one or more catalytic promoters can be present in the catalytic compositions. Additionally, one or more olefins can be contacted with one or more of these catalytic compositions to form oligomerization products and/or polymerization products.
    Type: Grant
    Filed: April 29, 1994
    Date of Patent: October 24, 1995
    Assignee: Phillips Petroleum Company
    Inventors: Ronald D. Knudsen, Gil R. Hawley, Margie F. Jackson
  • Patent number: 5459203
    Abstract: A catalyst system for the polymerization of alpha-olefins comprising a chromium-containing catalyst and an yttrium-containing catalyst wherein the yttrium-containing catalyst is represented by the formula (Cp.sub.2 YX.sub.x).sub.y .multidot.M.sub.z L.sub.n, wherein Cp is cyclopentadienyl or cyclopentadienyl substituted with an alkyl or alkyl silyl radical, X is a halogen, M is an alkali metal, L is a suitable electron donor ligand, x is 1 or 2, y is 1 or 2, z is 0 or 1, and n is a number corresponding to the value needed to form a stable complex, with the proviso that when y is 2, z and n are 0 is provided. Also disclosed is a polymerization process employing such a catalyst system, and novel olefin polymers. Polymers thus produced exhibit high bulk density and a broad molecular weight distribution.
    Type: Grant
    Filed: November 8, 1994
    Date of Patent: October 17, 1995
    Assignee: Phillips Petroleum Company
    Inventors: Rolf L. Geerts, Elizabeth A. Benham, Max P. McDaniel
  • Patent number: 5399622
    Abstract: A catalyst system for the polymerization of alpha-olefins comprising a chromium-containing catalyst and an yttrium-containing catalyst wherein the yttrium-containing catalyst is represented by the formula (Cp.sub.2 YX.sub.x).sub.y.M.sub.z L.sub.n, wherein Cp is cyclopentadienyl or cyclopentadienyl substituted with alkyl or alkyl silyl radical or radicals, X is a halogen, M is an alkali metal, L is a suitable electron donor ligand, x is 1 or 2, y is 1 or 2, z is 0 or 1, and n is a number corresponding to the value needed to form a stable complex, with the proviso that when y is 2, z and n are 0 is provided. Also disclosed is a polymerization process employing such a catalyst system, and novel olefin polymers. Polymers thus produced exhibit high bulk density and a broad molecular weight distribution.
    Type: Grant
    Filed: November 17, 1993
    Date of Patent: March 21, 1995
    Assignee: Phillips Petroleum Company
    Inventors: Rolf L. Geerts, Elizabeth A. Benham, Max P. McDaniel
  • Patent number: 5200379
    Abstract: Olefin polymerization catalysts, processes for preparing the catalysts and processes for producing polyolefins utilizing the catalysts are provided. The catalysts are basically comprised of a pentadienyl derivative-transition metal complex adsorbed on an activated inorganic refractory compound.
    Type: Grant
    Filed: November 1, 1991
    Date of Patent: April 6, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Paul D. Smith
  • Patent number: 5114990
    Abstract: There is described a process for the production of pigment/plastic premixes characterized by homogeneous distribution of pigment in a polymer matrix. The invention is based on the polymerization of olefins carried out by means of a process using Ziegler catalyst. Significantly the polymerization occurs on the surface of the pigment particles, after the prior activation of the pigment particles.
    Type: Grant
    Filed: May 4, 1990
    Date of Patent: May 19, 1992
    Assignee: Felix Schoeller Jr. GmbH KG
    Inventor: Ralf-Burkhard Dethlefs
  • Patent number: 5104839
    Abstract: Olefinic polymer exhibiting high environmental stress crack resistance are produced by contacting the olefin charge stock in a single reactor with a compatible mix of two transition metal catalyst systems. One component of the catalyst system comprises chromium oxide supported on an aluminophosphate material. Hydrogen can be used as adjuvant for the hexavalent chromium component of the catalyst mixture. The second catalyst component consists essentially of a beta-stabilized tetrahydrocarbyl zirconium compound supported on inorganic support material. The catalysts can be premixed before use in the reactor, or can be added to the reactor separately. A suitable cocatalyst can be utilized.
    Type: Grant
    Filed: July 12, 1991
    Date of Patent: April 14, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Paul D. Smith
  • Patent number: 5075394
    Abstract: Olefin polymerization catalysts, processes for preparing the catalysts and processes for producing polyolefins utilizing the catalysts are provided. The catalysts are basically comprised of a pentadienyl derivative-transition metal complex adsorbed on an activated inorganic refractory compound.
    Type: Grant
    Filed: June 7, 1990
    Date of Patent: December 24, 1991
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Paul D. Smith
  • Patent number: 5034364
    Abstract: An olefin, particularly alpha-olefin, polymerization catalyst composition, supported on a refractory oxide support comprises two chromium specie: (1) CrO.sub.3 or any chromium compound calcinable to CrO.sub.3 ; and (2) at least one silylchromate compound. The composition is prepared by sequentially depositing specie (1) and (2) onto the same support.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: July 23, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Bohumil V. Kral, Grace O. Tsien, Chisung Wu
  • Patent number: 5032651
    Abstract: Olefinic polymer exhibiting high environmental stress crack resistance are produced by contacting the olefin charge stock in a single reactor with a compatible mix of two transition metal catalyst systems. One component of the catalyst system comprises chromium oxide supported on an aluminophosphate material. Hydrogen can be used as adjuvant for the hexavalent chromium component of the catalyst mixture. The second catalyst component consists essentially of a beta-stabilized tetrahydrocarbyl zirconium compound supported on inorganic support material. The catalysts can be premixed before use in the reactor, or can be added to the reactor separately. A suitable cocatalyst can be utilized.
    Type: Grant
    Filed: May 29, 1990
    Date of Patent: July 16, 1991
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Paul D. Smith