Contains Compound Containing Aluminum To Halogen Bond And Wherein The Same Aluminum Atom Is Not Bonded To A Hydrogen Or Carbon Atom Patents (Class 526/99)
  • Patent number: 6916891
    Abstract: Microspheroidal particles, suitable as fluidized bed catalyst supports, are prepared by incorporating a portion of small, preferably recycled, particles into a slurry of inorganic oxide sol and inorganic particles which is spray dried to form microspheroidal particles.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: July 12, 2005
    Assignee: The Standard Oil Company
    Inventors: George F. Salem, Robert J. Zagata
  • Patent number: 6699813
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an lanthanide compound, (b) an alkylating agent, (c) a nickel-containing compound, and optionally (d) a halogen-containing compound, with the proviso that the halogen-containing compound must be present where none of the lanthanide compound, the alkylating agent, and the nickel-containing compound contain a labile halogen atom.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: March 2, 2004
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Yoichi Ozawa, Koji Masaki, David Lawson
  • Patent number: 6573344
    Abstract: A process to produce a propylene polymer is provided. The process comprising contacting at least one organometal compound, at least one organoaluminum compound, at least one treated solid oxide compound, propylene, and ethylene in a polymerization zone under polymerization conditions to produce the propylene polymer.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: June 3, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Gil R. Hawley, Max P. McDaniel, Michael D. Jensen, Christopher E. Wittner
  • Patent number: 6489410
    Abstract: In accordance with this invention are methods for making the novel compositions and methods of using the compositions for polymerization of olefins. In its broadest form, the method of producing the supported catalytic composition of the present invention comprises treating an inorganic or inorganic oxide support which has incorporated uniformly therein a Group 3-10 transition metal from the Periodic Table with a metal alkylating reagent wherein the reaction product is then treated with a halogenating reagent. The resultant reaction product can be recovered and is available for use in conjunction with the activating co-catalyst for the polymerization of polyolefins.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 3, 2002
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael John Carney, David George Ward
  • Patent number: 6316553
    Abstract: A process of using a catalyst composition to polymerize at least one monomer to produce a polymer. The process comprising contacting the catalyst composition, at least one monomer in a polymerization zone under polymerization conditions to produce the polymer. The catalyst composition is produced by a process comprising contacting at least one organometal compound, at least one treated solid oxide compound, and at least one organoaluminum compound.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: November 13, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Marvin M. Johnson, James L. Smith, Elizabeth A. Benham, Gil R. Hawley, Christopher E. Wittner, Michael D. Jensen
  • Patent number: 6136747
    Abstract: A mixed catalyst composition comprising a) a solid Ziegler-Natta catalyst; b) a liquid single site catalyst; and c) at least one activating cocatalyst is provided. Polymers having a broad or bimodal molecular weight distribution may be made with this catalyst composition.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: October 24, 2000
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Sun-Chueh Kao, Frederick John Karol, Paul Theodore Daniell, Gregory Mark Goode
  • Patent number: 5986023
    Abstract: Fluoroaluminate compounds of formula M.sup.+n (AlF.sub.4)n.sup.- wherein n is 1 to 3 and M.sup.+n is N(R.sub.2).sub.4, P(R.sub.2).sub.4, As(R.sub.2).sub.4, HN(R.sub.2).sub.3, H.sub.2 N(R.sub.2).sub.2, H.sub.3 N(R.sub.2), (R.sub.2).sub.3 P.dbd.N.dbd.P(R.sub.2).sub.3, S[N(R.sub.2).sub.2 ].sub.3, ##STR1## (R.sub.2)NCN(R).sub.2, (R).sub.2 N--(C(R).sub.2).sub.k --N(R).sub.3, and ZH.sub.m.sup.+m wherein Z is a base capable of accepting m protons, and various cyclic and aryl groups are disclosed as well as processes for their preparation.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: November 16, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Richard Leslie Harlow, Norman Herron, David Lincoln Thorn
  • Patent number: 5221720
    Abstract: High surface are aluminas are pre-calcined to form gamma-alumina. In one embodiment, the gamma-alumina is treated with an anhydrous solution of a fluorine-containing compound. In a second embodiment, alumina is precipitated in the pores of the gamma-alumina and then treated with a fluorine-containing compound. In a third embodiment a cogel of aluminum trifluoride and aluminum hydroxide is prepared. The three inventive fluorided alumina supports can be impregnated with a transition metal, preferably chromium, to form a catalyst system which can be used to polymerize mono-1-olefins.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: June 22, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Douglas D. Klendworth, Marvin M. Johnson
  • Patent number: 5219817
    Abstract: High surface are aluminas are pre-calcined to form gamma-alumina. In one embodiment, the gamma-alumina is treated with an anhydrous solution of a fluorine-containing compound. In a second embodiment, alumina is precipitated in the pores of the gamma-alumina and then treated with a fluorine-containing compound. In a third embodiment a cogel of aluminum trifluoride and aluminum hydroxide is prepared. The three inventive fluorided alumina supports can be impregnated with a transition metal, preferably chromium, to form a catalyst system which can be used to polymerize mono-1-olefins.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: June 15, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Douglas D. Klendworth, Marvin M. Johnson
  • Patent number: 5219962
    Abstract: High surface are aluminas are pre-calcined to form gamma-alumina. In one embodiment, the gamma-alumina is treated with an anhydrous solution of a fluorine-containing compound. In a second embodiment, alumina is precipitated in the pores of the gamma-alumina and then treated with a fluorine-containing compound. In a third embodiment a cogel of aluminum trifluoride and aluminum hydroxide is prepared. The three inventive fluorided alumina supports can be impregnated with a transition metal, preferably chromium, to form a catalyst system which can be used to polymerize mono-1-olefins.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: June 15, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Douglas D. Klendworth, Marvin M. Johnson
  • Patent number: 5171798
    Abstract: High surface aluminas are pre-calcined to form gamma-alumina. In one embodiment, the gamma-alumina is treated with an anhydrous solution of a fluorine-containing compound. In a second embodiment, alumina is precipitated in the pores of the gamma-alumina and then treated with a fluorine-containing compound. In a third embodiment a cogel of aluminum trifluoride and aluminum hydroxide is prepared. The three inventive fluorided alumina supports can be impregnated with a transition metal, preferably chromium, to form a catalyst system which can be used to polymerize mono-1-olefins.
    Type: Grant
    Filed: January 2, 1991
    Date of Patent: December 15, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Douglas D. Klendworth, Marvin M. Johnson
  • Patent number: 5010151
    Abstract: A method of preparing ethylene polymers which comprises polymerizing ethylene, or ethylene and one or more .alpha.-olefins other than ethylene in the presence of a composite catalyst which catalyst comprises:(A) a solid composition prepared by depositing one or more chromium compounds and one or more metal compounds other than said chromium compounds onto an inorganic oxide support material and then calcining the resulting solid; and(B) one or more organometallic compounds that are each independently represented by the following general formula:MR.sup.1 aR.sup.2 bR.sup.3 cwherein M is a metal of Group I, II or III of the periodic table and the R.sup.1, R.sup.2 and R.sup.3 moieties are each independently hydrogen, a hydrocarbon radical of C.sub.1 -C.sub.14, or an alkoxy group of C.sub.1 -C.sub.
    Type: Grant
    Filed: September 11, 1990
    Date of Patent: April 23, 1991
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventor: Norio Tomotsu
  • Patent number: 4418187
    Abstract: A process for the preparation of electrically conductive polymers by polymerizing acenaphthylene, N-vinyl-heterocyclics, eg. N-vinylcarbazole or N-vinylpyridine, or N,N-divinylaniline at from -80.degree. to +100.degree. C. in the presence of a cationtic catalyst, wherein from 1 to 50 percent by weight of an oxidizing Lewis acid, preferably FeCl.sub.3, FeBr.sub.3, SbCl.sub.5, SbF.sub.5, AsF.sub.5 or CF.sub.3 -SO.sub.3 H, or a combination of AlCl.sub.3 or TiCl.sub.4 with the said compounds or with CrO.sub.3 or OsO.sub.4 is used as the catalyst. In a preferred embodiment of the process, thin films of the monomers to be polymerized, applied to glass or to a polymeric base, preferably to a plastic film, are treated with gaseous SbCl.sub.5, SbF.sub.5 or AsF.sub.5.
    Type: Grant
    Filed: April 15, 1981
    Date of Patent: November 29, 1983
    Assignee: BASF Aktiengesellschaft
    Inventors: Volker Muench, Herbert Naarmann, Klaus Penzien
  • Patent number: 4169925
    Abstract: A process for the manufacture of olefin polymers by polymerizing .alpha.-monoolefins at relatively low temperatures and relatively low olefin pressures by means of a catalyst obtained from a silicate carrier (component a), an aluminum compound (component b) and a chromium compound (component c). The catalyst is obtained by (1) in a first stage, initially (1.1) charging a particular silicate carrier (component a) with (1.2) a mixture of (1.2.1) an aluminum salt or a mixture of an aluminum salt with up to 80 mole%, based on the salt mixture, of a nickel-II salt (component b) and (1.2.2) a chromium compound (component c), this compound being chromium trioxide or a compound which is converted to chromium trioxide under the conditions of stage (2), by treatment with a solution of the mixture (1.2), and (2), in a second stage then maintaining the product, obtained from stage (1), for a certain time at a high temperature in an anhydrous oxygen-containing gas stream.
    Type: Grant
    Filed: April 28, 1978
    Date of Patent: October 2, 1979
    Assignee: BASF Aktiengesellschaft
    Inventors: Wolfgang Gruber, Hans Frielingsdorf, Robert Bachl, Guenther Schweier
  • Patent number: 3953410
    Abstract: A substantially amorphous ethylene-.alpha.-olefin-diolefin rubbery interpolymer is obtained by interpolymerizing ethylene, an .alpha.-olefin, and as a third component a specified diolefin having a norbornene ring with a catalyst system comprising a specified combination of an ether or ester compound, an organoaluminum compound, and a transition metal compound. The resulting rubbery interpolymer has an excellent extrudability and gives a cured product having favorable physical properties.
    Type: Grant
    Filed: April 12, 1974
    Date of Patent: April 27, 1976
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Daizaburo Imai, Keisaku Yamamoto