With Nonphenolic Or Nonketone Reactant Patents (Class 528/128)
  • Patent number: 5648451
    Abstract: A process for producing a photosensitive resin, comprises reacting a diamine with a tetracarboxylic acid tetraester represented by the formula (1) at a temperature of 0.degree. to 50.degree. C. in an aprotic polar solvent: ##STR1## wherein R.sub.1 is a tetravalent organic group; R.sub.2 is a group represented by the formula: ##STR2## in which R.sub.5 is a divalent to hexavalent organic group, R.sub.6 is H or CH.sub.3 and p is an integer of 1 to 5; R.sub.3 is a group represented by --OCH.sub.3, --OC.sub.2 H.sub.5, --OC.sub.3 H.sub.7 or the formula: ##STR3## and R.sub.4 is a group of the formula: ##STR4## the tetracarboxylic acid tetraester of the formula (1) is obtained by subjecting to addition reaction a tetracarboxylic dianhydride, an alcohol compound represented by the formula R.sub.2 H in which R.sub.2 is as defined above and an alcohol compound represented by the formula R.sub.3 H in which R.sub.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: July 15, 1997
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Nobuyuki Sashida, Toshio Banba, Naoshige Takeda
  • Patent number: 5646231
    Abstract: Rigid-rod and segmented rigid-rod polymers, methods for preparing the polymers and useful articles incorporating the polymers are provided. The polymers incorporate rigid-rod backbones with pendant solubilizing groups attached thereto for rendering the polymers soluble.
    Type: Grant
    Filed: January 5, 1995
    Date of Patent: July 8, 1997
    Assignee: Maxdem, Incorporated
    Inventors: Matthew Louis Marrocco, III, Robert R. Gagne, Mark Steven Trimmer
  • Patent number: 5646232
    Abstract: Rigid-rod and segmented rigid-rod polymers, methods for preparing the polymers and useful articles incorporating the polymers are provided. The polymers incorporate rigid-rod backbones with pendant solubilizing groups attached thereto for rendering the polymers soluble.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: July 8, 1997
    Assignee: Maxdem Incorporated
    Inventors: Matthew Louis Marrocco, III, Robert R. Gagne, Mark Steven Trimmer
  • Patent number: 5644022
    Abstract: Polyimide copolymers were prepared by reacting different ratios of 3,4'-oxydianiline (ODA) and 1,3-bis(3-aminophenoxy)benzene (APB) with 3,3',4,4'-biphenylcarboxylic dianhydride (BPDA), and terminating with an effective amount of a reactive endcapper. The reactive endcappers employed include 4-phenylethynyl phthalic anhydride (PEPA), 3-aminophenoxy-4'-phenylethynylbenzophenone (3-APEB), maleic anhydride (MA) and nadic anhydride (5-norbornene-2,3-dicarboxylic anhydride) (NA). Within a relatively narrow ratio of diamines, from .sup..about. 50% ODA/50% APB to .sup..about. 95% ODA/5% APB, the copolyimides prepared with BPDA and terminated with reactive endgroups have a unique combination of properties that make them very attractive for a number of applications. This unique combination of properties includes low pressure processing (200 psi and below), long term melt stability (several hours at 300.degree. C.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: July 1, 1997
    Assignee: The United States of America as represented by the Admninistrator of the National Aeronautics and Space Administration
    Inventor: Brian J. Jensen
  • Patent number: 5641854
    Abstract: This invention relates to a polymeric vehicle which is effective for providing a high solids formulated coating composition. The polymeric vehicle comprises a blend of at least one nonmesogenic substantially linear oligoester diol and at least one hardener which is a mesogenic polyol or crystalline polyol, which blend is effective for reaction with a crosslinker which is reactive with the nonmesogenic oligoester and hardener.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 24, 1997
    Assignee: Eastern Michigan University
    Inventors: Frank N. Jones, Shou-Kuan Fu, Jun Hua, Xiaoying Yuan
  • Patent number: 5639850
    Abstract: A process for preparing a tough, soluble, aromatic, thermoplastic copolyimide is provided. The process comprises the steps of (a) providing 4,4'-oxydiphthalic anhydride to 3,4,3',4'-biphenyltetracarboxylic dianhydride at a mole ratio ranging from about 25 mole percent to 75 mole percent to 75 mole percent to about 25 mole percent; (b) adding 3,4'-oxydianiline to form a mixture; c) adding a polar aprotic or polar protic solvent to the mixture to form a solution having a percentage of solids capable of maintaining polymer solubility; (d) stirring the solution to allow it to react; (e) adding an azeotropic solvent to the solution and heating to remove water; (f) cooling the solution of step (e) to room temperature and recovering the tough, soluble, aromatic, thermoplastic copolyimide.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: June 17, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Robert G. Bryant
  • Patent number: 5637670
    Abstract: Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: June 10, 1997
    Assignee: The United States of America as represented by the Administrator, National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5637672
    Abstract: Polyamide esters which can be prepared from tetracarboxylic dianhydrides and can be converted into polyimides by alcohol cleavage with cyclization, characterized in that the radicals OR of the ester groups --COOR which are substituted during the polyimide formation are alkoxy radicals having 2 to 5 C atoms which are monosubstituted or polysubstituted by fluorine.Polyimides prepared therefrom are suitable as orientation layers in liquid-crystal display elements and in optical wave guides.
    Type: Grant
    Filed: April 18, 1991
    Date of Patent: June 10, 1997
    Assignee: Merck Patent Gesellschaft mit beschrankter Haftung
    Inventors: Bernhard Rieger, Ekkehard Bartmann, Eike Poetsch
  • Patent number: 5621067
    Abstract: Wholly aromatic polyamides and their shaped articles containing at least 85 mole percent of repeat units of m-phenylene isophthalamide: ##STR1## and repeat units of selected aromatic diamines and diacid chlorides exhibit improved flame resistance while retaining good thermal stability.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: April 15, 1997
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Chyueh Lin, Jen-Chang Yang, Ting-Hsiu Chen
  • Patent number: 5621068
    Abstract: A thermoplastic polyimide film comprising a thermoplastic polyimide polymer, a polyimide laminate, respectively being suited for use as cover-lay adhesive agent and a cover-lay film capable of exerting distinguished thermal resistant property, processability and adhesion property useful for the manufacture of flexible printed circuit boards, and yet, suited for use as the adhesive-agent layers of flexible copper-coated laminates and bilateral adhesive sheets; and a method of manufacturing the polyimide laminate. The thermoplastic polyimide polymer represented by the general formula (1) specified below: ##STR1## wherein Ar.sub.1, Ar.sub.2, Ar.sub.4 and Ar.sub.6, represents divalent organic radical, whereas Ar.sub.3 and Ar.sub.5 represent quadrivalent organic radical, wherein l, m amd n designate positive integer of 0 to 15, wherein the sum of 1 and m is 1 or more than 1, and wherein t designates positive integer of 1 or more than 1.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: April 15, 1997
    Assignee: Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yoshifumi Okamoto, Hiroyuki Furutani, Kazuhisa Danno, Junya Ida, Hirosaku Nagano
  • Patent number: 5621052
    Abstract: Novel aminoplast anchored UV stabilizers are provided. Compared to unanchored stabilizers, the anchored stabilizers disclosed herein have increased compatibility with coating resins and have reduced volatility due to higher molecular weights resulting from anchoring. A process for preparing the anchored stabilizers by the reaction of unanchored stabilizers with alkoxymethylated aminoplasts in a sulfuric acid medium is also provided. The unanchored stabilizers include 2-(2-hydroxyaryl)benzotriazoles, 2-hydroxybenzophenones, 2-(2-hydroxyaryl)-4,6-diaryl-1,3,5-triazines, salicylic acid derivatives, 2-hydroxyoxanilides, and blocked derivatives thereof as well as mixtures of two or more stabilizers. The aminoplasts include alkoxymethylated derivatives of glycolurils, melamines, and benzoguanamines.
    Type: Grant
    Filed: December 29, 1992
    Date of Patent: April 15, 1997
    Assignee: Cytec Technology Corp.
    Inventors: Jeno G. Szita, Paul S. Waterman
  • Patent number: 5614607
    Abstract: The invention provides a method of preparing a polyimide by reacting together a dianhydride and a diisocyanate or equivalent, the polyimide having repeating units of the general formula (I): ##STR1## in which D is a group comprising one or more aromatic rings, to which the imide carbon atoms are directly bonded, andE is a group comprising one or more cycloaliphatic or aromatic rings, to which the imide nitrogen atoms are bonded directly or via an aliphatic group, provided that the imide nitrogen atoms are not bonded directly to an aromatic ring. Such polyimide is colourless or of low colour.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: March 25, 1997
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: John N. Hay, Barry Woodfine
  • Patent number: 5614606
    Abstract: Polyamic acids and corresponding polyimides are prepared by reacting polyfunctional amines, aromatic polyfunctional anhydrides or esters thereof, and allyl-nadic anhydride end capping agents, the resulting products exhibiting excellent properties and being suitable for the preparation of prepregs, composites, adhesives, coatings, and the like.
    Type: Grant
    Filed: December 31, 1986
    Date of Patent: March 25, 1997
    Assignee: Ciba-Geigy Corporation
    Inventors: Mohammad A. Chaudhari, John J. King, Byung Lee
  • Patent number: 5612450
    Abstract: A liquid crystal aligning agent comprising a polyamic acid containing an aliphatic and/or alicyclic hydrocarbon group and a polyimide containing an aliphatic and/or alicyclic hydrocarbon group; and a liquid crystal display device using the liquid crystal aligning agent. This liquid crystal aligning agent gives a liquid crystal aligning film which has good liquid crystal aligning property and in which pretilt angle can be changed by radiation with a small energy and which is suitable for domain-divided alignment type liquid crystal display having a wide view angle.
    Type: Grant
    Filed: May 16, 1995
    Date of Patent: March 18, 1997
    Assignees: Japan Synthetic Rubber Co., Ltd., Sharp Corporation
    Inventors: Shigeaki Mizushima, Noriko Watanabe, Hiroko Iwagoe, Seiji Makino, Sigeo Kawamura, Yusuke Tsuda, Nobuo Bessho
  • Patent number: 5610265
    Abstract: A rigid-rod aromatic polyimide having repeating units of the formula: ##STR1##
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: March 11, 1997
    Assignee: The United States of America as represented by The Secretary of the Air Force
    Inventor: Loon-Seng Tan
  • Patent number: 5608033
    Abstract: A liquid crystal alignment film made of a polyimide which has, on its side chain, a benzene or biphenyl ring substituted by a monovalent substituent having a positive value as the .sigma.p value under Hammett's rule.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: March 4, 1997
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Takayasu Nihira, Yoshio Miyamoto, Hideyuki Endo, Toyohiko Abe
  • Patent number: 5606013
    Abstract: Polyamic acids and corresponding polyimides are prepared by reacting phenylindane diamines, aromatic polyfunctional anhydrides or esters thereof, and nadic anhydride or allylnadic anhydride end capping agents, the resulting products exhibiting excellent properties and being suitable for the preparation of prepregs, composites, adhesives, coatings, and the like.
    Type: Grant
    Filed: December 31, 1986
    Date of Patent: February 25, 1997
    Assignee: Ciba-Geigy Corporation
    Inventors: Mohammad A. Chaudhari, John J. King, Byung Lee
  • Patent number: 5606014
    Abstract: Controlled molecular weight imide oligomers and co-oligomers containing pendent phenylethynyl groups (PEPIs) and endcapped with nonreactive or phenylethynyl groups have been prepared by the cyclodehydration of the precursor amide acid oligomers or co-oligomers containing pendent phenylethynyl groups and endcapped with nonreactive or phenylethynyl groups. The amine terminated amide acid oligomers or co-oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and diamine containing pendent phenylethynyl groups and subsequently endcapped with a phenylethynyl phthalic anhydride or monofunctional anhydride. The anhydride terminated amide acid oligomers and co-oligomers are prepared from the reaction of diamine(s) and diamine containing pendent phenylethynyl group(s) with an excess of dianhydride(s) and subsequently endcapped with a phenylethynyl amine or monofunctional amine. The polymerizations are carried out in polar aprotic solvents such as under nitrogen at room temperature.
    Type: Grant
    Filed: August 4, 1995
    Date of Patent: February 25, 1997
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 5606010
    Abstract: The invention is an improved method for the preparation of poly-amine-quinone polymers using external oxidizing agents. The polymer produced has the general chemical formula: ##STR1## where each R is independently selected from the group of alkyl, cycloalkyl, aralkyl, aryl, silyl, siloxyl and the alkyl, alkoxy, aryl, carboxyl, amino, sulfhydryl, sulfoxyl, sulfonyl substituted derivatives thereof and n is about 50-2,000, and the molecular weight of the polymer is about 10,000 to 1,000,000, preferably about 10,000 to 40,000. The polymer can be used in anticorrosion paints and coatings, such as automotive and marine paints and coatings, and can also be used as a curing agent for epoxy resins.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: February 25, 1997
    Assignee: Semih Erhan
    Inventors: Semih Erhan, Varabelambedu S. Nithianandam
  • Patent number: 5597889
    Abstract: An alternating copolymer comprising a repeating unit of the formula:--Z--(X-Y).sub.n -- (I)wherein n is at least 2, X is O, S, Se or Te, and Y and Z are independently an aromatic or substituted aromatic group, and at least one other repeating unit, which is useful as a photosensitive material used in a spatial light modulator.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: January 28, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akio Takimoto, Hirofumi Wakemoto, Eiichiro Tanaka, Masanori Watanabe, Junko Asayama, Hisahito Ogawa, Shigehiro Sato, Fumiko Yokotani
  • Patent number: 5596073
    Abstract: The present invention relates to solutions which can be directly shaped in anhydrous dimethylalkyleneurea, based on a polyimide obtained from an aromatic dianhydride and an aromatic diisocyanate.It also relates to the process for the production of the above solutions, as well as to a process for spinning these solutions and to the yarns and fibres thus obtained.
    Type: Grant
    Filed: April 14, 1995
    Date of Patent: January 21, 1997
    Assignee: S.N.C. Kermel
    Inventors: Philippe Michaud, Jean Russo
  • Patent number: 5580950
    Abstract: A class of soluble polymers having a rigid rod backbone, which when used to cast films, undergo a self-orientation process whereby the polymer backbone becomes more or less aligned parallel to the film surface. This in-plane orientation results in a film that displays negative birefringence. The degree of in-plane orientation and thus, the magnitude of the negative birefringence is controlled by varying the backbone linearity and rigidity of the class of polymers which includes polyesters, polyamides, poly(amide-imides) and poly(ester-imides) through selection of substituents in the polymer backbone chain. By increasing the polymer backbone linearity and rigidity, the degree of in-plane orientation and associated negative birefringence can be increased, and that conversely, by decreasing the polymer backbone linearity and rigidity, the negative birefringence can be decreased.
    Type: Grant
    Filed: October 13, 1994
    Date of Patent: December 3, 1996
    Assignee: The University of Akron
    Inventors: Frank W. Harris, Stephen Z. D. Cheng
  • Patent number: 5580948
    Abstract: For the preparation of polyarylene ether ketones by Friedel-Crafts polycondensation, a reaction mixture consisting ofA. a monomer system,B. a Lewis acid,C. if required, a Lewis base andD. an inert solventis subjected to polycondensation in two reaction zones, discharged from the second reaction zone with plug flow and compounded. The reaction mixture is subjected to polycondensation in the first reaction zone while stirring to a viscosity of about 2,000 mPa.s, is transferred to the second reaction zone and is discharged therefrom by means of an inert solvent or of an inert gas saturated with the solvent, under from about 6 to 65, preferably from 10 to 25, bar, the transport pressure being reduced in at least two stages and the pressure reduction in the first stage being not more than 60%.
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: December 3, 1996
    Assignee: BASF Aktiengesellschaft
    Inventors: Eckhard Neufeld, Barbel Arnold-Mauer, Jurgen Hofmann, Thomas Heitz, Christoph Sachsenweger, Petra Wieland
  • Patent number: 5578696
    Abstract: A heat-resistant adhesive film, an adhesion structure obtained using the same, and an adhesion method using the same are disclosed, the film comprising a polyisoimide resin containing at least 40 mol % of an isoimide unit represented by formula (I): ##STR1## wherein R.sub.1 represents a tetravalent aromatic or aliphatic residue; R.sub.2 represents a divalent aromatic or aliphatic residue; and the arrow represents a bond replaceable on isomerization, in the molecule thereof. The isoimide unit of the polyisoimide resin is easily converted to an imide unit on heating, e.g., hot pressing with an adherend, to provide a cover-lay film or a single-sided or double-sided base for printed circuit boards having excellent adhesion, heat resistance, dimensional precision, and workability.
    Type: Grant
    Filed: April 6, 1994
    Date of Patent: November 26, 1996
    Assignee: Nitto Denko Corporation
    Inventors: Amane Mochizuki, Kazumi Higashi, Masako Maeda
  • Patent number: 5569738
    Abstract: This invention relates to melt processable copolymer of etherimideimide/etherimide herein-after identified as PEII/PEI copolymer of following structural formula(I). ##STR1## wherein, R and R' are independently selected from the groups of ##STR2## Ar and Ar' are independently selected from the groups of ##STR3## (wherein, R1 is H or C1-C6 alkyl group,R2 is II or C1-C4 alkyl group, andR3 is --O--, --CO--, --SO--, --SO2--.); andn and m are independently an integer between 5 and 500.
    Type: Grant
    Filed: March 14, 1995
    Date of Patent: October 29, 1996
    Assignees: Korea Research Institute of Chemical Technology, Cheil Industries, Inc.
    Inventors: Kil Y. Choi, Jong C. Won, Young T. Hong, Sang S. Woo, Youn S. Don
  • Patent number: 5567800
    Abstract: Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: October 22, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5554715
    Abstract: Novel poly(N-arylenebenzimidazole)s (PNABls) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyI-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: September 10, 1996
    Assignee: The United States of America as represented by the Administrator of National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5552508
    Abstract: Novel difunctionalized cyclobutabenzene monomers of the general formula: ##STR1## wherein Z can be hydrogens or a cyclobutane ring; and X and Y are carboxyl, amino, alcohol, isocyanate, acid halide, or bis-acyl halide groups. Exemplary difunctional bitricyclodecatriene monomers are [2,2'-bidicyclo[2.4.0]octa-1,3,5-triene]-5,5'-dicarboxylic acid (BXTA) and [2,2'-bitricyclo[6.2.0.0]deca-1,3,(6),7-triene]-7,7'-dicarboxylic acid (QXTA). The difunctionalized bitricyclodecatriene monomers can form part of a polymer backbone chain in which the multiple butane ring functionalities can be easily opened to produce strong, three-dimensional covalent bond crosslinking between polymer chains. The crosslinking can be induced simply by heating the polymer to a temperature in excess of 250.degree. C.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: September 3, 1996
    Assignee: University of Michigan, The Board of Regents
    Inventors: David C. Martin, Jeffrey S. Moore, Larry J. Mar koski, Kenneth A. Walker, Gary E. Spilman
  • Patent number: 5539080
    Abstract: A process is disclosed for making circuit elements by photolithography comprising depositing an antireflective polyimide or polyimide precursor layer on a substrate and heating the substrate at 200.degree. C. to 500.degree. to provide a functional integrated circuit element that includes an antireflective polyimide layer. The antireflective polyimide layer contains a sufficient concentration of at least one chromophore to give rise to an absorbance sufficient to attenuate actinic radiation at 405 or 436 nm. Preferred chromophores include those arising from perylenes, naphthalenes and anthraquinones. The chromophore may reside in a dye which is a component of the polyimide coating mixture or it may reside in a residue which is incorporated into the polyimide itself.
    Type: Grant
    Filed: April 19, 1995
    Date of Patent: July 23, 1996
    Assignee: International Business Machines Corporation
    Inventors: Dennis P. Hogan, Harold G. Linde, Ronald A. Warren
  • Patent number: 5530089
    Abstract: Polysulfoneimide oligomers having crosslinking end cap moleties which provide improved solvent-resistance to cured composites are generally represented by backbones of the formula: ##STR1## wherein ##STR2## n=1 or 2; R and R' are divalent aromatic organic radicals having from 2-20 carbon atoms; ##STR3## E=allyl or methallyl; R=a trivalent C.sub.(6-13) aromatic organic radical;R.sub.1 =any of lower alkyl, lower alkoxy, aryl, or substituted aryl;R'=a divalent C.sub.(6-30) aromatic organic radical;j=0, 1, or 2; andG=--CH.sub.2 --, --O--, --S--, or --SO.sub.2 --The crosslinkable oligomers are made by reacting substituted phthalic anhydrides with hydroxyaryl amines and suitable crosslinking end cap reactants, or by self-condensation of phthalimide salts followed by capping the polymers.
    Type: Grant
    Filed: September 6, 1988
    Date of Patent: June 25, 1996
    Assignee: The Boeing Company
    Inventors: Clyde H. Sheppard, Hyman R. Lubowitz
  • Patent number: 5525674
    Abstract: The present invention provides polycarbonates with aliphatic ketocarboxyl end groups, optionally mixed with known aromatic polycarbonates, and a process for their preparation, the chain terminators used being those of formula (I): ##STR1## The present invention also provides mixtures of the polycarbonates or polycarbonate mixtures with reactionless polyisobutylenes.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: June 11, 1996
    Assignee: Bayer AG
    Inventors: Wolfgang Ebert, Burkhard Kohler, Klaus Horn, Richard Weider, Thomas Scholl, Rolf Dhein, Jurgen Kirsch, Rolf Wehrmann
  • Patent number: 5523384
    Abstract: Disclosed is a process for preparing polyether ketones comprising reacting one or more bihaloaryl ketones in the presence of a catalyst, co-catalyst and solvent.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: June 4, 1996
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Wesley Memeger, Jr., Bruce E. Smart
  • Patent number: 5521014
    Abstract: Crosslinkable, polyaromatic, polyether or polyester oligomers can have glass transition temperatures above 900.degree. F. while exhibiting desirable toughness for aerospace applications and ease of processing. A plurality (i.e. three or more) of generally linear aryl arms extend outwardly like spokes from a central aromatic hub through ether or ester linkages. Each spoke usually includes electronegative linkages, and is capped with one or two crosslinking functionalities (i.e. unsaturated hydrocarbon sites) which may be thermally or chemically activated to complete the advanced composite during curing. Among other methods, linear and multidimensional polyether oligomers are synthesized using nitrophthalic anhydride or halophthalic anhydride, dialcohols, or polyols, diamines, and suitable end caps.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: May 28, 1996
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard
  • Patent number: 5516874
    Abstract: A multilevel electronic package comprising at least two levels, each level including a poly(aryl ether benzimidazole), a polymide and copper. A process of preparing this package is disclosed. Several novel poly(aryl ether benzimidazoles) useful in preparing this package are also set forth.
    Type: Grant
    Filed: October 6, 1994
    Date of Patent: May 14, 1996
    Assignee: IBM Corporation
    Inventors: Kie Y. Ahn, James L. Hedrick, Jr., Jeffrey W. Labadie, Kang-Wook Lee, Robert J. Twieg, Alfred Viehbeck, George F. Walker
  • Patent number: 5516875
    Abstract: This invention concerns positive-working photodefinable polyimide precursors which make use of chemical amplification based on photoacid catalyzed cleavage of acid labile-poly(amic acetal esters).
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: May 14, 1996
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Howard E. Simmons, III
  • Patent number: 5508377
    Abstract: This invention relates to a novel polyimide or polyimide copolymer having excellent heat resistance and greatly improved processability, and has a novel aromatic diamino compound used for the polyimide, a preparation process thereof, a polyimide-based resin composition comprising the polyimide or polyimide copolymer and a fibrous reinforcement, a process for preparing the resin composition, an injection molded article of the resin composition.The polyimide comprise a requisite structural unit having one or more recurring structural units of the formula: ##STR1## wherein L is an oxygen atom, carbonyl, isopropylidene or hexafluoroisopropylidene, and X is ##STR2## and Ar is a tetravalent radical having 6 to 27 carbon atoms and being selected from the group consisting of a monoaromatic radical, condensed polyaromatic radical and noncondensed polyaromatic radical having aromatic radicals connected to each other with a direct bond or a bridge member.
    Type: Grant
    Filed: December 13, 1994
    Date of Patent: April 16, 1996
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Wataru Yamashita, Yuichi Okawa, Shoji Tamai, Akihiro Yamaguchi
  • Patent number: 5508357
    Abstract: A polyimide comprises structural units represented by the following formula: ##STR1## wherein Ar is a group consisting of 10-90 mole % of a first specific structural sub-unit and 90-10 mole % of a second particular structural sub-unit. A process for the production of the polyimide and a thermosetting resin composition comprising the polyimide and a particular polymaleimide are also disclosed.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: April 16, 1996
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Hidekazu Matsuura, Yoshihide Iwasaki, Kaori Ikeda, Takayuki Suzuki, Masashi Tanaka, Yasuo Miyadera
  • Patent number: 5502157
    Abstract: A copolyimide was prepared by reacting 3,4'-oxydianiline (3,4'-ODA) with a dianhydride blend comprising, based on the total amount of the dianhydride blend, about 67 to 80 mole percent of 4,4'-oxydiphthalic anhydride (ODPA) and about 20 to 33 mole percent of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA). The copolyimide may be endcapped with up to about 10 mole percent of a monofunctional aromatic anhydride and has unbalanced stoichiometry such that a molar deficit in the dianhydride blend is compensated with twice the molar amount of the monofunctional aromatic anhydride. The copolyimide was used to prepare composites, films and adhesives. The film and adhesive properties were significantly better than those of LaRC.TM.-IA.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: March 26, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Alice C. Chang, Terry L. St. Clair
  • Patent number: 5498691
    Abstract: Disclosed are bis-meta-benzotrifluoride compounds having the general formula ##STR1## where each A is independently selected from the group consisting of NO.sub.2, NH.sub.2, and NH.sub.3.sup.+ Z.sup.-, Z.sup.- is an anion and B is selected from the group consisting of O, CO, S, SO, and SO.sub.2. The diamine compounds are useful as monomers in making polyimides, polyamide-imides, and polyamides.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: March 12, 1996
    Assignee: Occidental Chemical Corporation
    Inventors: Jeffrey S. Stults, Henry C. Lin, Robert A. Buchanan, Robert L. Ostrozynski
  • Patent number: 5496915
    Abstract: Polyimides are obtainable by reacting a dianhydride component with a diamine component, at least one diamine containing cycloaliphatic units, with the proviso that the dianhydride component is a mixture of different dianhydrides if the diamine component consists only of one diamine containing cycloaliphatic units and the diamine component is a mixture of different diamines if the dianhydride component consists of only one dianhydride.
    Type: Grant
    Filed: February 13, 1995
    Date of Patent: March 5, 1996
    Assignee: BASF Aktiengesellschaft
    Inventors: Christian Fischer, Karin Elbl-Weiser, Ju/ rgen Koch
  • Patent number: 5494991
    Abstract: Polyimides comprising recurring units of the following general formula (1) ##STR1## wherein Ar.sub.1 represents a tetravalent aromatic group and each Ar.sub.2 represents a divalent aromatic group. Polyimide copolymers and preparations of the polyimides and the polyimide copolymers are also described.
    Type: Grant
    Filed: June 17, 1994
    Date of Patent: February 27, 1996
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Ichiro Kaneko, Atushi Sugitani, Masahiro Yuyama, Kiyoshi Motomi
  • Patent number: 5492998
    Abstract: Novel polymers of general formula: ##STR1## wherein R is an alkyl or aryl group that contains an active hydrogen atom (as determined by the Zerewitinoff test); A is a spacing group having at least one carbon atom; B is a spacing group having at least two carbon atoms; and R and R' are alkyl or aryl groups. The polymer is synthesized via the Mannich pathway, involving formation of an imine intermediate.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: February 20, 1996
    Assignees: Lifesource International, Ltd., Jojani Inc.
    Inventor: Nicholas M. Irving
  • Patent number: 5493003
    Abstract: Solutions of polyimide-forming substances containA) polyamines andB) amides and/or esters of tetracarboxylic acids, the amido or ester groups carrying substituents selected from the group consisting of carboxyl, sulfo and silicon-containing groups,and are used as polyimide coatings.
    Type: Grant
    Filed: October 11, 1994
    Date of Patent: February 20, 1996
    Assignee: BASF Lacke + Farben Aktiengesellschaft
    Inventors: Rainer Blum, Manfred Schwarz, Gerhard Hoffmann
  • Patent number: 5489644
    Abstract: Solutions of polyimide-forming substances containA) aromatic or partly aromatic diamines andB) tetraesters of imide-forming aromatic or partly aromatic tetracarboxylic acids or mixtures of these tetraesters with the corresponding tri-, di- and/or monoesters.These solutions are suitable for the production of coatings.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: February 6, 1996
    Assignee: BASF Lacke + Farben
    Inventors: Rainer Blum, Gerhard Hoffmann
  • Patent number: 5486412
    Abstract: The present disclosure describes flame-retardant, high-temperature resistant polyimide fibers, nonwovens made from said fibers, as well as the fibers and molded articles obtained after a heat treatment. A composite of such fibers is heated to a temperature in the glass transition range of the fiber, i.e. between 280.degree. and 350.degree. C. This heat treatment develops a contraction force of 0.3 to 1.1 cN in the fibers which results in a fiber shrinkage of between 20 and 60% and the formation of cohesive bonds. The fibers of the invention enable the manufacture of molded articles that are particularly strong, have a high temperature resistance and flame-retardant properties, while having a relatively low density.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: January 23, 1996
    Assignee: Lenzing Aktiengesellschaft
    Inventors: Klaus Weinrotter, Robert Vodiunig
  • Patent number: 5484879
    Abstract: Polyimide polymers of the following recurring structure and the corresponding polyamic acids are disclosed: ##STR1## wherein AR.sub.1 is ##STR2## where X is O, S, SO, SO.sub.2, CO, C(CF.sub.3).sub.2, C(CH.sub.3).sub.2, Si(CH.sub.3).sub.2, or a single bond, wherein AR.sub.2 may be pyromellitic dianhydride, a substituted pyromellitic dianhydride, naphthanoic dianhydride, or ##STR3## where Y is O, S, SO, SO.sub.2, CO, C(CF.sub.3).sub.2, C(CH.sub.3).sub.2, Si(CH.sub.3).sub.2 --O--AR--O--, or a single bond, where AR is an aromatic nucleus.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: January 16, 1996
    Assignee: Occidental Chemical Corporation
    Inventors: Robert A. Buchanan, Jeffrey S. Stults, Ronald F. Spohn
  • Patent number: 5480964
    Abstract: A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.
    Type: Grant
    Filed: April 21, 1994
    Date of Patent: January 2, 1996
    Assignee: The University of Akron
    Inventors: Frank W. Harris, Stephen Z. D. Cheng
  • Patent number: 5480965
    Abstract: This invention relates to a novel thermoplastic and amorphous polyimide which is readily soluble in organic solvent, a novel aromatic diamino compound used for the polyimide, a preparation process thereof, a polyimide-based resin composition comprising the thermoplastic polyimide and a fibrous reinforcement, a process for preparing the resin composition, an injection molded article of the resin composition, a polyimide-based composite obtained by molding the above soluble and thermoplastic polyimide in combination with a fibrous reinforcement, and a fibrous reinforcement having a surface modified with the above polyimide.
    Type: Grant
    Filed: July 26, 1994
    Date of Patent: January 2, 1996
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Wataru Yamashita, Yuichi Okawa, Hideaki Oikawa, Tadashi Asanuma, Yuko Ishihara, Mitsunori Matsuo, Keizaburo Yamaguchi, Akihiro Yamaguchi, Shoji Tamai
  • Patent number: 5478917
    Abstract: Solutions of polyimide-forming substances containA) aromatic or partly aromatic polyamines andB) amides or a mixture of esters and amides of tetracarboxylic acids.Solutions are useful as coating compositions.
    Type: Grant
    Filed: October 11, 1994
    Date of Patent: December 26, 1995
    Assignee: BASF Lacke + Farben Aktiengesellschaft
    Inventors: Rainer Blum, Gerhard Hoffmann
  • Patent number: 5478915
    Abstract: Polyimide oligomers are described which comprise the condensation product of: at least one phenylindane diamine and at least one aromatic bis(ether anhydride). The polyimide oligomers of the invention are readily processed to form solution prepregable polyimide composites having high glass transition temperatures and high temperature and oxidative stability. More particularly, the present invention provides for crosslinkable polyimide oligomers prepared by reacting, in a suitable solvent under an inert atmosphere, a mixture of monomers comprising: (A) an aromatic diamine component comprising from about 25 to 100 mole % of at least one phenylindane diamine; (B) a dianhydride component comprising from about 25 to 100 mole % of at least one aromatic his(ether anhydride); and (C) at least one end-cap monomer selected from the group consisting of monoanhydrides, acyl halides and aromatic amines, wherein each end-cap monomer contains at least one crosslinkable functional group in the molecule.
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: December 26, 1995
    Assignee: Ciba-Geigy Corporation
    Inventors: Michael Amone, Mark R. Southcott