Sulfur Reactant Contains Sulfur Directly Bonded To Oxygen Patents (Class 528/171)
  • Patent number: 5663287
    Abstract: The present invention provide a novel polyimide which is soluble in organic solvents and excels in heat resistance, and to a process for producing the polyimide. The polyimide of the present invention comprises a repeating unit represented by the formula (1) and having a number average molecular weight of from 4,000 to 200,000. ##STR1## wherein X is --SO.sub.2 -- or --C(.dbd.O)--OCH.sub.2 CH.sub.2 O--C(.dbd.O)--, and R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
    Type: Grant
    Filed: March 1, 1996
    Date of Patent: September 2, 1997
    Assignee: Tomoegawa Paper Co., Ltd.
    Inventors: Osamu Oka, Takeshi Hashimoto, Takeshi Nishigaya, Tatsuya Hariko
  • Patent number: 5654392
    Abstract: Rigid-rod and segmented rigid-rod polymers, methods for preparing the polymers and useful articles incorporating the polymers are provided. The polymers incorporate rigid-rod backbones with pendant solubilizing groups attached thereto for rendering the polymers soluble.
    Type: Grant
    Filed: January 5, 1995
    Date of Patent: August 5, 1997
    Assignee: Maxdem Incorporated
    Inventors: Matthew Louis Marrocco, III, Robert R. Gagne, Mark Steven Trimmer, Ying Wang
  • Patent number: 5654396
    Abstract: We achieve solvent resistance and extended use life for advanced polyimides by including at least some solvent-resistant linkages in the backbone in place of phenoxyphenyl sulfone linkages and using diPEPA or PEPA crosslinking end caps.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: August 5, 1997
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard
  • Patent number: 5646231
    Abstract: Rigid-rod and segmented rigid-rod polymers, methods for preparing the polymers and useful articles incorporating the polymers are provided. The polymers incorporate rigid-rod backbones with pendant solubilizing groups attached thereto for rendering the polymers soluble.
    Type: Grant
    Filed: January 5, 1995
    Date of Patent: July 8, 1997
    Assignee: Maxdem, Incorporated
    Inventors: Matthew Louis Marrocco, III, Robert R. Gagne, Mark Steven Trimmer
  • Patent number: 5646233
    Abstract: A copolycarbonate and a copolycarbonate composition having oustanding hardness and a method for their manufacture.A copolycarbonate containing the component units shown in Formula [I]below in the amount of 50-99 mole %: ##STR1## X is ##STR2## R1 and R2 are hydrogen atoms or monovalent hydrocarbon groups, and R3 is a bivalent hydrocarbon group.) The Rockwell hardness (M scale) of this polycarbonate should preferably be 45-90.
    Type: Grant
    Filed: December 1, 1995
    Date of Patent: July 8, 1997
    Assignee: General Electric Company
    Inventors: Takeshi Sakashita, Tomoaki Shimoda, Takashi Nagai
  • Patent number: 5637670
    Abstract: Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: June 10, 1997
    Assignee: The United States of America as represented by the Administrator, National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5606009
    Abstract: The present invention provides copolymerized copolyester-carbonates having improved flow and formability, in addition to excellent mechanical properties, heat resistance, transparency, and water resistance obtained by copolymerization of two or more aromatic dihydroxy compounds and a compound capable of reacting with those aromatic dihydroxy compounds to form carbonate linkages, characterized in that, of all the constituent repeating units derived from aromatic dihydroxy compounds, 2-40 mole % are derived from resorcin and/or substituted resorcins.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: February 25, 1997
    Assignee: General Electric Company
    Inventors: Takeshi Sakashita, Tomoaki Shimoda, Takashi Nagai
  • Patent number: 5606014
    Abstract: Controlled molecular weight imide oligomers and co-oligomers containing pendent phenylethynyl groups (PEPIs) and endcapped with nonreactive or phenylethynyl groups have been prepared by the cyclodehydration of the precursor amide acid oligomers or co-oligomers containing pendent phenylethynyl groups and endcapped with nonreactive or phenylethynyl groups. The amine terminated amide acid oligomers or co-oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and diamine containing pendent phenylethynyl groups and subsequently endcapped with a phenylethynyl phthalic anhydride or monofunctional anhydride. The anhydride terminated amide acid oligomers and co-oligomers are prepared from the reaction of diamine(s) and diamine containing pendent phenylethynyl group(s) with an excess of dianhydride(s) and subsequently endcapped with a phenylethynyl amine or monofunctional amine. The polymerizations are carried out in polar aprotic solvents such as under nitrogen at room temperature.
    Type: Grant
    Filed: August 4, 1995
    Date of Patent: February 25, 1997
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 5596073
    Abstract: The present invention relates to solutions which can be directly shaped in anhydrous dimethylalkyleneurea, based on a polyimide obtained from an aromatic dianhydride and an aromatic diisocyanate.It also relates to the process for the production of the above solutions, as well as to a process for spinning these solutions and to the yarns and fibres thus obtained.
    Type: Grant
    Filed: April 14, 1995
    Date of Patent: January 21, 1997
    Assignee: S.N.C. Kermel
    Inventors: Philippe Michaud, Jean Russo
  • Patent number: 5594089
    Abstract: Thermomechanical and thermo-oxidative stabilities in heterocycle or heterocycle sulfone resin composites are improved by forming four crosslinks at each addition polymerization site in the backbone of the resin using crosslinking functionalities.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: January 14, 1997
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowtiz, Clyde H. Sheppard
  • Patent number: 5589565
    Abstract: A self-doped conducting polymer having along its backbone a .pi.-electron conjugated system which comprises a plurality of monomer units, between about 0.01 and 100 mole % of the units having covalently linked thereto at least one Bronsted acid group. The conductive zwitterionic polymer is also provided, as are monomers useful in the preparation of the polymer and electrodes comprising the polymer.
    Type: Grant
    Filed: March 8, 1993
    Date of Patent: December 31, 1996
    Assignee: The Regents of the University of California
    Inventors: Fred Wudl, Alan Heeger
  • Patent number: 5585457
    Abstract: Unimolecular micelies, generally referred to as cascade polymers, are constructed via the addition of successive layers, or tiers, of designed monomers, or building blocks, that possess a predetermined, branched superstructure consisting of connected physical matter inherently defining an internal void volume or void area within the molecular framework. Each of the branches define a flexible arm from a central core atom and terminate with a hydrodynamic reactive group. A method is described for manipulating such cascade polymers.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: December 17, 1996
    Assignee: University of South Florida
    Inventors: George R. Newkome, Charles N. Moorefield
  • Patent number: 5567800
    Abstract: Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: October 22, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5554715
    Abstract: Novel poly(N-arylenebenzimidazole)s (PNABls) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyI-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: September 10, 1996
    Assignee: The United States of America as represented by the Administrator of National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5545710
    Abstract: The present invention provides the use of polycarbonates containing carbonate structural units of the formula (I), ##STR1## for the production of optical articles, novel polycarbonates, which contain the structural units (I), together with a process for the production of these novel polycarbonates.
    Type: Grant
    Filed: June 28, 1995
    Date of Patent: August 13, 1996
    Assignee: Bayer Aktiengesellschaft
    Inventors: Wilfried Haese, Friedrich Bruder, Ralf Pakull, J urgen Kirsch, Hartmut L ower
  • Patent number: 5541282
    Abstract: The invention involves aromatic polyhydroxy compounds, including triaromatic bisphenols and tris-[1,1,1-(4-hydroxyphenyl)] toluenes, and a process for the preparation thereof by reacting a phenolic compound, e.g. phenol, with a suitable halo-compound, for instance 1,1-dichloroethylbenzene, 1-chlorostyrene, or mixtures thereof. The reaction may be conducted in the presence or absence of a solvent; an excess of the phenolic compound can serve as the solvent. The product is conveniently recovered by removing the by-product HCl, excess phenolic compound, excess solvent and cooling. Yields of bis-1,1-(4-hydroxyphenyl)-1-phenylethane which are greater than 90% of theoretical have been obtained by the reaction of phenol and 1,1-dichloroethylbenzene, and a large portion of the yield is para isomer.
    Type: Grant
    Filed: November 9, 1994
    Date of Patent: July 30, 1996
    Assignee: The Dow Chemical Company
    Inventors: Marlin E. Walters, W. Frank Richey, Emmett L. Tasset
  • Patent number: 5532331
    Abstract: This invention provides novel copolycarbonates that exhibit improvements in glass transition temperature, refractive index, and limiting oxygen index compared to prior art thiodiphenol/bisphenol A copolycarbonates. The copolycarbonates of this invention comprise the reaction products of 4,4'-thiodiphenol and compounds such as 9,9-bis (4-hydroxyphenyl) fluorene with phosgene. They are useful as components of multilayered polymeric reflective bodies.
    Type: Grant
    Filed: December 14, 1994
    Date of Patent: July 2, 1996
    Assignee: The Dow Chemical Company
    Inventors: Stephen E. Bales, Charles A. Langhoff, John A. Wheatley
  • Patent number: 5525699
    Abstract: A copolymer consisting essentially of a repeating sequence represented by the formula ##STR1## where Ar.sub.1, Ar.sub.2, and Ar.sub.3, are each independently chosen from the group consisting of ##STR2## which are either unsubstituted or are substituted with one or more substituents chosen from the group consisting of alkyl groups having 1-6 carbon atoms, halogen (F, Cl or Br), and phenyl; Z, Y.sub.1 and Y.sub.2 are each independently O, NH, or S; n and m are positive integers; and X is a covalent bond, O, S, SO.sub.2, CO, C(C.sub.6 H.sub.5).sub.2, C(C.sub.6 H.sub.5)H, C(C.sub.6 H.sub.5)(CH.sub.3), C(CH.sub.3).sub.2, C(CH.sub.3)H, CH.sub.2, C(CF.sub.3).sub.2, or 3,3,5-trimethyl cyclohexyl. The polymers of this invention are derived from a minimum of three different monomers.
    Type: Grant
    Filed: May 15, 1992
    Date of Patent: June 11, 1996
    Assignee: Hoechst Celanese Corp.
    Inventors: Eui W. Choe, Marie Borzo
  • Patent number: 5521014
    Abstract: Crosslinkable, polyaromatic, polyether or polyester oligomers can have glass transition temperatures above 900.degree. F. while exhibiting desirable toughness for aerospace applications and ease of processing. A plurality (i.e. three or more) of generally linear aryl arms extend outwardly like spokes from a central aromatic hub through ether or ester linkages. Each spoke usually includes electronegative linkages, and is capped with one or two crosslinking functionalities (i.e. unsaturated hydrocarbon sites) which may be thermally or chemically activated to complete the advanced composite during curing. Among other methods, linear and multidimensional polyether oligomers are synthesized using nitrophthalic anhydride or halophthalic anhydride, dialcohols, or polyols, diamines, and suitable end caps.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: May 28, 1996
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard
  • Patent number: 5516566
    Abstract: Low molecular weight cyclic oligomers of formula (I) ##STR1## in which n is an integer of 2 to 20, and each C in the oligomer is a radical of formula (II): ##STR2## and each X in the oligomer is --O--R--O-- or --S--R--S--, B and D are both carbonyl groups CO, or together represent a divalent radical of formula ##STR3## in which A.sub.1, A.sub.2, A.sub.3 A.sub.4, Ar.sub.1, Ar.sub.2 and Ar.sub.3 are selected from a variety of aromatic radicals, A.sub.1, A.sub.2, Ar.sub.3 and Ar.sub.4 also possibly being hydrogen, are useful in the production of high molecular weight, linear, polyketones, polyphthalazines and polyisoquinolines; the cyclic oligomers have low melt viscosities when heated above their softening temperatures and can be readily molded, whereafter they can be ring-open polymerized to form molded high molecular weight polymer products with excellent properties.
    Type: Grant
    Filed: January 3, 1995
    Date of Patent: May 14, 1996
    Inventors: Allan S. Hay, Kwok P. Chan
  • Patent number: 5516877
    Abstract: There are disclosed carbonate polymers of dihydroxyaryl fluorene having crosslinkable moieties. There are also disclosed such polymers in the form of composites. The polymers of this invention are capable of being crosslinked by activation of the crosslinkable moieties. Once crosslinked, these polymers demonstrate an excellent combination of properties including resistance to melting at high temperatures, solvent resistance, optical clarity, impact resistance, and physical strength.
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: May 14, 1996
    Assignee: The Dow Chemical Company
    Inventors: Stephen E. Bales, James P. Godschalx, Philip C. Yang, Matthew T. Bishop, Maurice J. Marks
  • Patent number: 5510448
    Abstract: A composition comprising a copolyestercarbonate derived from a dihydric phenol, a carbonate precursor, and an aliphatic alpha omega dicarboxylic acid or ester precursor wherein the dicarboxylic acid or ester precursor has from 10 to about 20 carbon atoms, inclusive, and is present in the copolyestercarbonate in quantities of from about 2 to 30 mole percent of the dihydric phenol.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: April 23, 1996
    Assignee: General Electric Company
    Inventors: Luca P. Fontane, Kenneth F. Miller, Christianus A. A. Claesen, Peter W. van Es, Theodorus O. N. de Vroomen, Clayton V. Quinn, Richard W. Campbell
  • Patent number: 5510182
    Abstract: A composition comprising a copolyestercarbonate derived from a dihydric phenol, a carbonate precursor, and an aliphatic alpha omega dicarboxylic acid or ester precursor wherein the dicarboxylic acid or ester precursor has from 10 to about 20 carbon atoms, inclusive, and is present in the copolyestercarbonate in quantities of from about 2 to 30 mole percent of the dihydric phenol.
    Type: Grant
    Filed: March 29, 1994
    Date of Patent: April 23, 1996
    Assignee: General Electric Company
    Inventors: Luca P. Fontana, Kenneth F. Miller, Adrianus A. Claesen, Peter W. van Es, Theodorus O. N. de Vroomen, Clayton B. Quinn, Richard W. Campbell
  • Patent number: 5510450
    Abstract: The object of the present invention is to provide a method of producing copolymerized polycarbonates having improved flow and formability, in addition to excellent mechanical properties, heat resistance, transparency, and color tone.A method of producing copolymerized polycarbonates by melt polycondensation of two or more aromatic dihydroxy compounds with a carbonate diester, characterized in that(i) resorcin and/or substituted resorcins are used as 2-90 mole % of the aromatic dihydroxy compounds, where the sum of all the aromatic dihydroxy compounds is taken as 100 mole %, and(ii) an alkali metal compound and/or an alkaline-earth metal compound (a) is used as the catalyst.
    Type: Grant
    Filed: November 4, 1994
    Date of Patent: April 23, 1996
    Assignee: General Electric Company
    Inventors: Takeshi Sakashita, Tomoaki Shimoda, Takashi Nagai
  • Patent number: 5508377
    Abstract: This invention relates to a novel polyimide or polyimide copolymer having excellent heat resistance and greatly improved processability, and has a novel aromatic diamino compound used for the polyimide, a preparation process thereof, a polyimide-based resin composition comprising the polyimide or polyimide copolymer and a fibrous reinforcement, a process for preparing the resin composition, an injection molded article of the resin composition.The polyimide comprise a requisite structural unit having one or more recurring structural units of the formula: ##STR1## wherein L is an oxygen atom, carbonyl, isopropylidene or hexafluoroisopropylidene, and X is ##STR2## and Ar is a tetravalent radical having 6 to 27 carbon atoms and being selected from the group consisting of a monoaromatic radical, condensed polyaromatic radical and noncondensed polyaromatic radical having aromatic radicals connected to each other with a direct bond or a bridge member.
    Type: Grant
    Filed: December 13, 1994
    Date of Patent: April 16, 1996
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Wataru Yamashita, Yuichi Okawa, Shoji Tamai, Akihiro Yamaguchi
  • Patent number: 5508375
    Abstract: The present invention relates to a process for the preparation of polycarbonates in which an oil-in-water emulsion is maintained throughout by employing special reaction conditions.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: April 16, 1996
    Assignee: Bayer Aktiengesellschaft
    Inventors: Uwe Hucks, Jurgen Kadelka, Wolfgang Herrig
  • Patent number: 5502157
    Abstract: A copolyimide was prepared by reacting 3,4'-oxydianiline (3,4'-ODA) with a dianhydride blend comprising, based on the total amount of the dianhydride blend, about 67 to 80 mole percent of 4,4'-oxydiphthalic anhydride (ODPA) and about 20 to 33 mole percent of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA). The copolyimide may be endcapped with up to about 10 mole percent of a monofunctional aromatic anhydride and has unbalanced stoichiometry such that a molar deficit in the dianhydride blend is compensated with twice the molar amount of the monofunctional aromatic anhydride. The copolyimide was used to prepare composites, films and adhesives. The film and adhesive properties were significantly better than those of LaRC.TM.-IA.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: March 26, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Alice C. Chang, Terry L. St. Clair
  • Patent number: 5498691
    Abstract: Disclosed are bis-meta-benzotrifluoride compounds having the general formula ##STR1## where each A is independently selected from the group consisting of NO.sub.2, NH.sub.2, and NH.sub.3.sup.+ Z.sup.-, Z.sup.- is an anion and B is selected from the group consisting of O, CO, S, SO, and SO.sub.2. The diamine compounds are useful as monomers in making polyimides, polyamide-imides, and polyamides.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: March 12, 1996
    Assignee: Occidental Chemical Corporation
    Inventors: Jeffrey S. Stults, Henry C. Lin, Robert A. Buchanan, Robert L. Ostrozynski
  • Patent number: 5498784
    Abstract: Alcohol-soluble aromatic heterocyclic copolymers having repeating units of the formula: ##STR1## wherein x has a value of 0.05 to 0.50 and y has a value of 1.0-x. These copolymers are useful in the preparation of organic/inorganic hybrid materials having transparency which comprise the sol-gel derived, hydrolytically condensed reaction product of a metal alkoxide of the formula M(OR).sub.w wherein R is a lower alkyl group, M is Si, Ti, Al or a mixture thereof, and w is the valence value of M, and the above copolymer.
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: March 12, 1996
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Fred E. Arnold, Jom P. Chen
  • Patent number: 5492996
    Abstract: Alcohol-soluble aromatic heterocyclic polymers having repeating units of the formula: ##STR1## wherein X is --O-- or --S--, and R is selected from the group consisting of: ##STR2## and R' is selected from the group consisting of alkyl having 1 to 5 carbon atoms, alkaryl having 7 to 12 carbon atoms, aralkyl having 7 to 12 carbon atoms and substituted aromatic having 1 to 3 substituent groups.The alcohol-soluble polymers may be used for fabricating organic/inorganic hybrid composites with metal alkoxides M(OQ).sub.v, wherein M is Si, Ti, Al or the like and Q is a lower alkyl group. These polymers can also be used to coat materials or substrates which are susceptible to attack by highly corrosive acids. On drying, the ionic bond between the trialkylamine and the sulfo group is broken and the polymer reverts to the parent structure, thereby leaving a polymer coating. Yet further, the original amine can be exchanged with a less volatile amine or an amine having a desired functionality.
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: February 20, 1996
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Thuy D. Dang, Jom P. Chen, Fred E. Arnold
  • Patent number: 5484875
    Abstract: The present invention relates to a method for preparing copolymeric polycarbonates which comprises melt polycondensing a mixture of an aromatic dihydroxy compound containing an amount of 2-90 mol % of hydroquinone or substituted hydroquinones and a diester carbonate in the presence of a catalyst containing an alkali metal compound or an alkaline earth metal compound in an amount of 1.times.10.sup.-8 to 5.times.10.sup.-6 mole per mole of the total amount of the aromatic dihydroxy compound, then adding an acidic compound to the melt polycondensation product.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: January 16, 1996
    Assignee: GE Plastics Japan
    Inventors: Takeshi Sakashita, Tomoaki Shimoda, Kotaro Kishimura, Shuichi Uchimura
  • Patent number: 5484880
    Abstract: The present invention relates to an amorphous polyimide or a polyimide copolymer having a requisite structural unit consisting of one or more recurring structural units represented by the formula (1): ##STR1## wherein X is a direct bond, oxygen atom or sulfur atom, and R.sub.1, R.sub.2, R.sub.3 and R.sub.4 are individually a hydrogen atom or methyl, and Ar is a tetravalent radical having 6 to 27 carbon atoms and being selected from the group consisting of a monoaromatic radical, condensed polyaromatic radical and noncondensed polyaromatic radical having aromatic radicals connected to each other with a direct bond or a bridge member.Polyimide and the polyimide copolymer of the invention has excellent heat resistance, is outstanding in melt-flow stability, has greatly improved processability, and can be applied to structural materials, and electric- electronic appliances.
    Type: Grant
    Filed: December 13, 1994
    Date of Patent: January 16, 1996
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Wataru Yamashita, Yuichi Okawa, Shoji Tamai, Mitsunori Matsuo, Tsutomu Ishida, Keizaburo Yamaguchi, Akihiro Yamaguchi
  • Patent number: 5484879
    Abstract: Polyimide polymers of the following recurring structure and the corresponding polyamic acids are disclosed: ##STR1## wherein AR.sub.1 is ##STR2## where X is O, S, SO, SO.sub.2, CO, C(CF.sub.3).sub.2, C(CH.sub.3).sub.2, Si(CH.sub.3).sub.2, or a single bond, wherein AR.sub.2 may be pyromellitic dianhydride, a substituted pyromellitic dianhydride, naphthanoic dianhydride, or ##STR3## where Y is O, S, SO, SO.sub.2, CO, C(CF.sub.3).sub.2, C(CH.sub.3).sub.2, Si(CH.sub.3).sub.2 --O--AR--O--, or a single bond, where AR is an aromatic nucleus.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: January 16, 1996
    Assignee: Occidental Chemical Corporation
    Inventors: Robert A. Buchanan, Jeffrey S. Stults, Ronald F. Spohn
  • Patent number: 5480965
    Abstract: This invention relates to a novel thermoplastic and amorphous polyimide which is readily soluble in organic solvent, a novel aromatic diamino compound used for the polyimide, a preparation process thereof, a polyimide-based resin composition comprising the thermoplastic polyimide and a fibrous reinforcement, a process for preparing the resin composition, an injection molded article of the resin composition, a polyimide-based composite obtained by molding the above soluble and thermoplastic polyimide in combination with a fibrous reinforcement, and a fibrous reinforcement having a surface modified with the above polyimide.
    Type: Grant
    Filed: July 26, 1994
    Date of Patent: January 2, 1996
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Wataru Yamashita, Yuichi Okawa, Hideaki Oikawa, Tadashi Asanuma, Yuko Ishihara, Mitsunori Matsuo, Keizaburo Yamaguchi, Akihiro Yamaguchi, Shoji Tamai
  • Patent number: 5478918
    Abstract: A polyimide precursor composition solution includes a tetracarboxylic acid component containing not less than 70 mol % of at least one selected from the group consisting of benzenetetracarboxylic acid and its reactive derivatives; a maleimide compound; and a diamine component containing not less than 70 mol % of 2,2'-substituted-4,4'-benzidine represented by the general formula (I) and siloxydiamine amounting to from 1 to 10 mol %. The tetracarboxylic acid component, the maleimide compound and the diamine component are dissolved in a solvent which is consisting essentially of .gamma.-butyrolactone. The amount of the tetracarboxylic acid component is substantially equivalent to that of the diamine component. The amount of the maleimide compound is from 5 to 30 wt % of the total weight of the tetracarboxylic acid and the diamine component.
    Type: Grant
    Filed: February 1, 1994
    Date of Patent: December 26, 1995
    Assignee: Central Glass Company, Limited
    Inventors: Masamichi Maruta, Hidehisa Nanai, Yoshihiro Moroi, Hiroshi Takahashi, Seiji Hasegawa
  • Patent number: 5478915
    Abstract: Polyimide oligomers are described which comprise the condensation product of: at least one phenylindane diamine and at least one aromatic bis(ether anhydride). The polyimide oligomers of the invention are readily processed to form solution prepregable polyimide composites having high glass transition temperatures and high temperature and oxidative stability. More particularly, the present invention provides for crosslinkable polyimide oligomers prepared by reacting, in a suitable solvent under an inert atmosphere, a mixture of monomers comprising: (A) an aromatic diamine component comprising from about 25 to 100 mole % of at least one phenylindane diamine; (B) a dianhydride component comprising from about 25 to 100 mole % of at least one aromatic his(ether anhydride); and (C) at least one end-cap monomer selected from the group consisting of monoanhydrides, acyl halides and aromatic amines, wherein each end-cap monomer contains at least one crosslinkable functional group in the molecule.
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: December 26, 1995
    Assignee: Ciba-Geigy Corporation
    Inventors: Michael Amone, Mark R. Southcott
  • Patent number: 5475079
    Abstract: A (co)polycarbonate composition mainly comprising a (co)polycarbonate having a limiting viscosity number [.eta.] of 0.2 to 1.0 dl/g and terminal hydroxyl groups in an amount of 20 mole % or below, based on all the terminal groups of the (co)polycarbonate, and is substantially free from any branched structure which might otherwise be formed by a side reaction. The (co)polycarbonate contains chlorine (causasive of discoloration) in an amount of 10 ppm or below and an alkali metal ion and/or an alkaline earth metal ion in an amount of 1 ppm or below. A process for preparing the above (co)polycarbonate composition by the melt transesterification process involves the reaction of a dihydroxy compound such as bisphenol A and a carbonic diester such as diphenyl carbonate with a nitrogen-containing basic compound (a), and/or, a compound (b) containing an element selected from the group consisting of elements belonging to Groups I, II, IV and V of the periodic table as a catalyst.
    Type: Grant
    Filed: April 15, 1994
    Date of Patent: December 12, 1995
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Yoshimichi Okano, Michiyo Tanigawa, Yutaka Fukuda
  • Patent number: 5475065
    Abstract: The invention disclosed relates to a process for producing azide-substituted aromatic polymers such as polysulfones, and to certain novel azide-substituted polysulfones so produced. The process involves attaching azide groups onto the aromatic rings of the polymers by first activating the attachment site by direct lithiation or bromination, followed by lithiation. The lithiated intermediates are converted substantially qantitatively to azides by reacting with a suitable azide, preferably tosyl azide, under substantially anhydrous conditions. Novel azide-substituted polysulfones containing from one to about three azide groups per repeat polymer unit were obtained, the degree of azide substitution being determined by the degree of lithiation. The azides may also be converted to other functional derivatives such as primary amines and cross-linked membranes.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: December 12, 1995
    Assignee: National Research Council of Canada
    Inventors: Michael D. Guiver, Gilles P. Robertson
  • Patent number: 5472823
    Abstract: A photosensitive resin composition comprising, as its main ingredient, a poly(amic acid) resin constituted of a diamino compound represented by formula: ##STR1## and optionally used other diamino compound and a tetracarboxylic acid dianhydride as its constituent monomers and/or a poly(amic acid) ester resin obtained by esterifying said poly(amic acid) resin and/or a polyimide resin obtained by a dehydrating or alcohol-eliminating ring-closure reaction of said poly(amic acid) resin or poly(amic acid) ester resin has an excellent developability and a high film strength and can form a relief patter of low thermal expansion.
    Type: Grant
    Filed: January 15, 1993
    Date of Patent: December 5, 1995
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hideo Hagiwara, Makoto Kaji, Hiroshi Nishizawa, Kenji Suzuki, Yasunori Kojima
  • Patent number: 5473010
    Abstract: The present invention relates to a polyimide based resin composition comprises 1 to 50 parts by weight of polyetherimide for 100 parts by weight a resin composition comprising 50 to 99 parts by weight of polyarylether ketone and 50 to 1 parts by weight of polyimide having specific structural units.The polyimide based resin compositions have excellent fatigue characteristics and creep resistance and are expected widely to apply in field of machine and automobile parts which is required permanence for mechanical strength.
    Type: Grant
    Filed: August 30, 1994
    Date of Patent: December 5, 1995
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Atsushi Morita, Tomohito Koba, Toshiaki Takahashi, Katsunori Shimamura, Toshiyuki Kataoka, Hiroyuki Furukawa, Hiroaki Tomimoto
  • Patent number: 5470943
    Abstract: This invention relates to a novel fluorine-containing polyimide or polyimide copolymer being colorless and having transparency and very low dielectric characteristics, and has a novel aromatic diamino compound used for the polyimide, a preparation process thereof, a polyimide-based resin composition comprising the polyimide or polyimide copolymer and a fibrous reinforcement, a process for preparing the resin composition, an injection molded article of the resin composition.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: November 28, 1995
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Yoshihiro Sakata, Wataru Yamashita, Yuichi Okawa, Shoji Tamai, Tsutomu Ishida, Mitsunori Matsuo, Keizaburo Yamaguchi, Akihiro Yamaguchi
  • Patent number: 5470939
    Abstract: A polycarbonate copolymer having a desirable heat resistance and impact resistance, which comprises a carbonate structural unit of the formula (I): ##STR1## wherein A is alkylidene, alkylene, arylene, arylalkylene, --O--, --S--, --SO.sub.2 -- or a single bond, and a carbonate structural unit of formula (II): ##STR2## wherein X.sup.1 and Y.sup.1 are hydrogen, halogen or an organic group and m and n are 1 to 4, wherein the proportion of the carbonate structural unit of the formula (II) being 2 to 15 mole % based on the amount of the carbonate structural unit of the formulas (I) and (II), and the viscosity average molecular weight of the copolymer being 15,000 to 40,000.
    Type: Grant
    Filed: October 13, 1994
    Date of Patent: November 28, 1995
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventor: Mitsugu Nakae
  • Patent number: 5459232
    Abstract: A nonlinear optical material composed of a polyimide obtained from a diamine and/or a diacid anhydride or dithioacid anhydride substituted by a portion having a nonlinear optical effect or of molecules having a benzocyclobutene structure substituted at the portions having an nonlinear linear optical effect.
    Type: Grant
    Filed: July 9, 1993
    Date of Patent: October 17, 1995
    Assignee: Fujitsu Limited
    Inventors: Wataru Sotoyama, Satoshi Tatsuura, Tetsuzo Yoshimura, Azuma Matsuura, Tomoaki Hayano
  • Patent number: 5457154
    Abstract: A moldable polyimide resin composition which has melt-flowability and excellent processability in addition to essential heat-resistant of polyimide and comprises an aromatic bisimide compound and polyimide resin. A further aspect relates to a carbon fiber reinforced polyimide resin composition which has excellent mechanical strengths and comprises a carbon fiber coated with aromatic bisimide compound on the surface and the polyimide resin. A still further aspect relates to a novel bisimide compound which is very useful as the aromatic bisimide compound in the composition.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: October 10, 1995
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Masahiro Ohta, Akio Matsuyama, Eiji Senoue, Fumiaki Kuwano, Osamu Yasui, Yasunori Yoshida, Akinori Ryu, Tadashi Kobayashi
  • Patent number: 5449742
    Abstract: Polyimide optical waveguide structures comprising a core within a cladding wherein at least one of the core and the cladding is a polyimide containing 6FDA, BTDA, an aromatic diamine having bulky methyl groups ortho to the amine, and a co-diamine wherein the polyimides have the properties of low optical loss, low optical absorbance, controllable refractive index, and high thermal stability, and wherein the polyimides are photosensitive and solvent resistant.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: September 12, 1995
    Assignee: Amoco Corporation
    Inventors: Allyson J. Beuhler, David A. Wargowski
  • Patent number: 5446120
    Abstract: Polysulfone and polyethersulfone oligomers made by the condensation of crosslinking end caps, monomers, diols, and dihalogen moieties exhibit improved solvent resistance which is necessary for their use in aerospace applications. Blends of the oligomers and corresponding polymers formed from the diols and dihalogen moieties, but without end caps, exhibit superior impact resistance when cured. The present invention describes improved prepregs and composites made from these oligomers.
    Type: Grant
    Filed: January 3, 1990
    Date of Patent: August 29, 1995
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard
  • Patent number: 5442029
    Abstract: A new method for preparing commercially valuable polymeric ketones is described. The method employs an .alpha.-amiononitrile as a monomeric unit whereby an amorphous, soluble polymer having protected carbonyl moiety is obtained. Upon deprotecting the carbonyl moiety, a crystalline polymeric ketone is obtained. The method allows production of polymeric ketone materials having aromatic, aliphatic or mixed aromatic/aliphatic backbones.
    Type: Grant
    Filed: August 26, 1994
    Date of Patent: August 15, 1995
    Assignees: The Center for Innovative Technology, Virginia Polytechnic Institue & State University, Virginia Tech Intellectual Properties
    Inventors: Harry W. Gibson, Ashish Pandya
  • Patent number: 5436310
    Abstract: Novel aromatic poly(ether ketones) having imide, amide, ester, azo, quinoxaline, benzimidazole, benzoxazole, or benzothiazole groups, comprising, for example, a repeat unit ##STR1## are prepared by Friedel Crafts polymerization.
    Type: Grant
    Filed: June 29, 1989
    Date of Patent: July 25, 1995
    Assignee: Raychem Corporation
    Inventors: Klaus J. Dahl, Patrick J. Horner, Heinrich C. Gors, Viktors Jansons, Richard H. Whiteley
  • Patent number: 5427998
    Abstract: A polycarbonate resin solution for forming a thermal-sublimating dye-receiving layer film, comprising a random copolycarbonate resin dissolved in an organic solvent, the resin having a structural unit represented by following formula (1) and a structural formula represented by following formula (2) or (3), the molar ratio of the structural unit represented by formula (1) to the structural unit represented by formula (2) or (3) being from 35/65 to 65/35, and having a number average molecular weight of from 5,000 to 50,000. ##STR1## wherein R.sup.1 to R.sup.12 each represents a hydrogen atom, a halogen atom, or an alkyl group having from 1 to 4 carbon atoms and in formula (1), A represents a straight chain, branched, or cyclic alkylidene group having from 1 to 10 carbon atoms, an aryl-substituted alkylidene group, an arylene group, or a sulfonyl group.
    Type: Grant
    Filed: June 20, 1994
    Date of Patent: June 27, 1995
    Assignee: Mitsubishi Gas Chemical Co., Ltd.
    Inventors: Toshikazu Umemura, Satoshi Kanayama
  • Patent number: 5426172
    Abstract: Mixtures of salts of organic carboxylic acids and organic compounds of non-salt character, dissolved in a C.sub.1 -C.sub.4 alkanol, can be concentrated or separated with a semipermeable membrane made from a copolyamide or copolyimide-amide which contains (a) a first aromatic diamine radical and (b) a second aromatic diamine radical which carries --SO.sub.3 M groups, where M is H.sup..sym., a monovalent to polyvalent metal cation or an ammonium cation. Provided the first diamine radical contains C.sub.1 -C.sub.4 alkyl groups in the o-positions to the amino groups, the copolymers are radiation-sensitive and can be used for producing protective layers or relief images, development being carded out in an aqueous alkaline medium.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: June 20, 1995
    Assignee: Ciba-Geigy Corporation
    Inventors: Joseph Berger, Wolfgang Wernet