Material Contains A Group Ivb Metal Atom (ti, Zr, Hf) Patents (Class 528/279)
  • Patent number: 6525164
    Abstract: Macrocyclic oligoesters and compositions comprising macrocyclic oligoesters are prepared from intermediate molecular weight polyesters. In one embodiment, a diol is contacted with a dicarboxylic acid or a dicarboxylate in the presence of a catalyst to produce a composition comprising a hydroxyalkyl-tenninated polyester oligomer. The hydroxyalkyl-terminated polyester oligomer is heated to produce a composition comprising an intermediate molecular weight polyester which preferably has a molecular weight between about 20,000 Daltons and about 70,000 Daltons. The intermediate molecular weight polyester is heated and a solvent is added prior to or during the heating process to produce a composition comprising a macrocyclic oligoester. An optional step is to separate the macrocyclic oligoester from the composition comprising the macrocyclic oligoester.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: February 25, 2003
    Assignee: Cyclics Corporation
    Inventor: Gary R. Faler
  • Patent number: 6512080
    Abstract: Process of producing polytrimethylene terephthalate (PTT) by esterification of terephthalic acid (TPA) with trimethylene glycol (TMG) in the presence of a catalytic titanium compound, precondensation and polycondensation. The esterification is effected in at least two stages, where in the first stage a molar ratio of TMG to TPA of 1.15 to 2.5, a content of titanium of 0 to 40 ppm, a temperature of 240 to 275° C., and a pressure of 1 to 5.0 bar, preferably 3.5 bar are used. In the at least one subsequent stage a content of titanium is adjusted which is higher than in the initial stage by 35 to 110 ppm.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: January 28, 2003
    Assignee: Shell Oil Company
    Inventors: Donald Ross Kelsey, Robert Lawrence Blackbourn, Robert Stephen Tomaskovic, Hans Reitz, Eckhard Seidel, Fritz Wilhelm
  • Patent number: 6509438
    Abstract: According to the invention, a polytrimethylene terephthalate is provided having 0.6 to less than 2 mole percent dipropylene glycol. Such compositions have a reduced tendency to generate acrolein when heated in air. These PTT polymer compositions exhibit improved and enhanced dyeability as compared to conventional PTT made by the DMT process and the TPA polycondensation/solid state polymerization processes.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: January 21, 2003
    Assignee: Shell Oil Company
    Inventors: Donald Ross Kelsey, Betty Marrou Scardino, Kailash Dangayach, Houston Slade Brown, Hans Reitz, Eckhard Seidel, Fritz Wilhelm
  • Patent number: 6500915
    Abstract: The present invention relates to a polyester resin produced by polymerizing a dicarboxylic acid component comprising mainly an aromatic dicarboxylic acid or its ester forming derivative, and a diol component comprising mainly ethylene glycol in the presence of a catalyst containing a titanium compound, which polyester resin contains titanium atoms (Ti) in an amount of 0.002 to 1.0 mole based on one ton of the polyester resin and has the following properties: Intrinsic viscosity ([&eegr;], dl/g)≧0.70 Hunter's “b” value≦4 Acetaldehyde content (AA0, ppm)≦5.0.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: December 31, 2002
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yoshihiro Fujimori, Shuuji Anno, Masahiro Nukui
  • Patent number: 6497950
    Abstract: The invention relates to fibers, particularly binder fibers, made from polyesters and the polyesters themselves. The polyesters are the product of a reaction between a glycol component and a dicarboxylic acid component where the glycol component contains at least 50 mole % of a four carbon diol, such as 1,4-butanediol, or a six carbon diol, such as 1,6-hexanediol or a mixture of a four carbon and six carbon diol. Typically, the polyesters of the invention are semicrystalline and/or crystalline and have a specific melting point ranging from about 140 to about 185° C. The polyesters of the invention may be formed into a variety of products, especially binder fibers for nonwoven fabrics, textile/industrial yarns and fabrics, composites and other molded articles.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: December 24, 2002
    Assignee: Eastman Chemical Company
    Inventors: William A. Haile, Leron R. Dean, Richard L. McConnell, Kishan C. Khemani
  • Patent number: 6489434
    Abstract: The present invention provides a manufacturing method of copolyester for low acetaldehyde content of PET bottles. The polyethylene terephthalate (PET) polymer is added with an appropriate modifier in order to decrease the production of acetaldehyde caused by pyrolysis side reaction during the blow molding process of PET bottles. The modifier comprises stabilizer and primary antioxidant, wherein the stabilizer is an inorganic phosphorous compound with an addition quantity of 0.003˜0.5 weight % based on the weight of the total copolyester copolymer and the primary antioxidant is a hindered phenolic antioxidant containing Ca+2 with an addition quantity of 0.005˜5.0 weight % based on the weight of the total copolyester copolymer. The present invention owns an improving effect of decreasing the production of side product—acetaldehyde at least 30% than those without the addition of said modifier.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: December 3, 2002
    Assignee: Nan Ya Plastics Corporation
    Inventor: Zo-Chun Jen
  • Publication number: 20020165336
    Abstract: A composition that can be used as catalyst is disclosed. The composition comprises, or is produced by combining, (A) a titanium compound; (B) either (i) a complexing agent, (ii) a combination of a complexing agent, hypophosphorous acid or a salt thereof, and optionally a solvent, a zirconium compound, or both, (iii) combinations thereof; (C) a phosphorus compound; and optionally a solvent. Also disclosed is a process that can be used for producing a polyester. The process comprises contacting, in the presence of an esterification or transesterification or polycondensation catalyst composition and a phosphorus compound, a carbonyl compound and an alcohol under a condition suitable for esterification, transesterification, or polymerization. Further disclosed is a process to make polyester with reduced insoluble particles or solids using a phosphorus compound other than the commonly used phosphoric acid.
    Type: Application
    Filed: February 23, 2001
    Publication date: November 7, 2002
    Inventors: Jiwen F. Duan, Donald E. Putzig, Frederick K. Mallon, Timothy M. Davis
  • Publication number: 20020137879
    Abstract: The present invention provides a catalyst or polyester production capable of producing a polyester with high catalytic activity and a process For producing a polyester using the catalyst. The catalyst for polyester production comprises a solid titanium compound which is obtained by dehydro-drying a hydrolyzate obtained by hydrolysis of a titanium halide and which has a molar ratio (OH/Ti) of a hydroxyl group (OH) to titanium (Ti) exceeding 0.09 and less than 4. The present invention also provides a method to obtain a polyester having a small increase of the acetaldehyde content during the molding. This method comprises bringing a polyester, which is obtained by the use of a titanium compound catalyst and in which the reaction has been completed, into contact with a phosphoric ester aqueous solution or the like having a concentration of not less than 10 ppm in terms of phosphorus atom.
    Type: Application
    Filed: December 21, 2001
    Publication date: September 26, 2002
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Takeshi Ohmatsuzawa, Fujito Ehara, Hideshi Hori, Kazuo Toyota, Kenzaburou Fukutani, Junichi Imuta, Akivoshi Shimizu, Takayuki Onogi, Seiji Noda, Sayuki Sakai, Shoji Hiraoka, Koji Nakamachi, Michio Tsugawa, Satoru Miyazoe
  • Patent number: 6455664
    Abstract: In a process for producing PCCD polyester of the formula by reacting a starting CHDM and a starting DMCD in the presence of a catalyst to produce an aliphatic alcohol and an acid interchange oligomer and forming a low viscosity PCCD, and reacting the intermediate PCCD by solid state polymerization for increasing the molecular weight of to form a PCCD having melting temperature of about 225 to about 234 degrees Centigrade and a viscosity from about 2,000 to about 20,000 poise.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: September 24, 2002
    Assignee: General Electric Company
    Inventors: Bimal Ramesh Patel, Gary Francis Smith
  • Patent number: 6451959
    Abstract: The present invention provides a catalyst for polyester production capable of producing a polyester with high catalytic activity, a process for producing a polyester using the catalyst and a polyester produced thereby. The catalyst comprises a solid titanium compound obtained by dehydro-drying a hydrolyzate obtained by hydrolysis of a titanium halide and which has a molar ratio (OH/Ti) of a hydroxyl group (OH) to titanium (Ti) exceeding 0.09 and less than 4. In the process, the polyester is obtained by polycondensing an aromatic dicarboxylic acid, or an ester-forming derivative thereof, and an aliphatic diol, or ester-forming derivative thereof, in the presence of the catalyst. The resulting polyester has excellent transparency and tint, a titanium content of 1 to 100 ppm, a magnesium content of 1 to 200 ppm and a magnesium to titanium weight ratio of not less than 0.01.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 17, 2002
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takeshi Ohmatsuzawa, Fujito Ehara, Hideshi Hori, Kazuo Toyota, Kenzaburou Fukutani, Junichi Imuta, Akivoshi Shimizu, Takayuki Onogi, Seiji Noda, Masayuki Sakai, Shoji Hiraoka, Koji Nakamachi, Michio Tsugawa, Satoru Miyazoe
  • Publication number: 20020123606
    Abstract: A process of preparing poly(trimethylene terephthalate) containing less than 2.
    Type: Application
    Filed: November 20, 2001
    Publication date: September 5, 2002
    Inventors: Joseph Varapadavil Kurian, Yuanfeng Liang
  • Patent number: 6441125
    Abstract: The invention relates to a process for the preparation of a copolyether ester built up of hard polyester segments of repeating units derived from at least one alkylene glycol and at least one aromatic dicarboxylic acid or an ester thereof and soft segments derived from at least one polyalkylene oxide glycol, which comprises polymerization by condensation in the melt of at least one aromatic dicarboxylic acid, at least one alkylene glycol and at least one polyalkylene oxide glycol, in the presence of a catalyst based on a combination of titanium and a bivalent metal in a single compound or several compounds, characterized in that the molecular ratio of Ti:bivalent metal is at most 1.6, preferably at most 1.5. The invention leads to a substantial shortening of the polycondensation time in the melt or a higher degree of polymerization of the copolyether ester. The solid-phase post-condensation can also be shortened substantially.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: August 27, 2002
    Assignee: DSM N. V.
    Inventors: Geert I. V. Bonte, Gerard H Werumeus Buning, Krijn Dijkstra, Jean M. M. Warnier
  • Patent number: 6437088
    Abstract: A process for producing a polyester. The process comprises polymerizing a polymerization mixture comprising (i) a carbonyl compound or an oligomer of a carbonyl compound and (ii) a glycol, in the presence of a titanium catalyst composition, to produce the polyester, wherein a coated titanium dioxide comprising a titanium dioxide and a coat is added before or during the polymerizing.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: August 20, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Jiwen F. Duan
  • Patent number: 6429278
    Abstract: In a process for producing a polyester containing 1,4-cyclohexanedimethanol (CHDM) as one of its glycol components, an aqueous or a methanolic slurry comprising CHDM and a dicarboxylic acid is prepared. The slurry is maintained at a temperature below the melting point of CHDM. The slurry is then fed into a reactor. The slurry is esterified at sufficient temperatures and pressures, and optionally in the presence of a suitable catalyst, to effect esterification. A prepolymer is formed. The prepolymer is then polycondensed at sufficient temperatures and pressures in the presence of a suitable catalyst to effect polycondensation to form a polyester.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: August 6, 2002
    Assignee: Eastman Chemical Company
    Inventors: Earl Edmondson Howell, Jr., Donna Rice Quillen, Aaron Nathaniel Edens
  • Patent number: 6426398
    Abstract: A poly(trimethylene terephthalate) polymer composition (a) comprising repeat units derived from terephthalic acid and 1,3- propanediol, (b) having a b value of less than about 10, and (c) having an intrinsic viscosity (IV) in the range from about 0.74 to about 2.0. The poly(trimethylene terephthalate) polymer composition does not contain a blue masking pigment. It is prepared by a process comnprising contacting, in the presence of a catalyst comprises tin and titanium. A copolymer that contains up to 20 mole percent of another acid and/or a second alcohol is also disclosed. Further disclosed is a composition of, or comprising, a bis (3-hydroxypropyl) terephthalalte prepolymer. The bis (3-hydroxypropyl) terephthalalte prepolymer and poly(trimethylene terephthalalte) can each contain 10 to 100 ppm tin and 10 to 200 ppm titanium relative to the terephthalic acid content.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: July 30, 2002
    Assignee: E. I. Du Pont De Nemours and Company
    Inventors: Joseph V Kurian, Yuanfeng Liang, Donald Edward Putzig
  • Patent number: 6417320
    Abstract: The production of linear polyester by the interchange of ester radicals or esterification and polycondensation of multivalent alcohols with multivalent carboxylic acids takes place by means of catalysts. In order that the catalyst features the lowest possible content of catalytically active metal compound, the carrier substance that forms the heterogeneous phase comprises particles of the finest grain and of porous structure and features a surface of great inner, reactive and/or coordinated centers, whereby a catalytically active metal compound is adsorbed in the pores.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: July 9, 2002
    Assignee: Zimmer Aktiengesellschaft
    Inventors: Brigitta Otto, Karl Ulrich Thiele, Xiaogang Guo
  • Publication number: 20020065387
    Abstract: This invention relates to a method for manufacturing polyesters, in particular, to using a lithium titanyl oxalate as the catalyst for such reaction to provide fast reactions with excellent color properties for the resulting polyester. The present invention provides an improved method of producing polyester by the polycondensation of polyester forming reactants wherein the improvement comprises utilizing, as the polycondensation catalyst, lithium titanyl oxalate. The improved process produces a polyester of improved color versus other titanyl oxalate catalysts and a novel polyester without the presence of antimony.
    Type: Application
    Filed: October 24, 2001
    Publication date: May 30, 2002
    Inventors: Kevin Charles Cannon, Sri Ram Seshadri, Ryan Richard Dirkx
  • Patent number: 6392005
    Abstract: The present invention relates to a manufacturing method for decreasing the cyclic oligomer content in polyester which effectively restrains the production of the cyclic oligomer in ester chips and further decreases the amount of regenerated cyclic oligomer at the melting process stage by adding the additive, during the process of manufacturing polyethylene terephthalate, with the following structure:
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: May 21, 2002
    Assignee: Nan Ya Plastics Corporation
    Inventor: Zo-Chun Jen
  • Patent number: 6380348
    Abstract: This invention relates to a method for manufacturing polyesters, in particular, to using a lithium titanyl oxalate as the catalyst for such reaction to provide fast reactions with excellent color properties for the resulting polyester. The present invention provides an improved method of producing polyester by the polycondensation of polyester forming reactants wherein the improvement comprises utilizing, as the polycondensation catalyst, lithium titanyl oxalate. The improved process produces a polyester of improved color versus other titanyl oxalate catalysts and a novel polyester without the presence of antimony.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: April 30, 2002
    Assignee: Atofina Chemicals, Inc.
    Inventors: Kevin Charles Cannon, Sri Ram Seshadri, Ryan Richard Dirkx
  • Patent number: 6376642
    Abstract: This invention relates to a method for manufacturing polyesters, in particular, to using a lithium titanyl oxalate as the catalyst for such reaction to provide fast reactions with excellent color properties for the resulting polyester. The present invention provides an improved method of producing polyester by the polycondensation of polyester forming reactants wherein the improvement comprises utilizing, as the polycondensation catalyst, lithium titanyl oxalate. The improved process produces a polyester of improved color versus other titanyl oxalate catalysts and a novel polyester without the presence of antimony.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: April 23, 2002
    Assignee: Atofina Chemicals, Inc.
    Inventors: Kevin Charles Cannon, Sri Ram Seshadri
  • Patent number: 6372879
    Abstract: The present invention is based upon the discovery that nontitanyl oxalates can enhance the catalytic functionality of titanyl oxalate catalysts. This invention provides a novel catalytic composition containing a titanyl oxalate catalyst and a metallic oxalate catalyst enhancer and optionally containing a metallic cocatalyst such as an antimony based catalyst. A synergistic relationship has been discovered between titanyl oxalate catalyst and the catalyst enhancer. A synergistic relationship has also been discovered between the titanyl oxalate catalyst, catalyst enhancer and a metallic cocatalyst such as antimony oxide or antimony triacetate.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: April 16, 2002
    Assignee: ATOFINA Chemicals, Inc.
    Inventors: Conor M. Dowling, Bin Chen, Sri R. Seshadri
  • Publication number: 20020028909
    Abstract: Process of producing polytrimethylene terephthalate (PTT) by esterification of terephthalic acid (TPA) with trimethylene glycol (TMG) in the presence of a catalytic titanium compound, precondensation and polycondensation. The esterification is effected in at least two stages, where in the first stage a molar ratio of TMG to TPA of 1.15 to 2.5, a content of titanium of 0 to 40 ppm, a temperature of 240 to 275° C., and a pressure of 1 to 3.5 bar are used. In the at least one subsequent stage a content of titanium is adjusted which is higher than in the initial stage by 35 to 110 ppm.
    Type: Application
    Filed: May 18, 2001
    Publication date: March 7, 2002
    Inventors: Donald Ross Kelsey, Robert Lawrence Blackbourn, Robert Stephen Tomaskovic, Hans Reitz, Eckhard Seidel, Fritz Wilhelm
  • Publication number: 20020028904
    Abstract: An improved process for the preparation of high molecular weight, linear polyester resins comprises reacting an aromatic dicarboxylic acid with an excess of an alkane diol under conditions effective to reach the clearing point of the reaction; pre-condensing the cleared reaction mixture under conditions effective to produce oligomers having an intrinsic viscosity measured in 60/40 phenol/1,1,2,2-tetrachloroethane at 25° C. of less than about 0.70 deciliters/gram and a carboxylic acid end group level of less than or equal to about 100 milliequivalents per kilogram; and polycondensing the oligomer under conditions effective to produce a linear polyester resin having an intrinsic viscosity less than or equal to about 2.0 dl/g as measured in 60/40 phenol/1,1,2,2-tetrachloroethane by weight at 25° C. and a carboxylic acid end group level of about 10 to about 40 milliequivalents per kilogram.
    Type: Application
    Filed: June 13, 2001
    Publication date: March 7, 2002
    Inventors: Sandeep Dhawan, Gary Smith
  • Publication number: 20020016437
    Abstract: The invention relates to a process for the preparation of a copolyether ester built up of hard polyester segments of repeating units derived from at least one alkylene glycol and at least one aromatic dicarboxylic acid or an ester thereof and soft segments derived from at least one polyalkylene oxide glycol, which comprises polymerization by condensation in the melt of at least one aromatic dicarboxylic acid, at least one alkylene glycol and at least one polyalkylene oxide glycol, in the presence of a catalyst based on a combination of titanium and a bivalent metal in a single compound or several compounds, characterized in that the molecular ratio of Ti : bivalent metal is at most 1.6, preferably at most 1.5.
    Type: Application
    Filed: April 23, 2001
    Publication date: February 7, 2002
    Inventors: Geert I.V. Bonte, Gerard H. Werumeus Buning, Krijn Dijkstra, Jean M.M Warnier
  • Patent number: 6342579
    Abstract: Disclosed is a method for preparing polyester resins copolymerized with 1,4-cyclohexanedimethanol. In the preparation method, ethylene glycol and 1,4-cyclohexanedimethanol are fed with the molar ratio of the whole glycol component to terephthalic acid ranging from 1.3 to 3.0, and then esterified.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: January 29, 2002
    Assignee: SK Chemical Co., Ltd.
    Inventors: Jae-Young Jeon, Yoon-Hee Hong
  • Publication number: 20020010310
    Abstract: The invention relates to a process for the preparation of polyesters of a glycol and a dicarboxylic acid which comprises the following steps:
    Type: Application
    Filed: February 6, 2001
    Publication date: January 24, 2002
    Inventors: Kevin Dale Allen, Emery Don Johnson, Cecilia Zuqi Tse, Samuel Martin Moats
  • Patent number: 6335421
    Abstract: A process of preparing poly(trimethylene terephthalate) containing less than 2.0 mole % of DPG comprising: (a) providing a molar amount of 1,3-propanediol:C1 to C4 dialkyl ester of terephthalic acid of 1.2:1 to 1.9:1, (b) reacting the 1,3-propanediol with the C1 to C4 dialkyl ester of terephthalic, acid to form bis(3-hydroxypropyl)terephthalate monomer in the presence of 10-100 ppm (as titanium metal) of an organic titanate catalyst, by weight of the poly(trimethylene terephthalate), and (c) polymerizing the bis(3-hydroxypropyl)terephthalate monomer to obtain the poly(trimethylene terephthalate); and poly(trimethylene terephthalate) produced by the process.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: January 1, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Joseph Varapadavil Kurian, Yuanfeng Liang
  • Publication number: 20010056173
    Abstract: Disclosed is a method for preparing polyester resins copolymerized with 1,4-cyclohexanedimethanol. In the preparation method, ethylene glycol and 1,4-cyclohexanedimethanol are fed with the molar ratio of the whole glycol component to terephthalic acid ranging from 1.3 to 3.0, and then esterified.
    Type: Application
    Filed: January 2, 2001
    Publication date: December 27, 2001
    Inventors: Jae-Young Jeon, Yoon-Hee Hong
  • Publication number: 20010049430
    Abstract: A water slurry process is used to prepare a prepreg and to manufacture articles from macrocyclic polyester oligomers. In one embodiment, a process for preparing a water suspension of macrocyclic polyester oligomers includes the steps of contacting a macrocyclic polyester oligomer and a polymerization catalyst with water and a surfactant, and mixing the macrocyclic polyester oligomer and polymerization catalyst with water and the surfactant thereby forming a suspension. In another embodiment, a process for impregnating macrocyclic polyester oligomers for polymerization includes the steps of providing a suspension of a macrocyclic polyester oligomer and a polymerization catalyst in water, applying the suspension to a base material, drying to remove water from the suspension, and pressing the dried suspension to a desired form. In yet another embodiment, a composition of macrocyclic polyester oligomer includes a macrocyclic polyester oligomer, a polymerization catalyst, and water.
    Type: Application
    Filed: January 4, 2001
    Publication date: December 6, 2001
    Inventors: Steven J. Winckler, Tohru Takekoshi
  • Patent number: 6326456
    Abstract: Process of producing polytrimethylene terephthalate (PTT) by esterification of terephthalic acid (TPA) with trimethylene glycol (TMG) in the presence of a catalytic titanium compound, precondensation and polycondensation. The sterification is effected in at least two stages, where in the first stage a molar ratio of TMG to TPA of 1.15 to 2.5, a content of titanium of 0 to 40 ppm, a temperature of 240 to 275° C., and a pressure of 1 to 3.5 bar are used. In the at least one subsequent stage a content of titanium is adjusted which is higher than in the initial stage by 35 to 110 ppm.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: December 4, 2001
    Assignee: Shell Oil Company
    Inventors: Donald Ross Kelsey, Robert Lawrence Blackbourn, Robert Stephen Tomaskovic, Hans Reitz, Eckhard Seidel, Fritz Wilhelm
  • Patent number: 6316584
    Abstract: For the production of polyesters and copolyesters, coprecipitates are used individually or in a mixture as polycondensation catalysts, the coprecipitates being prepared by simultaneous hydrolytic precipitation of a titanium compound and a metallic compound of a metal selected from the groups IA, IIA, VIIIA, IB, IIB, IIIB, and IVB, whereby the titanium compound and the metallic compound are, independently of one another, an alkylate, alcoholate, or carboxylate of titanium or the metal, respectively, and the molar ratio of the titanium compound to the metallic compound is ≧50:50 mol/mol. The coprecipitates exhibit a higher catalytic activity than Sb2O3 which results in a prefered amount of usage of only 10 to 100 ppm with respect to the esters or oligoesters to undergo polycondensation.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: November 13, 2001
    Assignee: Akzo Nobel NV
    Inventors: Ulf Seidel, Michael Gerd Martl
  • Patent number: 6313235
    Abstract: The present invention provides a method for preparing polypropylene terephthalate/polyethylene terephthalate (PPT/PET) copolyester, which comprises a group of processes from (a) to (e). Process (a) comprises subjecting bis-2-hydroxyethyl terephthalate (BHET), pure terephthalic acid (PTA) and 1,3-propanediol (1,3-PDO) to undergo esterification reaction to produce BHET and bis-2-hydroxypropyl terephthalate (BHPT), and then subjecting BHET and BHPT to undergo copolymerization reaction. Process (b) comprises subjecting PTA and 1,3-PDO to undergo esterification reaction to produce BHPT, adding BHET, and then subjecting BHET and BHPT to undergo copolymerization reaction. Process (c) comprises subjecting BHET and BEPT to undergo copolymerization reaction. Process (d) comprises subjecting PTA, ethylene glycol (EG) and 1,3-PDO to undergo esterification reaction to produce BHET and BHPT, and then subjecting BHET and BHPT to undergo copolymerization reaction.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: November 6, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Tung-Ying Kuo, I-Min Tseng, Jih-Chen Huang, Wen-Chuan Shu
  • Patent number: 6306946
    Abstract: Disclosed is a select class of liquid crystalline polyesters and molding compositions comprising the polyesters and glass fiber. The liquid crystalline polyesters consist essentially of (1) diacid residues consisting essentially of (i) cyclohexanedicarboxylic acid residues and (ii) other diacid residues selected from terephthalic acid residues, 2,6-naphthalenedicarboxylic acid residues, or a mixture thereof; (2) diol residues consisting essentially of hydroquinone residues, 4,4′-biphenol residues or a mixture thereof; and, optionally, (3) p-hydroxybenzoic acid residues. In the above definition, the moles of diol residues are equal to the moles of diacid residues and the total of the (1), (2) and (3) mole percentages is equal to 100. The liquid crystalline polyesters have melting points determined by differential scanning calorimetry equal to or less than 360° C.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: October 23, 2001
    Assignee: Eastman Chemical Company
    Inventors: Timothy Edward Long, William Ronald Darnell
  • Publication number: 20010029289
    Abstract: Process of producing polytrimethylene terephthalate (PTT) by esterification of terephthalic acid (TPA) with trimethylene glycol (TMG) in the presence of a catalytic titanium compound, precondensation and polycondensation. The esterification is effected in at least two stages, where in the first stage a molar ratio of TMG to TPA of 1.15 to 2.5, a content of titanium of 0 to 40 ppm, a temperature of 240 to 275° C., and a pressure of 1 to 3.5 bar are used. In the at least one subsequent stage a content of titanium is adjusted which is higher than in the initial stage by 35 to 110 ppm.
    Type: Application
    Filed: May 18, 2001
    Publication date: October 11, 2001
    Inventors: Donald Ross Kelsey, Robert Lawrence Blackbourn, Robert Stephen Tomaskovic, Hans Reitz, Eckhard Seidel, Fritz Wilhelm
  • Patent number: 6299789
    Abstract: The invention provides a finish composition for synthetic filament, which does not generate fume and tar at high speed and high temperature, imparts superior lubricity at high temperature, superior antistaticity and yarn winding performance, and has satisfactory biodegradability. The finish composition for synthetic fiber of the invention is characterized by containing one or more of polyether polyester compounds having a molecular weight of 1,000 to 20,000 and represented by the formula: X—(A—B)n—A′—Y. In the formula, each of X and Y is independently hydrogen, or a residue of C1-8 linear or branched saturated alcohol or C1-18 fatty acid; each of A and A′ is a residue of ethylene oxide/propylene oxide block or random copolymer containing ethylene oxide and propylene oxide from 9:1 to 1:9 mol ratio; B is an aliphatic dibasic acid residue represented as OOC(CH2)mCOO; m is an integer from 1 to 4; and n is an integer from 1 to 3.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: October 9, 2001
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Shinichi Tatemoto, Tetsuo Doi, Yasuhiko Yada
  • Patent number: 6281325
    Abstract: In one embodiment, the invention is a process for the preparation of poly(trimethylene terephthalate) comprising (a) contacting terephthalic acid with 1,3-propanediol in the presence of an organic tin catalyst to form a bis(3-hydroxypropyl)terephthalate monomer; and (b) polymerizing said monomer in the presence of organic titanate polycondensation catalyst to obtain the poly(trimethylene terephthalate). In another embodiment, the invention is a process for the preparation of poly(trimethylene terephthalate) containing less than 1.6 mol % of DPG said process comprising contacting terephthalic acid with a 1.6 to 1 to 2:1 molar amount of 1,3-propanediol in the presence of 20 to 120 ppm (as tin), by weight of the poly(trimethylene terephthalate), of a organic tin catalyst, to form a bis(3-hydroxypropyl)terephthalate monomer and polymerizing said monomer to obtain the poly(trimethylene terephthalate). The invention is also directed to poly(trimethylene terephthalate) produced by the processes.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: August 28, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Joseph Varapadavil Kurian, Yuanfeng Liang
  • Publication number: 20010016642
    Abstract: A process that can be used in an esterification and polycondensation processes to produce a polyester such as, for example, poly(trimethylene terephthalate) is disclosed. The process comprises contacting an acid with 1,3-propanediol in the presence of a catalyst comprising tin and titanium. A copolymer that contains up to 20 mole percent of another acid and/or a second alcohol is also disclosed. Further disclosed are a composition of, or comprising, a bis(3-hydroxypropyl) terephthalate prepolymer or a composition of, or comprising, a poly(trimethylene terephthalate) polymer. The bis(3-hydroxypropyl) terephthalate prepolymer and poly(trimethylene terephthalate) can each contain 10 to 100 ppm tin and 10 to 200 ppm titanium relative to the terephthalic acid content.
    Type: Application
    Filed: February 27, 2001
    Publication date: August 23, 2001
    Inventors: Joseph V. Kurian, Yuanfeng Liang, Donald E. Putzig
  • Patent number: 6277947
    Abstract: Process of producing polytrimethylene terephthalate (PTT) by esterification of terephthalic acid (TPA) with trimethylene glycol (TMG) in the presence of a catalytic titanium compound, precondensation and polycondensation. The esterification is effected in at least two stages, where in the first stage a molar ratio of TMG to TPA of 1.15 to 2.5, a content of titanium of 0 to 40 ppm, a temperature of 240 to 275° C., and a pressure of 1 to 3.5 bar are used. In the at least one subsequent stage a content of titanium is adjusted which is higher than in the initial stage by 35 to 110 ppm.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: August 21, 2001
    Assignee: Shell Oil Company
    Inventors: Donald Ross Kelsey, Robert Lawrence Blackbourn, Robert Stephen Tomaskovic, Hans Reitz, Eckhard Seidel, Fritz Wilhelm
  • Publication number: 20010007899
    Abstract: The present invention provides a copolyester resin composition which has good physical properties, biodegradability and processability and a process for preparing and/or producing the same. To improve the biodegradability and physical properties of the copolyester, the present invention applied multi-stage reaction step, and copolyester resin having number average molecular weight of from 30,000 to 70,000, weight average molecular weight of from 100,000 to 600,000, melting point of from 55° C. to 120° C., and melt index of from 0.1 to 30 g/10 minute (190° C., 2,160 g) is obtained. The processability and physical properties of the copolyester resin of the present invention has been greatly enhanced by incorporating (i) an “aromatic-aliphatic prepolymers” having number average molecular weight of from 300 to 30,000 and the contiguous repeating unit of aromatic group in the dicarboxylic acid position of “aromatic-aliphatic prepolymers” is less than 5.
    Type: Application
    Filed: December 11, 2000
    Publication date: July 12, 2001
    Inventors: Hyun Soo Chung, Jae Wang Lee, Dong Hoon Kim, Do Youn Kim, Suok Woo Lee
  • Patent number: 6258925
    Abstract: The present invention is based upon the discovery that nontitanyl oxalates can enhance the catalytic functionality of titanyl oxalate catalysts. This invention provides a novel catalytic composition containing a titanyl oxalate catalyst and a metallic oxalate catalyst enhancer and optionally containing a metallic cocatalyst such as an antimony based catalyst. A synergistic relationship has been discovered between titanyl oxalate catalyst and the catalyst enhancer. A synergistic relationship has also been discovered between the titanyl oxalate catalyst, catalyst enhancer and a metallic cocatalyst such as antimony oxide or antimony triacetate.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: July 10, 2001
    Assignee: ATOFINA Chemicals, Inc.
    Inventors: Conor M. Dowling, Sri R. Seshadri
  • Patent number: 6255442
    Abstract: A process that can be used in an esterification and polycondensation processes to produce a polyester such as, for example, poly(trimethylene terephthalate) is disclosed. The process comprises contacting an acid with 1,3-propanediol in the presence of a catalyst comprising tin and titanium. A copolymer that contains up to 20 mole percent of another acid and/or a second alcohol is also disclosed. Further disclosed are a composition of, or comprising, a bis(3-hydroxypropyl) terephthalate prepolymer or a composition of, or comprising, a poly(trimethylene terephthalate) polymer. The bis(3-hydroxypropyl) terephthalate prepolymer and poly(trimethylene terephthalate) can each contain 10 to 100 ppm tin and 10 to 200 ppm titanium relative to the terephthalic acid content.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: July 3, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Joseph V Kurian, Yuanfeng Liang, Donald Edward Putzig
  • Patent number: 6242558
    Abstract: A 1,3-propanediol-based aromatic polyester such as polytrimethylene terephthalate is modified by reaction with a hindered phenolic acid or ester to provide an endcapped polyester which has improved resistance to generation of acrolein when heated in air.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: June 5, 2001
    Assignee: Shell Oil Company
    Inventor: Donald Ross Kelsey
  • Patent number: 6238499
    Abstract: A solid rocket propellant includes a binder that is a linear block co-polymer of caprolatone and tetramethylene ether and an oxidizer. The propellant may be disposed of by contacting it with an aqueous solution of 12 N NaOH or 6 N HCl at a temperature of about 140° F. for about 24 hours to decompose the binder. Solids remaining in the solution after the binder decomposes are removed.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: May 29, 2001
    Assignee: United Technologies Corporation
    Inventors: Marvin Luther Jones, Donald Dongjaw Tzeng
  • Patent number: 6231976
    Abstract: The invention relates to fibers, particularly binder fibers, made from copolyesters and the copolyesters themselves. The copolyesters of the invention are generally formed from a glycol component containing 1,3- or 1,4-cyclohexanedimethanol and ethylene glycol and at least one dicarboxylic acid component. Such copolyesters may be formed into a variety of products, especially binder fibers for nonwoven fabrics, textile and industrial yarns, and composites.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: May 15, 2001
    Assignee: Eastman Chemical Company
    Inventors: Leron R. Dean, William A. Haile, Richard L. McConnell
  • Patent number: 6180751
    Abstract: An aliphatic copolyester having a plurality of first: ester units of the formula: —CO—[R1]t—CO—O—R2—O— wherein R1 represents a divalent aliphatic group, R2 represents a divalent aliphatic and t is an integer of 0 or 1, and a plurality of second ester units of the formula: wherein R1 and t are as defined above and R3 represents an aliphatic group. The molar ratio of the first ester unit to the second ester unit is 90:10 to 99.9:0.1. The copolyester is produced by reacting an aliphatic diester with an aliphatic glycol and with a monoacylated glycerin under ester exchanging conditions.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: January 30, 2001
    Assignee: Secretary of Agency of Industrial Science and Technology
    Inventors: Yoichi Taguchi, Akihiro Oishi, Yoshikazu Ikeda, Ken-ichi Fujita, Takashi Masuda
  • Patent number: 6166170
    Abstract: A catalyst composition is disclosed. The composition comprises a titanium compound, a complexing agent, hypophosphorous acid or its metal salt, water and optionally a solvent. The complexing agent can be hydroxycarboxylic acid, alkanolamines, aminocarboxylic acids, or combinations of two or more thereof. The solvent can be water, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, isopropylene glycol, butylene glycol, 1-methyl propylene glycol, pentylene glycol, or combinations of two or more thereof. The titanium compound can be combined with a zirconium compound. Also disclosed is a process for using the composition for producing an ester or a polyester. The process comprises contacting a carbonyl compound, in the presence of the composition, with an alcohol under a condition suitable for esterification, transesterification, polymerization, or combinations of two or more thereof.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: December 26, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Donald Edward Putzig
  • Patent number: 6156867
    Abstract: The present invention relates to a polyester polymerization catalyst, comprising a solution containing an aluminum compound and an alkali compound, with water or an organic solvent or a mixture consisting of water and an organic solvent as the medium, a production method thereof, and a polyester production method, in which the product obtained by the esterification reaction or ester interchange reaction between an aromatic dicarboxylic acid or any of its ester forming derivative and a diol is polycondensed, to produce a polyester, comprising the use of said polymerization catalyst containing an aluminum compound.The present invention can provide a polyester excellent in processability and can overcome such problems as spinneret contamination, filtration pressure rise, filament breaking, film breaking and foreign matter production in the production process of products such as fibers, films, resins and bottles.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: December 5, 2000
    Assignee: Toray Industries, Inc.
    Inventors: Masatoshi Aoyama, Kenichi Tsutsumi, Minoru Uchida
  • Patent number: 6153679
    Abstract: Titanium oxide and a thermoplastic resin composition incorporated therewith, said titanium oxide being characterized by its property that it disperses into ethylene glycol (as a dispersing medium) to give a 13 wt % suspension which has a specific resistance higher than 7000 .OMEGA..multidot.cm and passes through a filter paper with a pore size of 6 .mu.m such that the filtration pressure does not exceed 100 kPa after filtration for 4 minutes at a flow rate of 1.73 cm.sup.3 /min.multidot.cm.sup.2.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: November 28, 2000
    Assignee: Toray Industries, Inc.
    Inventors: Tomio Kawaji, Ryosuke Asakura, Tomohiro Taniguchi
  • Patent number: 6150494
    Abstract: The invention relates to a polymer prepared from the repeat units of residues of a monomer of at least one dicarboxylic acid or ester; a monomer comprising a diol, diamine or a mixture thereof; a monomer comprising at least one sulfonate group and at least one polyester reactive group, and a monomer comprising an optical brightener agent having at least one polyester reactive group. The invention further relates to a method for preparing a polymer. The invention further relates to method of marking an article or composition with the polymer. The invention further relates to a method for detecting and separating an article contacted with the polymer. The invention further relates to an article or composition contacted with the polymer. The invention further relates to a method for enhancing the optical brightness of an article or composition, by contacting the article or composition with the polymer.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: November 21, 2000
    Assignee: Eastman Chemical Company
    Inventors: Richard Hsu-Shien Wang, James J. Krutak, Mahendra K. Sharma, Barbara C. Jackson
  • Patent number: 6143837
    Abstract: A process for the preparation of aromatic polyester resins, in which the resin obtained from the polycondensation phase in the molten state conducted by utilizing a titanium based compound as a catalyst, is subjected to a solid state polycondensation reaction in the presence of a dianhydride of a tetracarboxylic acid.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: November 7, 2000
    Assignee: Sinco Ricerche, S.p.A.
    Inventors: Hussain Al Ghatta, Enrico Ballico, Arianna Giovannini