Material Contains A Lead Atom Patents (Class 528/284)
  • Publication number: 20110054143
    Abstract: Disclosed are formaldehyde-free, thermally-curable, alkaline, aqueous binder compositions, curable to formaldehyde-free, water-insoluble thermoset polyester resins, and uses thereof as binders for non-woven fibers and fiber materials.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 3, 2011
    Inventors: Clarence H. HELBING, Mary Hession, James Helbing
  • Publication number: 20100249363
    Abstract: The present invention relates to a process for preparing polyethylene naphthalate, comprising the steps of: esterifying 2,6-naphthalene dicarboxylic acid and ethylene glycol, or glycols using the two materials as major material to obtain prepolymer which comprises bis(beta-hydroxyethyl)naphthalate or low polymer as main material; and performing polycondensation reaction to thereby prepare polyethylene naphthalate. The process of the present invention has advantages of: enabling esterification with a low molar ratio of ethylene glycol to reduce reaction time, thereby increasing process efficiency; minimizing formation of side reaction products to improve properties; and preventing deterioration of the products by performing polycondensation at a low temperature to thereby obtain polyethylene naphthalate polymers of high quality.
    Type: Application
    Filed: October 30, 2008
    Publication date: September 30, 2010
    Applicant: HYOSUNG CORPORATION
    Inventors: Hyun-Soo Kim, Young-Gyo Choi, Woo-Sung Kim, Byung-Jun Song
  • Patent number: 7655746
    Abstract: Polyesters whose polycondensation is catalyzed by titanium-containing catalysts and which are susceptible to acetaldehyde formation during polycondensation or subsequent molding operations are prepared with low finished acetaldehyde content and reduced acetaldehyde generation by adding an ammonium or amine salt of an oxyphosphorus-acid. Polyesters, especially polyethylene terephthalate, may be produced with high inherent viscosity in reduced processing time, without the necessity of further polymerization in the solid state.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: February 2, 2010
    Assignee: Eastman Chemical Company
    Inventor: Mary Therese Jernigan
  • Patent number: 7309756
    Abstract: Macrocyclic oligoesters and compositions comprising macrocyclic oligoesters are prepared from intermediate molecular weight polyesters. In one embodiment, a diol is contacted with a dicarboxylic acid or a dicarboxylate in the presence of a catalyst to produce a composition comprising a hydroxyalkyl-terminated polyester oligomer. The hydroxyalkyl-terminated polyester oligomer is heated to produce a composition comprising an intermediate molecular weight polyester which preferably has a molecular weight between about 20,000 Daltons and about 70,000 Daltons. The intermediate molecular weight polyester is heated and a solvent is added prior to or during the heating process to produce a composition comprising a macrocyclic oligoester. An optional step is to separate the macrocyclic oligoester from the composition comprising the macrocyclic oligoester.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: December 18, 2007
    Assignee: Cyclics Corporation
    Inventor: Gary R. Faler
  • Patent number: 6852367
    Abstract: Disclosed are stable organo polysilica resin composition containing a B-staged organo polysilica resin and an organic acid, methods of stabilizing such B-staged organo polysilica resin compositions and methods of manufacturing electronic devices using such stable compositions.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: February 8, 2005
    Assignee: Shipley Company, L.L.C.
    Inventors: Yujian You, Robert H. Gore, Michael K. Gallagher
  • Patent number: 6780925
    Abstract: The invention relates to the preparation of a silica reinforced rubber composition where alkoxysilane and/or sulfur cure reactions within the elastomer host are controlled by the use of a selected amino acid, or amino acid-containing protein based, activator. The invention also relates to such composite and to a tire having at least one component of such composite.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: August 24, 2004
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Thierry Florent Edme Materne, Francois Kayser, Michael Paul Mallamaci, Harlan Roy Wilk
  • Patent number: 6706396
    Abstract: The present invention provides processes for producing certain very low inherent viscosity polyesters. Also provided are the low inherent viscosity polyesters in discrete particulate form, and processes for producing the particulate polyesters. The discrete particulate materials are desirable for use in further processes.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: March 16, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Richard Allen Hayes, Gregory W. Hoffmann
  • Patent number: 6657036
    Abstract: The invention relates to polycondensation resins which are prepared by polycondensation of compounds having a low molecular weight and separation of small molecules in the presence of at least one hetergeneous catalyst. The invention also relates to polyaddition resins which are prepared by polyaddition in the presence of at least one heterogeneous catalyst. The invention further relates to the use of said polycondensation resins and polyaddition resins for the preparation of moulded parts, adhesives and coating materials.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: December 2, 2003
    Assignee: BASF Coatings AG
    Inventors: Werner-Alfons Jung, Heinz-Peter Rink, Eberhard Fuchs, Wolfgang Straehle
  • Patent number: 6649731
    Abstract: By the present invention, there are provided a catalyst for polyester preparation, which comprises a solid titanium compound containing titanium, oxygen, carbon and hydrogen and having a Ti—O bond and which has a maximum solubility in ethylene glycol, as measured when the catalyst is dissolved in ethylene glycol under heating at 150° C., of not less than 3,000 ppm in terms of a titanium atom, a catalyst for polyester preparation, which comprises a titanium-containing solution wherein a contact product of a hydrolyzate of a titanium halide or a hydrolyzate of a titanium alkoxide with a polyhydric alcohol is dissolved in ethylene glycol in an amount of 3,000 to 100,000 ppm in terms of a titanium atom, a process for preparing a polyester using the catalyst, and a polyester prepared by the process.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: November 18, 2003
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Hideshi Hori, Fujito Ehara, Akiyoshi Shimizu, Nobumasa Mukai, Shoji Hiraoka
  • Patent number: 6528579
    Abstract: The invention relates to a process for the preparation of polyesters of a glycol and a dicarboxylic acid which comprises the following steps: a) introducing a feedstock comprising one or more glycols and one or more dicarboxylic acids or monoalcohol esters thereof into a reactor vessel, b) heating the feedstock to an elevated temperature to cause the glycols and the acids or monoalcohol esters thereof to polycondense into a polyester, c) removing all of the polyester from the reactor vessel, wherein step b) is carried out in the absence of a preformed polyester (“zero heel” process). A condensation catalyst is added in step a) or b) or both.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: March 4, 2003
    Assignee: Shell Oil Company
    Inventors: Kevin Dale Allen, Emery Don Johnson, Cecilia Zuqi Tse, Samuel Martin Moats
  • Patent number: 6472500
    Abstract: An improved process for the preparation of high molecular weight, linear polyester resins comprises reacting an aromatic dicarboxylic acid with an excess of an alkane diol under conditions effective to reach the clearing point of the reaction; pre-condensing the cleared reaction mixture under conditions effective to produce oligomers having an intrinsic viscosity measured in 60/40 phenol/1,1,2,2-tetrachloroethane at 25° C. of less than about 0.70 deciliters/gram and a carboxylic acid end group level of less than or equal to about 100 milliequivalents per kilogram; and polycondensing the oligomer under conditions effective to produce a linear polyester resin having an intrinsic viscosity less than or equal to about 2.0 dl/g as measured in 60/40 phenol/1,1,2,2-tetrachloroethane by weight at 25° C. and a carboxylic acid end group level of about 10 to about 40 milliequivalents per kilogram.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: October 29, 2002
    Assignee: General Electric Company
    Inventors: Sandeep Dhawan, Gary Smith
  • Publication number: 20020010310
    Abstract: The invention relates to a process for the preparation of polyesters of a glycol and a dicarboxylic acid which comprises the following steps:
    Type: Application
    Filed: February 6, 2001
    Publication date: January 24, 2002
    Inventors: Kevin Dale Allen, Emery Don Johnson, Cecilia Zuqi Tse, Samuel Martin Moats
  • Patent number: 5898058
    Abstract: A continuous process for producing polyethylene terephthalate polyester from terephthalic acid and ethylene glycol uses a stabilizer, preferably containing phosphorous, to produce a high quality polyethylene terephthalate polyester which is relatively free of the acetaldehyde and discoloration which are associated with the post-polymerization activity of a polymerization catalyst. The stabilizer is preferably added at or after the end of the polymerization reaction prior to polymer processing to deactivate the polymerization catalyst and can increase the throughput of the polyester without adversely affecting the thermal stability of the polyethylene terephthalate polyester. Alternatively, the late addition of the stabilizer can increase the thermal stability of the polyester without adversely affecting the throughput of the polyethylene terephthalate polyester.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: April 27, 1999
    Assignee: Wellman, Inc.
    Inventors: Carl S. Nichols, Tony Clifford Moore, Walter Lee Edwards
  • Patent number: 5811513
    Abstract: In the production of polyethylene naphthalate of the present invention, the esterification reaction between naphthalenedicarboxylic acid and ethylene glycol is conducted while causing water to be present in a reaction system from a start of reaction, in the presence of at least one catalyst selected from the group consisting of nitric, carboxylic, phosphoric and hydrogenphosphoric acid metal salts and alkyl amines according to necessity, to thereby attain an esterification ratio of 45 to 80%, so that a liquid mixture of naphthalenedicarboxylic acid esterification reaction products containing naphthalenedicarboxylic acid, carboxyl-hydroxyethoxycarbonylnaphthalene and bis(hydroxyethoxycarbonyl)naphthalene is obtained. Subsequently, a crystallized reaction product is separated from this liquid mixture to thereby obtain a mixture of esterification reaction products. Thereafter, this mixture having ethylene glycol added thereto according to necessity is subjected to polycondensation.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: September 22, 1998
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Hiroshi Iwasaki, Masayasu Ishibashi, Hiromi Ueki, Shoji Hiraoka, Toru Matsuyoshi, Satoshi Inoki
  • Patent number: 5530088
    Abstract: A heat resistant phosphorus-containing polymeric flame retardant and a process for preparing the same are disclosed. The process is characterized in that in polycondensation a selected metal salt serving as cocatalyst is used to catalyze a phosphorus-containing compound, a saturated dicarboxylic acid or the derivatives thereof, and a diol to form a high phosphorus content, high molecular weight flame retardant. The selected metal salts can promote the polymerization of phosphorus-containing compounds and polyester, and can inhibit side reactions and depolymerization so as to increase the phosphorus content of the resulting products and reduce the manufacturing cost. The flame retardants thus prepared can endure processing at an elevated temperature and thus are suitable for being applied in flame retardant fibers, fabrics, nonwoven fabrics, adhesives, and plastics.
    Type: Grant
    Filed: June 21, 1995
    Date of Patent: June 25, 1996
    Assignee: Industrial Technology Research Institute
    Inventors: Yuung-Ching Sheen, Shinn-Jen Chang, Yi-Ni Cheng, Rong-Shuh Chang
  • Patent number: 5423432
    Abstract: Provided are water-dissipatable, sulfo-containing polyesters and polyester-amides having copolymerized therein thermally stable near infrared flourophoric compounds. The polymers are useful in coating or ink compositions, which are in turn useful for marking articles for identification/authentication purposes. Also provided is a method for invisibly marking such articles and a method for detecting and sorting articles by utilizing the near infrared flourophoric ink or coating compositions.
    Type: Grant
    Filed: May 5, 1994
    Date of Patent: June 13, 1995
    Assignee: Eastman Chemical Company
    Inventors: James J. Krutak, Michael R. Cushman, William W. Parham, Clarence A. Coates, Max A. Weaver, Gabor Patonay
  • Patent number: 5294695
    Abstract: The present invention relates to a process for preparing a polyethylene naphthalate possessed with high viscosity, characterized by sloving of various problems of the prior art by controlling the rate of the polycondensation reaction.Particularly, the present invention provides a process for preparing polyethylene naphthalate from an esterification reaction product of naphtalene dicarboxylic acid or an alkyl ester thereof and a diol, which comprises polycondensing the esterification reaction product in the presence of a polycondensation catalyst in two steps wherein the first step is carried out at a pressure ranging from 500 to 30 torr and the second step is carried out at a pressure ranging from 10 to 0.1 torr with controlling the reaction rate such that the differential increase of the intrinsic viscosity of the resultant polymer can satisfy the following equations:IV(t.sub.1)-IV(t.sub.0)<0.4 dl/g (1)IV(t.sub.2)-IV(t.sub.0)>0.3 dl/g (2)wherein: IV(t.sub.
    Type: Grant
    Filed: March 15, 1993
    Date of Patent: March 15, 1994
    Assignee: SKC Limited
    Inventors: Kwan-Kyung Lee, Byeong-Ho Cho, Yong-Won Kim
  • Patent number: 5292855
    Abstract: Provided are water-dissipatable, sulfo-containing polyesters and polyester-amides having copolymerized therein thermally stable near infrared flourophoric compounds. The polymers are useful in coating or ink compositions, which are in turn useful for marking articles for identification/authentication purposes. Also provided is a method for invisibly marking such articles and a method for detecting and sorting articles by utilizing the near infrared flourophoric ink or coating compositions.
    Type: Grant
    Filed: February 18, 1993
    Date of Patent: March 8, 1994
    Assignee: Eastman Kodak Company
    Inventors: James J. Krutak, Michael R. Cushman, William W. Parham, Clarence A. Coates, Max A. Weaver, Gabor Patonay
  • Patent number: 5262513
    Abstract: A copolyester which comprises, as main components, terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component and which is characterized by:(1) isophthalic acid as a dicarboxylic acid component being from 0.5 to 3.0 mol %,(2) diethylene glycol as a diol component being from 1.0 to 2.5 mol %,(3) the intrinsic viscosity being from 0.60 to 1.50 dl/g,(4) the concentration of terminal carboxyl groups being at most 18 eq/ton, and(5) the content of a cyclic trimer being at most 0.40% by weight.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: November 16, 1993
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Katsuji Tanaka, Hitoshi Matsumoto, Takuji Hirahara, Osamu Kishiro
  • Patent number: 4435562
    Abstract: The invention is a process for esterifying organic dicarboxylic acid and diol at elevated temperatures and thereafter transesterifying the esterification product in the presence of a diol and a diester at elevated temperatures thereafter polymerizing the transesterification product in a condensation stage to form a polycondensed copolyester having an intrinsic viscosity from 0.2 to 0.9.
    Type: Grant
    Filed: May 6, 1983
    Date of Patent: March 6, 1984
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Carl M. Sullivan, Mellis M. Kelley
  • Patent number: 4394295
    Abstract: The process and the catalyst used therein for producing polyesters and copolyesters, useful for making films and fibers, by the polycondensation of dicarboxylic acids and aliphatic glycols using coordinations complexes of metal halides and silicon compounds as catalysts.
    Type: Grant
    Filed: December 31, 1981
    Date of Patent: July 19, 1983
    Assignee: Union Carbide Corporation
    Inventors: Kurt Weinberg, Gordon C. Johnson
  • Patent number: 4258105
    Abstract: A curing agent package is provided for polymercaptan-terminated polymers comprising selected metal oxides and organonitrogen accelerators and promoters commonly considered as rubber vulcanization accelerators. More specifically, sealant and coating compositions are prepared by curing a mixture comprising a mercaptan-terminated polyether-polyester liquid polymer, a curing agent package of a non-lead metal oxide curing agent and an organonitrogen accelerator or promoter, and, optionally, non-elastomeric materials.
    Type: Grant
    Filed: May 30, 1979
    Date of Patent: March 24, 1981
    Assignee: Phillips Petroleum Company
    Inventor: Ralph P. Williams
  • Patent number: 4245086
    Abstract: N-Hydroxyalkyltrimellitic acid imides of high purity are prepared by reacting trimellitic acid anhydride with a monoalkanolamine in an aqueous medium comprising an amount of not less than about 0.025 liter of a certain specific solvent or solvent mixture per 1 mole of the trimellitic acid anhydride and can be advantageously used for production of their polymers having a high thermal stability and a good color tone.
    Type: Grant
    Filed: October 30, 1978
    Date of Patent: January 13, 1981
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Keiichi Uno, Takahito Miyagawa
  • Patent number: 4205157
    Abstract: A high molecular weight polyester is disclosed, having a low carboxyl content, and utilizing a low catalyst level, produced by a two-stage process; a melt process until the intrinsic viscosity of the prepolymer reaches about between 0.15 and 0.45 dl/g, and a solid state polymerization in a fluidized bed until the intrinsic viscosity of the polycondensed polymer reaches at least 0.60 dl/g. The melt process employs addition of excess initial glycol, delayed addition of excess glycol, and delayed addition of catalyst, in any combination, to achieve a low carboxyl content polyester prepolymer capable of use in the fluidized bed solid state polymerization. This prepolymer with a minimal carboxyl content achieves a maximum solid state polymerization rate in a fluidized bed. This prepolymer also permits the use of a very low catalyst level to achieve high product purity and still maintains economically satisfactory polymerization rate.
    Type: Grant
    Filed: April 2, 1979
    Date of Patent: May 27, 1980
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Ben Duh
  • Patent number: 4156072
    Abstract: A process for producing polyesters and copolyesters, useful for making films and fibers, by the polycondensation of dicarboxylic acids and aliphatic glycols using coordinations complexes of metal halides and silicon compounds as catalysts.
    Type: Grant
    Filed: May 22, 1978
    Date of Patent: May 22, 1979
    Assignee: Union Carbide Corporation
    Inventors: Kurt Weinberg, Gordon C. Johnson
  • Patent number: 4124566
    Abstract: A process for preparing polyesters having superior thermal stability, transparency and chemical resistance, which comprises (1) a first step of esterifying (A) a difunctional carboxylic acid containing at least 60 mole% of an aromatic dicarboxylic acid, (B) 0 to 80 mole%, based on component (A), of an aliphatic diol and/or a dihydroxybenzene and (C) an aromatic monohydroxy compound in an amount of at least 210 mole% as a total of it and component (B) based on component (A), the esterification being performed until the degree of esterification reaches at least 80%, (2) subsequently, a second step of adding 0 to 80 mole%, based on component (A), of component (B) and a bisphenol (D) in an amount of 100 to 130 mole% as a total of it and component (B) based on component (A) to the reaction product obtained in the first step and reacting the mixture, the total amount of components (B) used in the first and second steps being 0 to 80 mole% based on component (C), and (3) performing at least the first of the above st
    Type: Grant
    Filed: June 15, 1977
    Date of Patent: November 7, 1978
    Assignee: Teijin Limited
    Inventors: Noritsugu Saiki, Shizuka Kurisu, Shoji Kawase