Material Contains A Phosphorus Atom Patents (Class 528/286)
  • Patent number: 12139600
    Abstract: The invention relates to blends of sulfo-modified copolyester and polyalkylene furanoate such as polyethylene-, polybutylene-, or polytrimethylene-furanoate, or a mixture thereof. The sulfo-modified copolyester comprises at least about 75 mole % of polyethylene terephthalate or polyethylene naphthalate or a mixture thereof; and at least about 0.1 mole % to about 5 mole % of units of the Formula (I) wherein n is an integer from 3 to 10 and wherein M+ is an alkali metal ion, earth alkali metal ion, phosphonium ion or ammonium ion. Articles requiring high gas barrier are bottles for beer, juices, carbonated soft drinks, and the like.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: November 12, 2024
    Assignee: Auriga Polymers, Inc.
    Inventor: Sanjay Mehta
  • Patent number: 12122872
    Abstract: Uncured aqueous composition comprising surfactant and a blend of (a) a first sulfonated polyester having a glass transition temperature not greater than 75° C. that is not sulfonated polyethylene naphthalate, (b) a second, sulfonated polyester that is a sulfonated polyethylene naphthalate, (c) melamine-formaldehyde crosslinker, and (d) an epoxy silane coupling agent; and cured composition thereof. Compositions described herein are useful, for example, for making primed film for release liners applications.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 22, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Jeffrey A. Peterson, Maria A. Appeaning, Christopher P. Gerlach, David J. Kinning, Madison P. Bennett, Marie A. Boulos, Anna M. Clausen, Victor Ho, Kevin T. Huseby, Stephen A. Johnson, Scott M. LeBow
  • Patent number: 9284405
    Abstract: The present invention provides a polyester resin including: moieties of dicarboxylic acid components including terephthalic acid; and moieties of diol components including isosorbide, a cyclohexanedimethanol, and the balance of other diol compounds. The polyester resin contains a zinc-based catalyst and a phosphorus-based stabilizer. The present invention also provides a method for preparing the polyester resin. The method includes: esterifying diol components including isosorbide, a cyclohexanedimethanol, and the balance of other diol compounds, with dicarboxylic acid components including terephthalic acid in the presence of an esterification reaction catalyst including a zinc compound; adding a phosphorus-based stabilizer to the esterification reaction mixture at the time when the degree of esterification reaches at least 80%; and subjecting the esterification reaction product to polycondensation.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: March 15, 2016
    Assignee: SK CHEMICALS CO., LTD.
    Inventors: Yoo Jin Lee, Ji-Hyun Kim, Jong Ryang Kim
  • Patent number: 9279033
    Abstract: There is provided a polyester resin including: moieties of dicarboxylic acid components including terephthalic acid; and moieties of diol components including 5 to 60 mole % of isosorbide, 10 to 80 mole % of a cyclohexanedimethanol, and the balance of other diol compounds, wherein the polyester resin has an intrinsic viscosity of 0.5 to 1.0 dl/g, and a melt viscosity of the polyester resin measured at a temperature of 280° C. and at a shear rate of 300 rad/s is at least 50% lower than that measured at a temperature of 280° C.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: March 8, 2016
    Assignee: SK CHEMICALS CO., LTD.
    Inventors: Ji-Hyun Kim, Yoo Jin Lee
  • Patent number: 9267000
    Abstract: There is provided a polyester resin including: moieties of dicarboxylic acid components including terephthalic acid; and moieties of diol components including 5 to 60 mole % of isosorbide, 10 to 80 mole % of a cyclohexanedimethanol, and the balance of other diol compounds, wherein the polyester resin has an intrinsic viscosity of 0.5 to 1.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: February 23, 2016
    Assignee: SK CHEMICALS CO., LTD.
    Inventors: Ji-Hyun Kim, Yoo Jin Lee
  • Patent number: 9121835
    Abstract: A method and apparatus are disclosed for testing and inspecting containers coated by means of a plasma treatment, e.g. plastic bottles, which are coated for instance with amorphous silicon oxide or carbon compounds. The containers are tested by a measuring device trace-gas-analytically, e.g. mass-spectrometrically, for undesired foreign substances, such as acetaldehyde and/or antimony, escaping from the container material after a plasma coating treatment.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: September 1, 2015
    Assignee: KRONES AG
    Inventor: Jochen Krueger
  • Publication number: 20150099830
    Abstract: Pressure sensitive adhesives produced from naturally occurring fats and oils are described. Also described are methods of producing the pressure sensitive adhesives. Generally, one or more naturally occurring fats or oils are epoxidized, and then reacted with certain alcohols or amines to thereby obtain the noted pressure sensitive adhesives.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Carol A. KOCH, Charles R. WILLIAMS, Prakash MALLYA
  • Patent number: 8987408
    Abstract: A method for the production of solid polyester polymer particles comprising: a) polycondensing a molten polyester polymer composition in the presence of a polycondensation catalyst composition comprising antimony species; b) continuing the polycondenzation of the molten polyester polymer composition to an It.V. of 0.68 dL/g or more; and c) after reaching an It.V. of 0.68 dL/g or more, adding a catalyst stabilizer or deactivator to the polymer melt; and d) after reaching an It.V. of 0.68 dL/g or more, solidifying the melt into solid polyester polymer particles which do not contain organic acetaldehyde scavengers. In a further embodiment, after solidification of the polyester from the melt phase polycondenzation process: e) the amount of residual acetaldehyde in the particles in the solid state is reduced to a level of 10 ppm or less without increasing the It.V. of the particles by more than 0.03 dL/g.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Patent number: 8945695
    Abstract: PET resins containing a small amount of a blue dye and/or further containing inorganic particles of Fe3O4 or BaSO4 are synthesized in the presence of an inorganic Ti—Mg catalyst employed as a polycondensation catalyst and a phosphorus stabilizer during a polycondensation process, and the resultant PET resins are free of yellowish appearance and reduced regenerated acetaldehyde and cyclic oligomers after processed so that PET bottle preforms if made of the PET resins can facilitate reduction in aging time thereby to improve the product yield of the bottle preforms and to save the stock space for storing the bottle preforms.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 3, 2015
    Assignee: Nan Ya Plastics Corporation
    Inventor: Zo-Chun Jen
  • Patent number: 8901271
    Abstract: The invention relates to a process for making polyethylene terephthalate (PET) from ethylene glycol (EG), purified terephthalic acid (PTA) and optionally up to 6 mol % comonomer, using a mixed metal catalyst system and comprising the steps of a) esterifying EG and PTA to form diethyleneglycol terephthalate and oligomers (DGT), and b) melt-phase polycondensing DGT to form PET and EG, wherein the catalyst system substantially consists of 70-160 ppm of Sb-compound, 20-70 ppm of Zn-compound, and 0.5-20 ppm of Ti-glycolate as active components (ppm metal based on PET). With this process that applies reduced amount of metal catalyst components PET can be obtained with high productivity, which polyester shows favorable color and optical clarity, also if recycling of EG is applied within the process.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: December 2, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Munif Al-Munif, Mummaneni Venkateswara Rao, Zahir Bashir, Suresh Padmanabhan
  • Patent number: 8901272
    Abstract: A polyester polymer comprising alkylene arylate units, said polymer having an It.V. of at least 0.72 dl/g, a vinyl ends concentration of at least 0.8 microequivalents per gram, an AA generation rate of less than 20 ppm are prepared by addition of a catalyst deactivator either late in the polycondensation or upon remelting of a solid polyester polymer.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: December 2, 2014
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Patent number: 8889819
    Abstract: A method for producing a polyester resin composition includes conducting polyconensation via esterification or transesterification, wherein an alkali metal phosphate in an amount of 1.3 mol/ton to 3.0 mol/ton and phosphoric acid in an amount of 0.4 to 1.5 times (by mole) that of the alkali metal phosphate are added at a stage between the point of time when the esterication or transesterification has been substantially completed and the point of time when the intrinsic viscosity reaches 0.4. A polyester resin composition obtained by the process exhibits excellent long-term hydrolysis resistance and excellent mechanical characteristics.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: November 18, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Hiroji Kojima, Jun Sakamoto, Mayumi Sunako
  • Patent number: 8859713
    Abstract: The invention relates to a process for making polyethylene terephthalate (PET) from ethylene glycol (EG), purified terephthalic acid (PTA) and optionally up to 30 mol % comonomer, using a catalyst system essentially consisting of antimony—(Sb), zinc—(Zn) and phosphorous—(P) compounds, comprising the steps of a) esterifying EG and PTA to form diethyleneglycol terephthalate and oligomers (DGT), and b) melt-phase polycondensing DGT to form polyester and EG1 wherein the Sb- and P-compounds are added in step a) and the Zn-compound is added after step a). With this process PET can be obtained that shows favorable color and optical clarity, also if recycling of EG is applied in the process, and a relatively low rate of acetaldehyde regeneration during melt-processing.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 14, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Mummaneni Venkateswara Rao, Munif Al-Munif, Zahir Bashir
  • Patent number: 8779082
    Abstract: The invention relates to an improved linear microdialysis probe comprising a continuous length of flexible tubing (1) having at least one window (4) formed therein, said window covering at least one part of the circumference of the tubing, while the remaining part forms at least one unbroken connection between a first end of said tubing and a second end of said tubing, said ends adapted to be attached to an inlet for perfusion liquid and the other end forming an outlet for the dialysate, said at least one window (4) exposing a tubular semipermeable membrane (2).
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: July 15, 2014
    Assignee: TORAY Industries, Inc.
    Inventors: Hua Qi, Keisuke Honda, Kunihiro Morimoto, Jun Sakamoto, Hiroji Kojima
  • Patent number: 8748559
    Abstract: Polyester compositions, especially polyethylene terephthalate homopolymer and copolymers, are disclosed containing titanium catalysts and catalyst deactivator added late in the manufacturing processing having reduced acetaldehyde generation rates. The polyester compositions are low in free acetaldehyde, making them suitable for fabrication into beverage containers for relatively tasteless beverages such as bottle water. Furthermore, the polyesters are polymerized to a high inherent viscosity in reduced processing time, without the necessity of further polymerization in the solid state, and in the absence of acetaldehyde scavengers leading to polyester polymers having reduced color.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: June 10, 2014
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Patent number: 8653224
    Abstract: Provided is a composition for manufacturing a polyester resin having a molar ratio of a diol compound to a dicarboxylic acid compound ranging from 1.05 to 1.4, in which the composition includes 5 ppm to 50 ppm of a phosphorous (P) compound (based on an amount of P), 10 ppm to 40 ppm of a cobalt (Co) compound (based on an amount of Co), 0.2 ppm to 20 ppm of a color enhancer, and 5 ppm to 25 ppm/3 ppm to 30 ppm of a titanium (Ti)-germanium (Ge) composite catalyst compound (based on an amount of Ti/Ge), based on weight percentage.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 18, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Soomin Lee, Sanghyun Park, Joongeun Jung, Kijeong Han, Sungmin Hong, Yunbae Kook, Jeongsun Kim
  • Patent number: 8586701
    Abstract: Disclosed is a process for the preparation of high molecular weight, thermoplastic copolyesters by reacting a diester composition comprising a dialkyl ester of terephthalic acid with a diol composition comprising a first diol component comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol and a second diol component comprising 1,4-cyclohexanedimethanol. The diester composition can be reacted with the first diol component to produce a polyester oligomer that can be reacted further with the second diol component to produce a modified polyester oligomer. The modified polyester oligomer can then be heated to form a copolyester. The process reduces the precipitation of poly(1,4-cyclohexylene dimethylene) terephthalate in the reaction mixture.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: November 19, 2013
    Assignee: Eastman Chemical Company
    Inventors: Benjamin Fredrick Barton, Damon Bryan Shackelford
  • Patent number: 8563677
    Abstract: A stable catalyst solution suitable for catalyzing the polycondensation of reactants to make polyester polymers comprising: (i) M, wherein M is represented by an alkaline earth metal or alkali metal and (ii) aluminum metal and (iii) a polyhydroxyl solvent having at least 3 carbon atoms and at least two primary hydroxyl groups, the longest carbon chain being a hydrocarbon; such as 1,3-propane diol, 1,4-butane diol, 1,5-pentane diol, or combinations thereof, wherein the molar ratio of M:Al ranges from 0.75:1 to less than 1.5:1. The catalyst solution is desirably a solution which does not precipitate upon standing over a period of at least one week at room temperature (25° C.-40° C.), even at molar ratios of M:Al approaching 1:1. There is also provided a method for the manufacture of the solution, its feed to and use in the manufacture of a polyester polymer, and polyester polymers obtained by combining certain ingredients or containing the residues of these ingredients in the composition.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 22, 2013
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Jason Christopher Jenkins
  • Patent number: 8557950
    Abstract: A method for the production of solid polyester polymer particles comprising: a) polycondensing a molten polyester polymer composition in the presence of a polycondensation catalyst composition comprising antimony species; b) continuing the polycondensation of the molten polyester polymer composition to an It.V. of 0.68 dL/g or more; and c) after reaching an It.V. of 0.68 dL/g or more, adding a catalyst stabilizer or deactivator to the polymer melt; and d) after reaching an It.V. of 0.68 dL/g or more, solidifying the melt into solid polyester polymer particles which do not contain organic acetaldehyde scavengers. In a further embodiment, after solidification of the polyester from the melt phase polycondensation process: e) the amount of residual acetaldehyde in the particles in the solid state is reduced to a level of 10 ppm or less without increasing the It.V. of the particles by more than 0.03 dL/g.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: October 15, 2013
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Patent number: 8476386
    Abstract: The present invention provides a branched, a dendritic, or a hyperbranched poly(amino ester) having a polymer backbone comprising a plurality of branches, wherein the polymer backbone has at least one secondary and at least one tertiary amine linkage. Branched poly(amino ester)s are prepared via a Michael addition reaction of a tris(acrylate ester)monomer with a diamine monomer. In one aspect, the diamine monomer has a primary amino group and a secondary amino group. The poly(amino ester) compounds can be end-capped by reacting with a suitable agent. The present invention also provides applications including, but are not limited to, the delivery of bioactive agents, such as drugs, DNA or RNA; or biocompatible imaging.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Ye Liu, Decheng Wu, Chaobin He
  • Patent number: 8362190
    Abstract: There is provided a method for producing a hyperbranched polymer. A method for producing a hyperbranched polymer comprising polymerizing a dithiocarbamate compound of Formula (1): wherein R1 is H or CH3; R2 and R3 are individually a C1-5 alkyl group, etc., A1 is Formula (2) and/or Formula (3): wherein A2 is a linear, branched or cyclic C1-30 alkylene group that optionally contains an ether bond or an ester bond and X1, X2, X3 and X4 are each independently H, a C1-20 alkyl group, etc., by heating at 50 to 250° C.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: January 29, 2013
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Akihiro Tanaka, Satoru Hatayama
  • Patent number: 8313881
    Abstract: A toner for an electrophotographic image forming process or an electrostatic printing process, and a polyester resin for the toner are disclosed. The polyester resin comprises: acid components including 70 to 96 mol % of aromatic dibasic acid component, 3 to 20 mol % of cycloaliphatic dibasic acid component, and 1 to 10 mol % of trivalent or higher acid component; alcohol components including 10 to 50 mol % of cycloaliphatic diol component, 2 to 20 mol % of trihydric or higher alcohol component, and 30 to 88 mol % of aliphatic diol component; and a heat stabilizer.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: November 20, 2012
    Assignee: SK Chemicals Co., Ltd.
    Inventors: Young-Man Yoo, Jae-Kyoung Roh, Kye-Yune Lee, Tae-Woong Lee
  • Patent number: 8293862
    Abstract: The present invention provides processes for producing polyester. In one of the embodiments, the invention provides a process for producing polyester, comprising adding a catalyst in a polycondensation reaction, esterification reaction or transesterification reaction between components comprising at least a polyfunctional alcohol and at least a polyfunctional carboxylic acid or ester-forming derivative of a polyfunctional carboxylic acid to produce the polyester; and obtaining the polyester, wherein the polymerization catalyst comprises an aluminum substance and a phosphorus compound, wherein the aluminum substance is selected from the group consisting of aluminum hydroxide and aluminum alkoxides, and wherein the phosphorus compound has an aromatic ring structure.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: October 23, 2012
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Takahiro Nakajima, Ken-ichi Tsukamoto, Shoichi Gyobu, Mitsuyoshi Kuwata
  • Patent number: 8258253
    Abstract: Disclosed is a method for increasing the solid state polymerization (SSP) rates of metal catalyzed polyesters. The method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester and in a third step, further increasing the molecular weight and viscosity of the polyester under SSP conditions of a suitable temperature and pressure, where a metal catalyst is added in the first step or in the second step as a reaction catalyst, and where a certain phosphinic acid compound is added in the first step, in the second step or just prior to the third step. The polyester product exhibits low aldehyde formation during melt processing steps as well as excellent color.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 4, 2012
    Assignee: BASF SE
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Patent number: 8207289
    Abstract: Polyester compositions, especially polyethylene terephthalate homopolymer and copolymers, are disclosed containing titanium catalysts and catalyst deactivator added late in the manufacturing processing having reduced acetaldehyde generation rates. The polyester compositions are low in free acetaldehyde, making them suitable for fabrication into beverage containers for relatively tasteless beverages such as bottle water. Furthermore, the polyesters are polymerized to a high inherent viscosity in reduced processing time, without the necessity of further polymerization in the solid state, and in the absence of acetaldehyde scavengers leading to polyester polymers having reduced color.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: June 26, 2012
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Patent number: 8148489
    Abstract: A method for reducing organic carbon emissions from PBT-block-containing resins is disclosed. The method involves adding a titanium-catalyst deactivating compound to the resin after polymerisation.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: April 3, 2012
    Assignee: E. I. du Pont De Nemours and Company
    Inventors: Judith Alison Peacock, David J. Wrigley
  • Patent number: 8143356
    Abstract: A method for producing a polyester resin composition C), which comprises melt-kneading a polyester resin (A) which satisfies the following formulae (1), (2) and (3) and a polyester resin (B) which satisfies the following formula (4): P1?10??(1) 0.1?Ge1?1.5??(2) 0.001?Ge1/P1?0.15??(3) 0?P2/Ti1?80??(4) provided that in the formulae (1), (2) and (3), P1 is the content (mol) of phosphorus atoms and Ge1 is the content (mol) of germanium atoms, per ton of the polyester resin (A), and in the formula (4), P2 is the content (mol) of phosphorus atoms and Ti1 is the content (mol) of titanium atoms, per ton of the polyester resin (B). A polyester resin composition (C) obtained by the method, and a molded product such as a film made from such a composition are also provided.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: March 27, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takeshi Ogawa, Motohiro Munakata, Toshio Kambe
  • Patent number: 8124307
    Abstract: Embodiments include a toner having a) a polyester resin derived from a naphthalenic material, a 2-alkyl succinic material, and 2,2-ethyl-butyl-1,3-propanediol, b) a wax, and c) an optional colorant.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 28, 2012
    Assignee: Xerox Corporation
    Inventor: Guerino G. Sacripante
  • Patent number: 8058360
    Abstract: Polymer blends suitable for packaging are disclosed that include one or more impact modifiers; and one or more polyethylene terephthalate homopolymers or copolymers obtained by a melt phase polymerization using a catalyst system comprising aluminum atoms in an amount, for example, from about 3 ppm to about 60 ppm and one or more alkaline earth metal atoms, alkali metal atoms, or alkali compound residues in an amount, for example, from about 1 ppm to about 25 ppm, in each case based on the weight of the one or more polyethylene terephthalate homopolymers or copolymers The polymer blends disclosed exhibit improved low temperature toughness compared with blends made using polymers prepared with conventional catalyst systems.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: November 15, 2011
    Assignee: Grupo Petrotemex, S.A. De C.V.
    Inventors: Frederick Leslie Colhoun, Mark Edward Stewart, Stephen Weinhold, Richard Dalton Peters, Roger Lee Martin
  • Publication number: 20110269933
    Abstract: Disclosed is a method for preparing a polyester resin, wherein phosphate additives are used in preparing polyester resin to improve the reactive property of the esterification reaction or transesterification, as well as the flame retardancy property and the color stability of a polyester resin. The method for preparing a polyester resin comprises the steps of: esterification reacting and/or transesterifying diacid ingredients diol ingredients in the presence of one or more phosphate additives selected from the group consisting of the compounds as defined in Chemicals in the detailed description of the invention; and polycondensing the products obtained from the esterification reaction and/or transesterification.
    Type: Application
    Filed: December 23, 2009
    Publication date: November 3, 2011
    Applicant: SK CHEMICALS CO., LTD.
    Inventors: Kyu-Tae Park, Yoo-Jin Lee, Jong-Ryang Kim, Sin-Young Hwang
  • Patent number: 7868126
    Abstract: This invention provides a polyester and a polyester molded product, which, while maintaining color tone, transparency, and thermal stability, can realize a high polycondensation rate, are less likely to cause the production of polycondensation catalyst-derived undesired materials, and can simultaneously meet both quality and cost effectiveness requirements, which can exhibit the characteristic features, for example, in the fields of ultrafine fibers, high transparent films for optical use, or ultrahigh transparent molded products. These advantages can be realized by using, in the production of a polyester in the presence of an aluminum compound-containing polyester polycondensation catalyst, an aluminum compound having an absorbance of not more than 0.0132 as measured in the form of an aqueous aluminum compound solution, prepared by dissolving the aluminum compound in pure water to give a concentration of 2.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: January 11, 2011
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Katsuhiko Kageyama, Tooru Kitagawa, Kenichi Funaki, Masaki Fuchikami, Kazuo Katayose, Takahiro Nakajima, Toshiyuki Tsuchiya, Satoru Nakagawa, Fumikazu Yoshida, Haruhiko Kohyama, Naoki Watanabe
  • Patent number: 7759449
    Abstract: The invention is a method for the late introduction of additives into polyethylene terephthalate. The method employs a reactive carrier that functions as a delivery vehicle for one or more additives. The reactive carrier reacts with the polyethylene terephthalate, thereby binding the reactive carrier in the polyethylene terephthalate resin and preventing the emergence of the reactive carrier and additives from the polyethylene terephthalate during subsequent thermal processing.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: July 20, 2010
    Assignee: Wellman, Inc.
    Inventors: Carl S. Nichols, Tony Clifford Moore
  • Patent number: 7683122
    Abstract: Disclosed are processes for preparing polyareneazole polymers including contacting a molar excess of a free base in water with a terephthalic acid salt to form an aqueous mixture, adjusting the pH to precipitate a monomer complex, contacting the monomer complex with metal powder, and polymerizing the monomer complex. Polyareneazoles, filaments and yarns are also disclosed.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: March 23, 2010
    Assignees: E. I. du Pont de Nemours and Company, Magellan Systems International, LLC
    Inventors: Doetze Jakob Sikkema, David J. Rodini, Qinghong Fu Adkins, Steven R. Allen, Georg Valentin Martin, Ralf Demuth, Michael Schelhaas
  • Patent number: 7678878
    Abstract: Disclosed is a method for the preparation of a polyester, which method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester, where a metal phosphonic acid complex compound of the formula is employed in the first step, in the second step or in both the first and second steps as a reaction catalyst.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 16, 2010
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Stephen M. Andrews, Jianzhao Wang, Thomas Thompson, Paragkumar N. Thanki, Deepak M. Rane, Suhas D. Sahasrabudhe, Preetam P. Ghogale, Paul A. Odorisio, Si Wu
  • Publication number: 20100028576
    Abstract: Disclosed is a process for producing a polyester composition which can be obtained by polycondensation of a dicarboxylic acid or ester-forming derivative thereof and a diol or ester-forming derivative thereof in presence of a polycondensation catalyst, in which a polyester having a good color tone can be obtained by adding a specific phosphorus compound after a polycondensation catalyst is added and pressure reduction in polymerization reactor is started and before the polycondensation of the polyester is substantially completed, and at a time in which the polyester reaches 75% or more of the intrinsic viscosity to be finally reached in said polymerization reactor.
    Type: Application
    Filed: October 10, 2007
    Publication date: February 4, 2010
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Gen Hayashi, Kunihiro Morimoto, Tomio Kawaji, Masatoshi Aoyama
  • Publication number: 20090297752
    Abstract: A polyester resin that can be beneficially employed as one finding application in deactivation of polycondensation catalysts for polyester production and suppression of forming of acetaldehyde and other aldehydes and cyclic ester oligomers at molding stage. In particular, there is provided a polyester resin composed mainly of an aromatic dicarboxylic acid component and a glycol component wherein a phosphorus compound is incorporated through copolymerization or blending in an amount of 100 to 10,000 ppm in terms of phosphorus element, characterized in that the contents of Zn element, Fe element, Ni element and Cr element are not greater than specified values.
    Type: Application
    Filed: August 9, 2005
    Publication date: December 3, 2009
    Applicant: TOYO BOSEKI KABUSHIKI KAISHA
    Inventors: Keiichiro Togawa, Yoshinao Matsui, Kosuke Uotani, Atsushi Hara, Hiroyuki Mitsunaga, Takahiro Nakajima, Naoki Watanabe, Toshio Owari, Yoshitaka Eto
  • Publication number: 20090281230
    Abstract: The invention pertains to low profile additives (“LPA”) comprising branched polymers having a weight average molecular weight (Mw) of at least about 20,000 grams/mole and a number average molecular weight (Mn) of at least about 3,000 grams/mole and methods for making the LPAs. The invention further concerns compositions comprising LPAs synthesized from one or more difunctional monomers and one or more branching agents. Also, disclosed are thermosettable resinous compositions and molded articles comprising the LPAs.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 12, 2009
    Applicant: Ashland Licensing and Intellectual Property LLC
    Inventors: Husam A.A. Rasoul, Dejan D. Andjelkovic, Dennis H. Fisher
  • Patent number: 7544762
    Abstract: A polyester having a good color tone (a high L value and a low b value) and a low acetaldehyde content is obtained by using a catalyst containing a reaction product of (A) a titanium compound (1) represented by the general formula (I) and/or a titanium compound (2) obtained by reacting the titanium compound (1) of the general formula (I) with an aromatic polyhydric carboxylic acid represented by the general formula (II) or an anhydride thereof, with (B) a phosphorus compound (3) represented by the general formula (III). [wherein R1, R2, R3, R4 and R5=a C2-C10 alkyl group, k=1 to 3, m=2 to 4, and R6=a substituted or non-substituted C6-C20 aryl group or a C6-C20 alkyl group].
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: June 9, 2009
    Assignee: Teijin Limited
    Inventors: Tomoyoshi Yamamoto, Hiroki Nagano, Minoru Suzuki, Hiroshi Toyao, Tomoyuki Kishino, Nobuo Minobe, Ryoji Tsukamoto, Kenichi Ishihara
  • Patent number: 7528219
    Abstract: The present invention is a method for efficiently incorporating a nitrogen containing methine light absorber into a polyester resin. The method includes forming a reaction mixture comprising combining a diol component, a diacid component selected from the group consisting of dicarboxylic acids, dicarboxylic acid derivatives, and mixtures thereof, an antimony containing compound, a phosphorus containing compound, a metal containing compound, and a nitrogen containing methine light absorber. The reaction mixture is polymerized in a polycondensation reaction system. In another embodiment the light absorber is added while the reaction products of one reactor are being transferred to the next reactor in the polycondensation reaction system. The present invention is also directed articles made from the polyester resin.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 5, 2009
    Assignee: Eastman Chemical Company
    Inventors: Max Allen Weaver, Jason Clay Pearson, Dale Milton Blakely, Frederick Leslie Colhoun
  • Patent number: 7514526
    Abstract: The present invention discloses a process for the preparation of a stabilized polyester that is low in the generation of aldehydes which comprises reacting one or more diacids with one or more diols in an esterification process, and/or one or more diesters with one or more diols in a transesterification process in the presence of an effective amount of a stabilizer selected from the group consisting of (a) a polyhydric alcohol which is for example poly(ethylene-co-vinyl alcohol), poly(styrene-co-allyl alcohol), maltitol, isomalt, sorbitol, xylitol, sucrose, mucic acid dibutylester, mucic acid di(phenyl-1-ethyl)ester, pentaerythritol or dipentaerythritol; (b) a compound of the formula II which is for example di-iso-octyl-phosphinic acid; (c) a sterically hindered amine which is for example Tinuvin 123 or Tinuvin 622; (d) a polyacrylamide, an anionic acrylic polymer or a cationic acrylamide copolymer; or (e) a hydroxylamine and/or a nitrone.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: April 7, 2009
    Assignee: Ciba Specialty Chemicals Corp.
    Inventors: Dirk Simon, Dario Lazzari, Stephen Mark Andrews, Heinz Herbst
  • Patent number: 7439317
    Abstract: An amorphous polyester chip having superior processing ability is characterized by a moisture content of not more than 300 ppm and a fine particle content of not more than 500 ppm. A preferred embodiment is a copolymerized polyester chip comprising a main repeating unit consisting of ethylene terephthalate, and 1,4-dimethylene-cyclohexane terephthalate or neopentyl terephthalate, wherein the glycol component of the copolymerized polyester has a specific composition of 50 to 85 mol % of ethylene glycol, 12 to 45 mol % of 1,4-cyclohexanedimethanol or neopentyl glycol and 1.5 to 7.0 mol % of diethylene glycol. Such amorphous polyester chip can be obtained by cooling an amorphous polyester obtained by melt polymerization, cutting the polyester to give a chip, feeding the chip in a treatment tank, drying the chip and removing fine particles.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: October 21, 2008
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Keisuke Suzuki, Hiroki Fukuda, Hideki Shimizu, Tsuyoshi Matsunaga
  • Publication number: 20080200638
    Abstract: A composite comprising a bioabsorbable polymer or copolymer of a lactone monomer or mixture thereof and a ceramic, the composite having been prepared by the ceramic initiated ring-opening polymerization or copolymerization of the lactone monomer, wherein the ceramic is an apatitic calcium phosphate or an osteoconductive, bioabsorbable derivative thereof and a method of manufacture thereof.
    Type: Application
    Filed: August 1, 2005
    Publication date: August 21, 2008
    Inventor: Jody Redepenning
  • Publication number: 20080154013
    Abstract: A curable composition, useful as a thermosetting binder, having a polycarboxy polymer or co-polymer and a multifunctional polyol.
    Type: Application
    Filed: November 20, 2007
    Publication date: June 26, 2008
    Inventors: Guy Joseph Germaine Clamen, Nolwenn Colmou
  • Patent number: 7381787
    Abstract: The present invention provides a process of reducing acrolein by product from polytrimethylene terephthalate using selected phosphorus compounds to contact the polytrimethylene terephthalate or reactants in the process of producing polytrimethylene terephthalate. The selected phosphorus compounds are retained in the polytrimethylene terephthalate. The present invention also provides polytrimethylene terephthalate compositions containing amounts of phosphorus compounds.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: June 3, 2008
    Assignee: Shell Oil Company
    Inventors: Donald Ross Kelsey, Cecilia Zuqi Tse, Robert Lawrence Blackbourn, Holger Georg Bachmann, Eckhard Seidel
  • Patent number: 7358328
    Abstract: The invention relates to a process and a device for increasing the intrinsic viscosity of a polyester material by solid-state polymerization, wherein the polyester material is heat-treated in a heat treatment container (6), the polyester material being introduced into a preheating container (2) prior to being conveyed into the heat treatment container (6), in which preheating container it is heated to a heat treatment temperature of the heat treatment container (6) or to a temperature above that and is delivered to the heat treatment container (6) after having reached said temperature. The preheating container (2) is small in comparison with the heat treatment container (6) so that the relatively small amount of polyester material contained therein can quickly be heated to the intended temperature, thereby leading to a short residence time in the preheating container.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: April 15, 2008
    Assignee: Starlinger & Co Gesellschaft m.b.H.
    Inventors: Markus Fellinger, Christian Lovranich
  • Patent number: 7335318
    Abstract: The present invention provides a method for manufacturing a wholly aromatic liquid-crystalline polyester resin comprising the steps of: 1) acylating the hydroxy group of major monomer components selected from the group consisting of aromatic hydroxycarboxylic acid, aromatic diol and aromatic dicarboxylic acid, with an acylating agent, provided that said major monomer components comprise at least one of aromatic hydroxycarboxylic acid and aromatic diol; and 2) polycondensing said major monomer components of which hydroxy group is acylated, wherein, the polycondensation reaction is carried out in the presence of a metal dihydrogen phosphate in an amount of 1-5000 ppm based on the total monomer components, and a liquid-crystalline polyester resin manufactured by the method and a composition comprising said resin.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: February 26, 2008
    Assignee: Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo
    Inventors: Motoki Asahara, Toshiki Nishino
  • Patent number: 7335719
    Abstract: A polyester based on poly(trimethylene terephthalate) consisting essentially of trimethylene terephthalate repeating units, comprising at least one kind of compound selected from the group consisting of alkali metal compounds, alkaline earth metal compounds and manganese compounds in an amount of 10 to 150 ppm expressed in terms of the metal element in a molar ratio of the total amount of elements of the contained alkali metal elements, alkaline earth metal elements and manganese element to the amount of the contained phosphorus element within the range of the following formula (I): 0?P/M?1??(I) wherein, P is the molar amount of the phosphorus element in the polyester; M is the total amount of the alkali metal elements, alkaline earth metal elements and manganese element.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: February 26, 2008
    Assignee: Teijin Limited
    Inventor: Ryoji Tsukamoto
  • Patent number: 7321014
    Abstract: A thermoplastic composition is disclosed, comprising the reaction product of: a polyester polycarbonate comprising a polyester unit and a polycarbonate unit; a polysiloxane polycarbonate copolymer having a haze of 30% or less, comprising a polycarbonate unit and a polysiloxane unit; and a transesterification catalyst. The resulting thermoplastic composition has a haze of 30% or less as measured according to ASTM D1003-00 at a thickness of 3.2 millimeters. A method of forming the composition and articles formed from the composition are also disclosed.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: January 22, 2008
    Assignee: General Electric Company
    Inventors: Katherine Glasgow, Brian Mullen, Paul D. Sybert
  • Patent number: 7282555
    Abstract: The present invention is a method for efficiently incorporating a nitrogen containing methine light absorber into a polyester resin. The method includes forming a reaction mixture comprising combining a diol component, a diacid component selected from the group consisting of dicarboxylic acids, dicarboxylic acid derivatives, and mixtures thereof, an antimony containing compound, a phosphorus containing compound, a metal containing compound, and a nitrogen containing methine light absorber. The reaction mixture is polymerized in a polycondensation reaction system. In another embodiment the light absorber is added while the reaction products of one reactor are being transferred to the next reactor in the polycondensation reaction system. The present invention is also directed articles made from the polyester resin.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: October 16, 2007
    Assignee: Eastman Chemical Company
    Inventors: Max Allen Weaver, Jason Clay Pearson, Dale Milton Blakely, Frederick Leslie Colhoun
  • Patent number: RE40571
    Abstract: The present invention provides a catalyst for polyester production capable of producing a polyester with high catalytic activity, a process for producing a polyester using the catalyst and a polyester produced thereby. The catalyst comprises a solid titanium compound obtained by dehydro-drying a hydrolyzate obtained by hydrolysis of a titanium halide and which has a molar ratio (OH/Ti) of a hydroxyl group (OH) to titanium (Ti) exceeding 0.09 and less than 4. In the process, the polyester is obtained by polycondensing an aromatic dicarboxylic acid, or an ester-forming derivative thereof, and an aliphatic diol, or ester-forming derivative thereof, in the presence of the catalyst. The resulting polyester has excellent transparency and tint, a titanium content of 1 to 100 ppm, a magnesium content of 1 to 200 ppm and a magnesium to titanium weight ratio of not less than 0.01.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: November 11, 2008
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takeshi Ohmatsuzawa, Fujito Ehara, Hideshi Hori, Kazuo Toyota, Kenzaburou Fukutani, Junichi Imuta, Akiyoshi Shimizu, Takayuki Onogi, Seiji Noda, Masayuki Sakai, Shoji Hiraoka, Koji Nakamachi, Michio Tsugawa, Satoru Miyazoe