Processes Of Preparing Patents (Class 528/308.3)
  • Patent number: 11208367
    Abstract: A method for producing p-xylene, comprising: a dimerization step of bringing a first raw material comprising isobutene into contact with a dimerization catalyst to generate C8 components comprising diisobutylene; a cyclization step of bringing a second raw material comprising the C8 components into contact with a dehydrogenation catalyst comprising Pt in the presence of water to obtain a reaction product comprising p-xylene; and a collection step of collecting p-xylene from the reaction product.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 28, 2021
    Assignee: ENEOS CORPORATION
    Inventors: Ai Minoda, Masanari Akiyama, Yasuhiro Araki
  • Patent number: 10465041
    Abstract: A method for preparing the modified polyester. The modified polyester segments include terephthalic acid segment, ethylene glycol diol segment and branched diol segment, in which the branched diol segment refers to a diol segment in which a branch is located on a non-terminal carbon in the glycol segment and the branch is a linear carbon chain having 5 to 10 carbon atoms. The method includes preparing terephthalic acid glycol ester through the esterification of terephthalic acid and branched diol using the concentrated sulfuric acid as the catalyst. Then get ethylene terephthalate through the esterification of terephthalic acid and ethylene glycol. After stirring and mixing the two, the modified polyester can be obtained through polycondensation reaction of a low vacuum stage and a high vacuum stage using the catalyst and stabilizer.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: November 5, 2019
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei Fan, Zhili Liu, Wengang Li, Fangming Tang, Lili Wang, Lixin Yin
  • Publication number: 20150133627
    Abstract: Methods or preparing para-xylene from biomass by carrying out a Diels-Alder cycloaddition at controlled temperatures and activity ratios. Methods of preparing bio-terephthalic acid and bio-poly(ethylene terephthalate (bio-PET) are also disclosed, as well as products formed from bio-PET.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventors: INDRA PRAKASH, VENKATA SAI PRAKASH CHATURVEDULA, ROBERT M. KRIEGEL, XIAOYAN HUANG HUANG
  • Publication number: 20150112040
    Abstract: The invention relates to the on-line control of the molecular weight in continuous solid state polymerization processes. In particular it is directed to a polyester process or to a polyamide process, and more specifically to a poly(ethylene terephthalate) (PET) or a poly(butylene terephthalate) (PBT) or a nylon 6,6 continuous solid-state polymerization (SSP) process. An in-line viscometer melts and measures the molecular weight of the SSP resin and adjusts one or more of the process variables, i.e. reactor time, inert gas purity and inert gas temperature to maintain a constant resin molecular weight.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 23, 2015
    Applicant: INVISTA North America S.à r.l.
    Inventors: Gordon Shaw, Miguel Angel Osornio
  • Publication number: 20150105532
    Abstract: Provided is a method of depolymerizing polyesters from post-consumer products, such as beverage bottles, to produce a high purity reaction product. For the depolymerization reaction, the polyesters are reacted with an alcohol having 2 to 5 carbons and an amine organocatalyst at a temperature of about 150° C. to about 250° C. In one application, the use an organocatalyst with a boiling point significantly lower than the boiling point of the reactant alcohol allows for the ready recycling of the amine organocatalyst. In another application, performing the depolymerization reaction under pressure at a temperature above that of the alcohol allows for accelerated depolymerization rates and the recovery of the organocatalyst with no further heat input.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: International Business Machines Corporation
    Inventors: Robert D. Allen, Krishna M. Bajjuri, James L. Hedrick, Gregory Breyta, Carl E. Larson
  • Patent number: 8987408
    Abstract: A method for the production of solid polyester polymer particles comprising: a) polycondensing a molten polyester polymer composition in the presence of a polycondensation catalyst composition comprising antimony species; b) continuing the polycondenzation of the molten polyester polymer composition to an It.V. of 0.68 dL/g or more; and c) after reaching an It.V. of 0.68 dL/g or more, adding a catalyst stabilizer or deactivator to the polymer melt; and d) after reaching an It.V. of 0.68 dL/g or more, solidifying the melt into solid polyester polymer particles which do not contain organic acetaldehyde scavengers. In a further embodiment, after solidification of the polyester from the melt phase polycondenzation process: e) the amount of residual acetaldehyde in the particles in the solid state is reduced to a level of 10 ppm or less without increasing the It.V. of the particles by more than 0.03 dL/g.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Publication number: 20150080547
    Abstract: The invention provides non-naturally occurring microbial organisms having a (2-hydroxy-3-methyl-4-oxobutoxy) phosphonate (2H3M40P) pathway, p-toluate pathway, and/or terephthalate pathway. The invention additionally provides methods of using such organisms to produce 2H3M40P, p-toluate or terephthalate. Also provided herein are processes for isolating bio-based aromatic carboxylic acid, in particular, p-toluic acid or terephthalic acid, from a culture medium, wherein the processes involve contacting the culture medium with sufficient carbon dioxide (C02) to lower the pH of the culture medium to produce a precipitate comprised of the aromatic carboxylic acid.
    Type: Application
    Filed: January 18, 2013
    Publication date: March 19, 2015
    Applicant: Genomatica, Inc.
    Inventors: Robin E. Osterhout, Anthony P. Burgard, Mark J. Burk
  • Publication number: 20150065680
    Abstract: There is provided flakes of an ester mixture comprising bis-(hydroxyethyl)-terephthalate, dimers, tamers, tetramers, pentamers and higher oligomers of ethane-1,2-diol and terephthalate acid.
    Type: Application
    Filed: April 18, 2013
    Publication date: March 5, 2015
    Inventor: Shankar Devraj
  • Publication number: 20140275468
    Abstract: Hydrotreating catalysts and processes useful for the conversion of methoxylated aromatic compounds to simple aromatic compounds are provided. The catalysts comprise transition metal selected from the group consisting of Group 8 metals, Group 9 metals, Group 10 metals, Group 11 metals, and mixtures thereof, and catalyst support selected from the group consisting of shape-selective zeolite, silica, titania, zirconia, and mixtures thereof.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: THE PROCTER & GAMBLE COMPANY
    Inventors: Patti Jean Kellett, Dimitris Ioannis Collias
  • Patent number: 8835594
    Abstract: The invention relates to an apparatus and a method for the processing of plastic material, with a receptacle or cutter-compactor (1) into which the material to be treated can be introduced, in the lower region of which a discharge opening (10) is provided, through which the processed material can be ejected from the receptacle (1), for example into an extruder (11). According to the invention, the receptacle (1) is divided into at least two chambers (6a, 6b, 6c, . . . ) separated from each other by an intermediate base (2?, 2?, . . . ), wherein at least one mixing or comminution tool (7a, 7b, 7c, . . . ) is arranged which acts upon the material in each chamber (6a, 6b, 6c, . . . ), with which the material can be converted into a softened but permanently lumpy or particle-shaped and not melted state and wherein means (5?, 5?, . . . ) are provided which effect or permit an exchange or a transfer of the softened, lumpy, not melted material between each directly adjacent chamber (6a, 6b, 6c, . . . ).
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 16, 2014
    Assignee: EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H
    Inventors: Manfred Hackl, Gerhard Wendelin, Klaus Feichtinger
  • Patent number: 8829152
    Abstract: The invention relates to methods and systems for preparing macrocyclic polyester oligomer (MPO) directly from monomer via heterogeneous catalysis, rather than by depolymerizing a polyester. For example, in an exemplary embodiment, cyclic poly(butylene terephthalate) (cPBT) is produced by reacting butanediol (BDO) and dimethylterephthalate (DMT) in an organic solvent—for example, ortho-dichlorobenzene (oDCB). The mixture flows over (or otherwise contacts) the catalyst-coated fiberglass or silica gel, e.g., which is packed in a column or bed. MPO is produced in the reaction mixture, while residual linears and catalyst residue remain in the column/bed.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: September 9, 2014
    Assignee: Liquid Thermo Plastics, Inc.
    Inventors: Jimmy Lynn Webb, James Mihalich
  • Publication number: 20140197580
    Abstract: The invention relates to a method for producing a bio-PET polymer comprising the following steps: Step A) providing at least one diacid compound, comprising a terephtalate compound; Step B) providing at least one diol compound, comprising monoethylene glycol; wherein—at least one of the terephtalate compound and/or the monoethylene glycol is obtained from at least one bio-based material, and—at least one of the diacid compound and/or the diol compound further comprises at least one crystallization retarding compound; and Step C) copolymerizing a mixture of the diacid compound and the diol compound to obtain a bio-PET polymer comprising diacid units and diol units, comprising up to 7.5 mol % of unit(s) corresponding to the at least one crystallization retarding compound, based on the total number of moles of diacid units contained in the bio-PET.
    Type: Application
    Filed: September 7, 2012
    Publication date: July 17, 2014
    Inventor: Francoise Poulat
  • Patent number: 8779084
    Abstract: The present invention discloses a process for producing a polyether-polyester block copolymer with a di(C 1-C 4)alkyl ester of aromatic dicarboxylic acid, an aliphatic diol or aliphatic polyol and a polyether having at least one terminal hydroxyl group in an inert solvent. In the present invention, the inert solvent 5 is used to prevent the di(C 1-C 4)alkyl ester of aromatic dicarboxylic acid from sublimation instead of excessive polyol, such that the subsequent removal of excessive polyol under high temperature and high vacuum is avoided.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: July 15, 2014
    Assignee: Solvay (China) Co., Ltd.
    Inventors: Zhaoquing Liu, Daobing Lin, Qiaobo Li
  • Patent number: 8771583
    Abstract: Polyester compositions described herein have properties which are particularly suitable for extrusion blow molding (EBM). These properties relate primarily to the rate of crystallization and melt strength or melt viscosity. Articles prepared from the polyester compositions exhibit good clarity, aesthetics, and other physical properties. The polyester compositions also exhibit broad molecular weight distribution (MWD), resulting in improved processability and melt strength. The crystallization rate allows for good drying characteristics while also enabling the use of regrind. In addition, the compositions exhibit improved recyclability, such as in existing PET recycling streams. In one aspect, articles are prepared in an extrusion blow molding method by combining a dry first polyester copolymer component, a dry second polyester component, and a chain extender to form a feed material suitable for extrusion blow molding.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 8, 2014
    Assignee: Pepsico, Inc.
    Inventor: Clarence Sequeira
  • Publication number: 20140163195
    Abstract: Bio-based terephthalic acid (bio-TPA), bio-based dimethyl terephthalate (bio-DMT), and bio-based polyesters, which are produced from a biomass containing a terpene or terpenoid, such as limonene are described, as well as the process of making these products. The bio-based polyesters include poly(alkylene terephthalate)s such as bio-based poly(ethylene terephthalate) (bio-PET), bio-based poly(trimethylene terephthalate) (bio-PTT), bio-based poly(butylene terephthalate) (bio-PBT), and bio-based poly(cyclohexylene dimethyl terephthalate) (bio-PCT).
    Type: Application
    Filed: December 26, 2013
    Publication date: June 12, 2014
    Inventors: Corrado Berti, Enrico Binassi, Martino Colonna, Maurizio Fiorini, Ganesh Kannan, Sreepadaraj Karanam, Marzia Mazzacurati, Ihab Odeh
  • Patent number: 8748562
    Abstract: A process for producing higher molecular weight polyester includes heating a polyester to form a melt, and applying and maintaining a vacuum of between about 5 mm and about 85 mm of mercury to the melt while passing bubbles of gas through the melt until molecular weight has increased. The process may involve esterification of a diacid component and a diol component at elevated temperature. After the acid functional groups have essentially reacted, a vacuum of about 5 mm of mercury or less was applied and excess diol stripped off during transesterification, thereby increasing molecular weight.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: June 10, 2014
    Assignee: AWI Licensing Company
    Inventors: Larry W. Leininger, Dong Tian
  • Patent number: 8748559
    Abstract: Polyester compositions, especially polyethylene terephthalate homopolymer and copolymers, are disclosed containing titanium catalysts and catalyst deactivator added late in the manufacturing processing having reduced acetaldehyde generation rates. The polyester compositions are low in free acetaldehyde, making them suitable for fabrication into beverage containers for relatively tasteless beverages such as bottle water. Furthermore, the polyesters are polymerized to a high inherent viscosity in reduced processing time, without the necessity of further polymerization in the solid state, and in the absence of acetaldehyde scavengers leading to polyester polymers having reduced color.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: June 10, 2014
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Patent number: 8735515
    Abstract: A process is disclosed for producing plastic materials by providing a biology based feedstock and reacting the biology based feedstock to form a feedstock capable of reaction to form the plastic material, wherein the plastic material is selected from polystyrene and polyethylene terephthalate (PET).
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: May 27, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Scott Cooper, Olga Khabashesku
  • Patent number: 8728368
    Abstract: The invention relates to a method for producing a semicrystalline polymer, said method comprising the following steps: producing a polymer melt from a crystallizable polymer; shaping particles and solidifying the polymer melt, the step of shaping the particles being carried out before or after solidification; cooling the particles; treating the particles to reduce their tendency to agglomerate; crystallizing the particles. The invention is characterized in that the treatment is carried out by shaking at a temperature T1 which is below the glass transition temperature of the polymer plus 10° C., i.e. T1<Tg+10° C.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 20, 2014
    Assignee: Bühler Thermal Processes AG
    Inventors: Brent Allan Culbert, Andreas Christel, Mauricio Rodrigues
  • Publication number: 20140135470
    Abstract: This specification discloses a complete method to manufacture polyester articles from freshly harvested ligno-cellulosic biomass. The process steps include pretreating the biomass and the converting the lignin to one of several possible organic steams by deoxygenating and dehydrogenating the lignin in the presence of a Raney Nickel catalyst, separating the organics, and then processing the organics into polyester feedstocks and converting those feedstocks to polyester.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 15, 2014
    Applicant: CHEMTEX ITALIA, S.p.A.
    Inventors: Aaron Murray, Steven Ryba
  • Publication number: 20140107306
    Abstract: In this invention, a portion of the products from a pyrolysis reactor are reacted in a process to form one or more chemical intermediates.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 17, 2014
    Inventors: Terry Mazanec, Eugene Schmelzer, Fred Pesa, Dennis McCullough, Ruozhi Song, Yu-Ting Cheng
  • Patent number: 8623991
    Abstract: A process for producing an IPA/PET copolymer fiber that is homogenous having a substantially level, single IPA copolymer content, said fiber having improved pilling resistance and dye uptake.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: January 7, 2014
    Assignee: David C. Poole Company, Inc.
    Inventor: Robert Alton Usher, Jr.
  • Patent number: 8563677
    Abstract: A stable catalyst solution suitable for catalyzing the polycondensation of reactants to make polyester polymers comprising: (i) M, wherein M is represented by an alkaline earth metal or alkali metal and (ii) aluminum metal and (iii) a polyhydroxyl solvent having at least 3 carbon atoms and at least two primary hydroxyl groups, the longest carbon chain being a hydrocarbon; such as 1,3-propane diol, 1,4-butane diol, 1,5-pentane diol, or combinations thereof, wherein the molar ratio of M:Al ranges from 0.75:1 to less than 1.5:1. The catalyst solution is desirably a solution which does not precipitate upon standing over a period of at least one week at room temperature (25° C.-40° C.), even at molar ratios of M:Al approaching 1:1. There is also provided a method for the manufacture of the solution, its feed to and use in the manufacture of a polyester polymer, and polyester polymers obtained by combining certain ingredients or containing the residues of these ingredients in the composition.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 22, 2013
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Jason Christopher Jenkins
  • Patent number: 8557950
    Abstract: A method for the production of solid polyester polymer particles comprising: a) polycondensing a molten polyester polymer composition in the presence of a polycondensation catalyst composition comprising antimony species; b) continuing the polycondensation of the molten polyester polymer composition to an It.V. of 0.68 dL/g or more; and c) after reaching an It.V. of 0.68 dL/g or more, adding a catalyst stabilizer or deactivator to the polymer melt; and d) after reaching an It.V. of 0.68 dL/g or more, solidifying the melt into solid polyester polymer particles which do not contain organic acetaldehyde scavengers. In a further embodiment, after solidification of the polyester from the melt phase polycondensation process: e) the amount of residual acetaldehyde in the particles in the solid state is reduced to a level of 10 ppm or less without increasing the It.V. of the particles by more than 0.03 dL/g.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: October 15, 2013
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Publication number: 20130261281
    Abstract: Disclosed in this specification is the design for an internal mixing device which increases the plug flow like behaviour of the rotating inclined reactor.
    Type: Application
    Filed: June 3, 2013
    Publication date: October 3, 2013
    Inventors: Giuliano Cavaglia', Giuseppina Boveri
  • Patent number: 8546513
    Abstract: The disclosure relates to methods and materials useful for polymerizing a monomer. In one embodiment, for example, the disclosure provides a method for polymerizing a monomer containing a plurality of electrophilic groups, wherein the method comprises contacting the monomer with a nucleophilic reagent in the presence of a guanidine-containing catalyst. The methods and materials of the disclosure find utility, for example, in the field of materials science.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: October 1, 2013
    Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: James L. Hedrick, Russell C. Pratt, Robert M. Waymouth
  • Publication number: 20130172507
    Abstract: The method for detecting rotary speed includes: a step (I) for deeming the difference between input power (P) and loss power (A) to be a first order approximation value (PM1) of the mechanical output of an induction motor, and for obtaining a first approximation value (N1=NS(1?S1)) (NS is the synchronous speed) of the rotary speed from the functional relationship (PM1=?S1) of the output (PM) and slip (S) known for the induction motor; a step (II) for obtaining loss power (B1) based on the value (N1); and a step (III) for deeming a second order approximation value (PM2) of the motor output to be P?(A+B1), and for obtaining a second order approximation value (N2=NS(1?S2)) of the rotary speed from the functional relationship (PM2=?S2) (? is the motor constant) of the output (PM) and slip (S).
    Type: Application
    Filed: December 12, 2011
    Publication date: July 4, 2013
    Applicant: DIC CORPORATION
    Inventor: Shouei Ebisawa
  • Patent number: 8470250
    Abstract: A polyester production process employing an esterification system that utilizes a horizontally elongated esterification vessel as an esterification reactor and/or a vapor-liquid disengagement vessel.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: June 25, 2013
    Assignee: Grupo Petrotemex, S.A. DE C.V.
    Inventor: Bruce Roger DeBruin
  • Patent number: 8470962
    Abstract: A method of preventing bubble formation during or after thermoforming polyester sheet comprising heating the polyester sheet to about 100-165° F. for at least about 1 hour prior to thermoforming the sheet.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: June 25, 2013
    Assignee: MYCONE Dental Supply Co., Inc.
    Inventor: David E. Nelson
  • Patent number: 8404755
    Abstract: Polyester compositions described herein have properties which are particularly suitable for extrusion blow molding (EBM). These properties relate primarily to the rate of crystallization and melt strength or melt viscosity. Articles prepared from the polyester compositions exhibit good clarity, aesthetics, and other physical properties. The polyester compositions also exhibit broad molecular weight distribution (MWD), resulting in improved processability and melt strength. The crystallization rate allows for good drying characteristics while also enabling the use of regrind. In addition, the compositions exhibit improved recyclability, such as in existing PET recycling streams. In one aspect, articles are prepared in an extrusion blow molding method by combining a dry first polyester copolymer component, a dry second polyester component, and a chain extender to form a feed material suitable for extrusion blow molding.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: March 26, 2013
    Assignee: PepsiCo, Inc.
    Inventor: Clarence Sequeira
  • Patent number: 8399599
    Abstract: The invention relates to an apparatus and a method for the processing of plastic material, with a receptacle or cutter-compactor (1) into which the material to be treated can be introduced, in the lower region of which a discharge opening (10) is provided, through which the processed material can be ejected from the receptacle (1), for example into an extruder (11). According to the invention, the receptacle (1) is divided into at least two chambers (6a, 6b, 6c, . . . ) separated from each other by an intermediate base (2?, 2?, . . . ), wherein at least one mixing or comminution tool (7a, 7b, 7c, . . . ) is arranged which acts upon the material in each chamber (6a, 6b, 6c, . . . ), with which the material can be converted into a softened but permanently lumpy or particle-shaped and not melted state and wherein means (5?, 5?, . . . ) are provided which effect or permit an exchange or a transfer of the softened, lumpy, not melted material between each directly adjacent chamber (6a, 6b, 6c, . . . ).
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: March 19, 2013
    Assignee: EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H.
    Inventors: Manfred Hackl, Gerhard Wendelin, Klaus Feichtinger
  • Publication number: 20130059957
    Abstract: One aspect of the invention is polyester compositions containing: (I) at least one polyester which comprises: (a) a dicarboxylic acid component comprising: (i) 70 to 100 mole % of terephthalic acid residues; (ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and (iii) 0 to 10 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and (b) a glycol component comprising: (i) 1 to 99 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and (ii) 1 to 99 mole % of cyclohexanedimethanol residues; and (II) at least one thermal stabilizer chosen from at least one of alkyl phosphate esters, aryl phosphate esters, mixed alkyl aryl phosphate esters, reaction products thereof, and mixtures thereof; wherein the total mole % of the dicarboxylic acid component is 100 mole %, and wherein the total mole % of the glycol component is 100 mole %.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 7, 2013
    Applicant: Eastman Chemical Company
    Inventors: Ted Calvin Germroth, Gary Wayne Connell, Emmett Dudley Crawford, Thomas Joseph Pecorini, Douglas Stephens McWilliams, Benjamin Fredrick Barton, Damon Bryan Shackelford
  • Patent number: 8389667
    Abstract: The invention relates to a partially crystalline polyethylene terephthalate having a degree of polymerization which is greater than 80, particularly greater than 100, produced from a diol component and a dicarboxylic acid component, wherein according to the invention the DSC melting point, when measured with a heating rate of 10° C./Min during the first passage and second passage, is less than the melting temperature (Tm) of a comparable standard polyethylene terephthalate which is dependent upon the comonomer content.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: March 5, 2013
    Assignee: Buhler AG
    Inventors: Andreas Christel, Brent Allan Culbert, Theodor Jürgens
  • Patent number: 8367796
    Abstract: The disclosure relates to methods and materials useful for polymerizing a monomer. In one embodiment, for example, the disclosure provides a method for polymerizing a monomer containing a plurality of electrophilic groups, wherein the method comprises contacting the monomer with a nucleophilic reagent in the presence of a guanidine-containing catalyst. The methods and materials of the disclosure find utility, for example, in the field of materials science.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: February 5, 2013
    Assignees: International Business Machines Corporation, Stanford University
    Inventors: James Lupton Hedrick, Russell Clayton Pratt, Robert M. Waymouth
  • Patent number: 8343715
    Abstract: A method for producing a photochromic polyester, the method including: a) providing a reaction solution having at least one ester monomer, a photochromic compound having or functionalized to have at least one hydroxyl group, and a metal-free catalyst; b) reacting the at least one ester monomer and the photochromic compound using the metal-free catalyst to produce a polymeric product, where the polymeric product has a photochromic polyester; and c) separating the polymeric product from the reaction solution. A photochromic polyester includes a photochromic compound covalently linked to a polyester and the polyester is obtained by polymerizing a lactone.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: January 1, 2013
    Assignee: Xerox Corporation
    Inventors: Santiago Faucher, Gabriel Iftime, Kentaro Morimitsu, Adela Goredema, Jordan H. Wosnick
  • Patent number: 8324338
    Abstract: An oligomer removing agent for polyester-based fiber materials comprises a polyester copolymer which is obtained by polycondensation of a dibasic acid component containing 15-65 mol % of a sulfonate group-containing dibasic acid and a dihydric alcohol component containing polyethylene glycol with a molecular weight of 900-3500, and which has a 200° C. melt viscosity of 5000-23,000 mPa·s and has 10-40 mass % polyoxyethylene chains in the molecule. The oligomer removing agent is able to overcome the problems caused by deposition of polyester oligomers, when added to the dyeing bath in a dyeing step for polyester fiber materials or for fiber materials that are composites thereof with other fiber materials.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 4, 2012
    Assignee: Nicca Chemical Co., Ltd.
    Inventors: Masaaki Hosoda, Masatoshi Hayashi
  • Patent number: 8324339
    Abstract: Method and apparatus for thermally processing polyester pellets, e.g., polyethylene terephthalate pellets, in order to achieve a partial crystallization, whereby the polyester melt is fed to an underwater pelletizer and pelletized, the pellets obtained are fed to a water/solids separating device and the dried pellets are fed at a pellet temperature of greater than 100°C. to an agitation device that the pellets leave at a pellet temperature of over 100°C.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: December 4, 2012
    Assignee: Eastman Chemical Company
    Inventor: Theodor Bruckmann
  • Publication number: 20120289677
    Abstract: One exemplary embodiment can be a process for alkylating benzene. The process can include obtaining at least a portion of a stream from a transalkylation zone, combining the at least the portion of the stream from the transalkylation zone with a fuel gas stream, and providing at least a portion of the combined stream to a benzene methylation zone. Typically, the fuel gas stream includes an effective amount of one or more alkanes for alkylating at least partially from a hydrogen purification process tail gas.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Applicant: UOP, LLC
    Inventors: Laura E. Leonard, Robert Haizmann
  • Patent number: 8309677
    Abstract: A system for processing large quantities of a reaction medium while maintaining the reaction medium in sheets. The system includes a reactor having a plurality of vertically-spaced downwardly-sloped trays over which the reaction medium flows while it is subjected to reaction conditions. The slope of the trays increases downwardly to accommodate for the increased viscosity of the reaction medium while the reaction medium flows downwardly through the reactor. An upper portion of the trays have a uni-directional configuration, while a lower portion of the trays have a bi-directional configuration. Further, the orientation of flow across the uni-directional trays is rotated by 90 degrees in at least one location as the reaction medium flows down the uni-directional trays.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: November 13, 2012
    Assignee: Eastman Chemical Company
    Inventors: Thomas Lloyd Yount, Larry Cate Windes, Bruce Roger DeBruin
  • Patent number: 8304518
    Abstract: The invention relates to a method for thermally treating polyester pellets to obtain partial crystallization, whereby the polyester melt is supplied to an underwater granulating system and granulated; the thus obtained granulate are fed from the underwater granulating system into a water-solids separator. The dried granulate is then fed into a treatment device at a granulate temperature higher than 100 degrees C., without external energy or heat being supplied. The intrinsic heat of the granulate is used as the heat treatment leading to partial crystallization. The crystallization device is embodied as an at least lightly inclined reactor, into which granulate is fed at a temperature higher than 100 degrees C. The granulate passes through the reactor from the loading point to the discharge point under its own weight and exits the reactor with a temperature higher than 130 degrees C.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: November 6, 2012
    Assignee: BKG Bruckmann & Kreyenborg Granuliertechnik GmbH
    Inventor: Theodor Bruckmann
  • Patent number: 8299135
    Abstract: Embodiments of the invention provide a process for processing post-consumer polymer. The polymer is contacted with a control medium having a carrier gas and a reactive vapor. Such a process is useful for processing post-consumer polymers with lower energy and reactants than with liquid reactants, and also promotes decontamination of the recycled polymer during the reaction.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: October 30, 2012
    Assignee: Bepex International, LLC
    Inventor: Girish Bhatt
  • Publication number: 20120270983
    Abstract: The invention provides polymer particles useful in a variety of applications, including coating applications such as packaging coatings. The polymer particles preferably have a volume-averaged particle size of less than 40 microns, more preferably less than 20 microns. In preferred embodiments, the polymer particles are precipitated particles, more preferably precipitated polyester particles, which are optionally free of low-molecular weight surfactant.
    Type: Application
    Filed: August 11, 2010
    Publication date: October 25, 2012
    Applicant: VALSPAR SOURCING, INC.
    Inventors: Charles Skillman, Jeffrey Niederst, Grant Schutte
  • Patent number: 8252888
    Abstract: The present invention relates to a method for the continuous production of high-molecular polyesters by esterification of dicarboxylic acids and/or transesterification of dicarboxylic acid esters with diols and/or mixtures thereof in the presence of catalysts with formation of a prepolymer in a tower reactor and polycondensation thereof to form a high-molecular polyester in a polycondensation reactor, a prepolymer with >40 to 70 repeat units (DP) being produced in the tower reactor and this prepolymer being polycondensed in only one further reactor to form a polyester with >150 to 205 DP.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: August 28, 2012
    Assignee: Uhde Inventa-Fischer GmbH
    Inventor: Eike Schulz Van Endert
  • Publication number: 20120161358
    Abstract: The invention relates to a process for making polyethylene terephthalate (PET) from ethylene glycol (EG), purified terephthalic acid (PTA) and optionally up to 6 mol % comonomer, using a mixed metal catalyst system and comprising the steps of a) esterifying EG and PTA to form diethyleneglycol terephthalate and oligomers (DGT), and b) melt-phase polycondensing DGT to form PET and EG, wherein the catalyst system substantially consists of 70-160 ppm of Sb-compound, 20-70 ppm of Zn-compound, and 0.5-20 ppm of Ti-glycolate as active components (ppm metal based on PET). With this process that applies reduced amount of metal catalyst components PET can be obtained with high productivity, which polyester shows favourable colour and optical clarity, also if recycling of EG is applied within the process.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 28, 2012
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Munif Al-Munif, Mummaneni Venkateswara Rao, Zahir Bashir, Suresh Padmanabhan
  • Patent number: 8192694
    Abstract: A polyester production system employing a vertically elongated esterification reactor. The esterification reactor of the present invention is an improvement over conventional CSTR esterification reactors because, for example, in one embodiment, the reactor requires little or no mechanical agitation. Further, in one embodiment, the positioning of the inlets and outlets of the reactor provides improved operational performance and flexibility over CSTRs of the prior art.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: June 5, 2012
    Assignee: Grupo Petrotemex, S.A. DE C.V.
    Inventor: Bruce Roger DeBruin
  • Patent number: 8143355
    Abstract: Provided is a polymer compound having a furan ring having a degree of polymerization of 185 or more and 600 or less. This polymer compound has excellent mechanical strength (flexural strength).
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: March 27, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsuhiro Matsuda, Hirohide Matsuhisa, Hitoshi Horie, Takeshi Komuro
  • Publication number: 20120046427
    Abstract: A process is disclosed for producing plastic materials by providing a biology based feedstock and reacting the biology based feedstock to form a feedstock capable of reaction to form the plastic material, wherein the plastic material is selected from polystyrene and polyethylene terephthalate (PET).
    Type: Application
    Filed: July 27, 2011
    Publication date: February 23, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Scott Cooper, Olga Khabashesku
  • Publication number: 20120035342
    Abstract: The invention relates to a method and to a device for producing a thermoplastic polyester, having the following steps: a) producing polyester pre-polymer particles; b) crystallizing the polyester pre-polymer particles for producing partially crystalline polyester pre-polymer particles; c) heating the partially crystalline polyester pre-polymer particles to a suitable reaction temperature for producing heated polyester pre-polymer particles; d) reacting the heated polyester pre-polymer particles for producing polyester polymer particles having an intrinsic viscosity between 0.70 and 0.95 dl/g. The reaction in step d) takes place in at least one reactor through which the particles flow by means of gravity. The dwell time in the reactor equals between 6 and 30 hours. The particles are supplied at least to step d) at a mass flow of between 40 and 100 t/h. The present invention is characterized in that a settling rate of the particles in the reactor equals between 2 and 6 m/h.
    Type: Application
    Filed: February 23, 2010
    Publication date: February 9, 2012
    Applicant: Buhler AG
    Inventors: Brent Allan Culbert, Mauricio Rodrigues, Andreas Christel, Franz Giger
  • Patent number: 8110149
    Abstract: The present invention relates to a method for the continuous production of high-molecular polyesters by esterification of dicarboxylic acids and/or transesterification of dicarboxylic acid esters with diols and/or mixtures thereof in the presence of catalysts with formation of a prepolymer in a tower reactor and polycondensation thereof to form a high-molecular polyester in a polycondensation reactor, a prepolymer with >40 to 70 repeat units (DP) being produced in the tower reactor and this prepolymer being polycondensed in only one further reactor to form a polyester with >150 to 205 DP.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: February 7, 2012
    Assignee: Uhde Inventa-Fischer GmbH
    Inventor: Eike Schulz Van Endert
  • Patent number: 8110609
    Abstract: The invention relates to a composition comprising a modified, random copolyetherester containing a modified, random polytrimethylene terephthalate copolymer block that is derived from a polyethylene terephthalate component selected from the group consisting of polyethylene terephthalate and polyethylene terephthalate copolymers and combinations thereof; and contains at least one residue derived from the polyethylene terephthalate component; and a polyalkylene oxide copolymer block that contains polyalkylene oxide and at least one residue derived from the polyethylene terephthalate component.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: February 7, 2012
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Michael Determan, Ganesh Kannan, Kenneth Frederick Miller, Dhaval Shah