Lactam Reactant Contains 3-5 Or 12 Or More Carbon Atoms In The Lactam Ring Patents (Class 528/326)
  • Patent number: 10392475
    Abstract: A polyamide elastomer comprising a reaction product of components (a), (b), and (c). Component (a) has the formula HOOC—R1—(—NH—CO—R1-)n—NH2 (where each R1 independently is linear saturated hydrocarbon, n represents a real number of 0 or greater, and when the formula contains multiple repeating units each containing R1, n represents a total number of those repeating units) and the Mn of component (a)=4000-10000. Component (b) has the formula HOOC—R2—COOH (where R2 represents a direct bond or a linear saturated hydrocarbon group). Component (c) has the formula H2N—R4—(—O—R4-)m—NH2 (where each R4 independently represents a saturated hydrocarbon group containing 1 or more carbon atoms; m represents a real number of 1 or more; and when the formula contains two or more types of the repeating units each containing R4, m represents a total number of the two or more types of the repeating units each containing R4).
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: August 27, 2019
    Assignee: KANEKA CORPORATION
    Inventor: Takayuki Kato
  • Patent number: 9040653
    Abstract: This disclosure provides methods of controlled polymerization of cyclic compounds catalyzed by carbene derivatives having a general formula as shown below, and to obtain a biodegradable polymeric material having a large molecular weight, a narrow dispersity, and no metallic impurity.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 26, 2015
    Assignee: NANJING UNIVERSITY OF TECHNOLOGY
    Inventors: Zhenjiang Li, Pingkai Ouyang, He Huang
  • Patent number: 9012567
    Abstract: Supramolecular polymers having repeat units connected by hydrogen bonds, where the repeat units are monomers, macromers, oligomers or polymers where at least one on the monomers contains at least one 2,5-diketopiperazine group are described. Composition prepared from these supramolecular polymers and articles produced from these compositions are also described.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 21, 2015
    Assignee: Rhodia Operations
    Inventors: Thierry Badel, Stéphane Jeol, Franck Touraud
  • Patent number: 9012026
    Abstract: The invention relates to a copolyamide comprising at least two different units corresponding to the following general formulation: A/X.T A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (Ca diamine).(Cb diacid), with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36, advantageously between 9 and 18, X.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: April 21, 2015
    Assignee: Arkema France
    Inventors: Thierry Briffaud, Philippe Blondel
  • Patent number: 8981039
    Abstract: The present invention relates to a composition that can be used to manufacture an impermeable, sealing, tight envelope, to a process for manufacturing an impermeable envelope, and to a tank. The composition of the invention comprises in % by weight relative to the total weight of the composition: from 70 to 90% of a monomer (I); from 0.1 to 1% of an activator (II), in which R is chosen from the group comprising CnH2n+2, n being an integer chosen from 1 to 10; —OH; —OCnH2n+2, n being an integer chosen from 1 to 10; and —NHR? where R? is either CnH2n+2, n being an integer chosen from 1 to 10, or an amine functional group; from 2 to 6% of a catalyst (III), in which X is chosen from the group comprising MgBr, MgI, Li and Na; and from 10 to 20% of an additive (IV), with: This composition can be used, for example, to manufacture elements that are impermeable to fluids, for example impermeable envelopes, for example that can be used in the manufacture of type IV tanks or hydraulic accumulators.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 17, 2015
    Assignees: Commissariat a l'Energie Atomique, L'Air Liquide, Societe Anonyme pour l'etude et l'exploitation des procedes Georges Claude
    Inventors: Philippe Mazabraud, Elodie Chauvot, Laurent Delnaud, Katia Barral
  • Patent number: 8957180
    Abstract: The present invention relates to a process for producing moldings comprising (A) at least one lactam, (B) at least one activator, and (C) at least one catalyst, where (A) to (C) proceed through treatments comprising a) mixing of (A), (B), and (C), b) metering of (A), (B), and (C) into an apparatus for producing mixture droplets, and producing mixture droplets, and c) depositing the mixture droplets comprising (A), (B), and (C) on a belt, and d) producing moldings.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: February 17, 2015
    Assignee: BASF SE
    Inventors: Dietrich Scherzer, Philippe Desbois, Freddy Gruber, Achim Stammer
  • Publication number: 20140275439
    Abstract: Disclosed is a biodegradable polymer comprising an optionally substituted aliphatic hydrocarbon group having 5 or more carbon atoms at at least one terminal of the polymer chain, wherein the biodegradable polymer has a weight-average molecular weight of not less than 35,000 when the biodegradable polymer has a 2-pyrrolidone polymer or copolymer as its main chain and stearic acid at the terminal of the polymer chain; a molded article comprising the biodegradable polymer; and a method for controlling biodegradability of a biodegradable polymer, comprising introducing an optionally substituted aliphatic hydrocarbon group into the terminal of the polymer chain of the biodegradable polymer.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 18, 2014
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Naoko Yamano, Norioki Kawasaki, Atsuyoshi Nakayama
  • Publication number: 20140228524
    Abstract: The disclosure relates to oxygen scavenging polymer compositions, methods of making the compositions, articles prepared from the compositions, and methods of making the articles. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 14, 2014
    Applicant: Plastipak Packaging, Inc.
    Inventor: Girish N. Deshpande
  • Patent number: 8802809
    Abstract: The present invention relates to a new method of production of cast polyamides.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 12, 2014
    Assignee: Rhein Chemie Rheinau GmbH
    Inventors: Wilhelm Laufer, Armin Eckert
  • Patent number: 8796469
    Abstract: The present invention relates to polymers comprising one or more (repeating) unit(s) of the formula (I) which are characterized in that Ar1 and Ar1? are independently of each other are an annulated (aromatic) heterocyclic ring system, containing at least one thiophene ring, which may be optionally substituted by one, or more groups, and their use as organic semiconductor in organic devices, especially in organic photovoltaics (solar cells) and photodiodes, or in a device containing a diode and/or an organic field effect transistor. The polymers according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in organic field effect transistors, organic photovoltaics (solar cells) and photodiodes.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: August 5, 2014
    Assignee: BASF SE
    Inventors: Pascal Hayoz, Olivier Frédéric Aebischer, Mathias Düggeli, Hans Jürg Kirner, Marta Fonrodona Turon
  • Patent number: 8772438
    Abstract: A process for making a polyamide polymer, said process comprising heating, in one or more ionic liquid(s), one or more polyamide precursor(s) selected from: (i) one or more free dicarboxylic acid(s) or ester(s) thereof, with one or more diamine(s); or (ii) one or more salt(s) of a dicarboxylic acid with a diamine; or (iii) one or more lactam(s); or (iv) mixtures of any of the foregoing precursors (i) to (iii).
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 8, 2014
    Assignee: Invista North America S.är.l.
    Inventors: Keith Whiston, Charles Richard Langrick, Kenneth Richard Seddon, Alberto V. Puga
  • Patent number: 8759475
    Abstract: Polyamides, e.g., polyhexamethylene adipamide, are continuously produced via the following stages: Stage 1: into and through a reactor, polycondensing a liquid stream which contain the polyamide monomer(s) at a pressure P1 greater than atmospheric pressure, the stream of material at the outlet of the reactor including a vapor phase which contains steam and a liquid phase which at least contains the product of polycondensation; Stage 2: feeding the outlet stream of material into a chamber, evacuating at least a portion of the vapor phase therefrom and recovering at least the liquid phase which at least contains the product of polycondensation, the pressure P2 in the chamber being regulated at a set value such that it is greater than atmospheric pressure and the residence time of said liquid phase in the chamber being less than 5 minutes; and Stage 3: pressure reducing at least the liquid phase which at least contains the stream of polycondensation product recovered during Stage 2.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: June 24, 2014
    Assignee: Rhodia Operations
    Inventors: Jean-Francois Thierry, Sébastien Lomel, Vincent Mollet, Matthieu Helft, Cédric Fillon
  • Patent number: 8748004
    Abstract: The invention relates to a copolyamide comprising at least two different units corresponding to the following general formulation: A/X.T A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (Ca diamine).(Cb diacid), with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36, advantageously between 9 and 18, X.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: June 10, 2014
    Assignee: Arkema France
    Inventors: Thierry Briffaud, Philippe Blondel
  • Patent number: 8720677
    Abstract: Stimuli-responsive highly absorbent superabsorbent polymers (SAPs) are used to harness water to augment water supply and solve water crisis. Rain water, dew or sea water is harnessed in fabric-based sachets or bags partially filled with the polymers. The hydrated polymers are used to store water in warehouses for an extended period of time and the invention may obviate the need to construct controversial huge dams and canals or drill wells. The stored water in superabsorbent polymers is released at the point of use by any stimulus which may be light-induced, electrical, thermal or chemical treatment. SAPs with 2000 g/g of absorbency can yield 99.95% pure water in solid/gel form. An ultra SAP with absorbency of 10,000 g/g of the polymer could hold 10 billion cu·m. of water in one million tonnes of the polymer. This is more than the capacity of a typical large dam over a river.
    Type: Grant
    Filed: July 21, 2013
    Date of Patent: May 13, 2014
    Inventor: Manilal J. Savla
  • Patent number: 8658756
    Abstract: The present invention relates to a composition that can be used to manufacture an impermeable, sealing, tight envelope, to a process for manufacturing an impermeable envelope, and to a tank. The composition of the invention comprises in % by weight relative to the total weight of the composition: from 70 to 90% of a monomer (I); from 0.1 to 1% of an activator (II), in which R is chosen from the group comprising CnH2n+2, n being an integer chosen from 1 to 10; —OH; —OCnH2n+2, n being an integer chosen from 1 to 10; and —NHR? where R? is either CnH2n+2, n being an integer chosen from 1 to 10, or an amine functional group; from 2 to 6% of a catalyst (III), in which X is chosen from the group comprising MgBr, MgI, Li and Na; and from 10 to 20% of an additive (IV), with: This composition can be used, for example, to manufacture elements that are impermeable to fluids, for example impermeable envelopes, for example that can be used in the manufacture of type IV tanks or hydraulic accumulators.
    Type: Grant
    Filed: November 23, 2006
    Date of Patent: February 25, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Philippe Mazabraud, Elodie Chauvot, Laurent Delnaud, Katia Barral
  • Patent number: 8603634
    Abstract: This invention relates to poly(ester amide)s (PEAs) comprising inactivated terminal amino and carboxyl groups, methods of synthesizing the inactivated PEAs and uses for them in the treatment of vascular diseases.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: December 10, 2013
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Jessica Renee DesNoyer, Stephen Dirk Pacetti, Vidya Nayak, Lothar Kleiner
  • Publication number: 20130175481
    Abstract: The invention relates to novel polymers containg repeating units based on benzodifuran, benzodipyrrole or benzodithiophene, monomers and methods for their preparation, their use as semiconductors in organic electronic (OE) devices, especially in organic photovoltaic (OPV) devices, and to OE and OPV devices comprising these polymers.
    Type: Application
    Filed: June 14, 2011
    Publication date: July 11, 2013
    Applicant: MERCK PATENT GESELLSCHAFT MIT BESCHRANKTER HAFTUNG
    Inventors: Nicolas Blouin, Steven Tierney, William Mitchell, Miguel Carrasco-Orozco, Frank Egon Meyer
  • Publication number: 20130004453
    Abstract: Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins Band C (SP-B and SP-C), two helical and amphiphilic proteins that are clitical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restlicted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Presented herein an alternative approach to SP-R mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, arc prepared by ling-opening polymelization of 13-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B.
    Type: Application
    Filed: March 17, 2011
    Publication date: January 3, 2013
    Inventors: Samuel H. Gellman, Shannon S. Stahl, Brendan P. Mowery, Annelise Barron, Michelle Dohm
  • Publication number: 20120289652
    Abstract: Supramolecular polymers having repeat units connected by hydrogen bonds, where the repeat units are monomers, macromers, oligomers or polymers where at least one on the monomers contains at least one 2,5-diketopiperazine group are described. Composition prepared from these supramolecular polymers and articles produced from these compositions are also described.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 15, 2012
    Applicant: RHODIA OPERATIONS
    Inventors: Thierry Badel, Stéphane Jeol, Franck Touraud
  • Publication number: 20120245320
    Abstract: The present invention relates to a new method of production of cast polyamides.
    Type: Application
    Filed: October 27, 2011
    Publication date: September 27, 2012
    Applicant: RHEIN CHEMIE RHEINAU GMBH
    Inventors: Wilhelm Laufer, Armin Eckert
  • Patent number: 8268955
    Abstract: Polyamide containing a compound which bears at least one hydroxy group and has chemical bonding by way of an amide group to the end of the polymer chain, process for preparing this polyamide, and also fibers, films, and moldings, comprising at least one such polyamide.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: September 18, 2012
    Assignee: BASF SE
    Inventors: Helmut Winterling, Jürgen Demeter, Kurt Krempel
  • Publication number: 20120157654
    Abstract: Method for the drying and post-condensation of polyamide particles, wherein the polyamide particles are irradiated with electromagnetic waves while passing an inert gas through the particles.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Faissal-Ali El-Toufaili, Achim Stammer, Jens Becker, Karsten Daunke, Thomas Sauer
  • Publication number: 20120141791
    Abstract: The present invention relates to a novel process for the anionic polymerization of lactam monomers.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 7, 2012
    Applicant: BASF SE
    Inventors: Silke Biedasek, Philippe Desbois, Mohammed Abboud, Andreas Wollny
  • Publication number: 20120088899
    Abstract: A process for producing an activated monomer composition comprising at least one lactam and/or lactone, one catalyst, and one activator permits storage of the resultant monomer composition, since this is stable with respect to polymerization. Said monomer composition is used inter alia in producing a polyamide molding via ring-opening, anionic polymerization.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 12, 2012
    Applicant: BASF SE
    Inventors: Dietrich Scherzer, Philippe Desbois, Volker Warzelhan, Andreas Wollny, Andreas Radtke, Axel Wilms, Martin Klatt
  • Patent number: 8124686
    Abstract: The present invention relates to a process for the preparation of polyamide-12 powder by anionic polymerization of lauryllactam in solution in a solvent of the lactam, the polyamide-12 powder being insoluble in this solvent, the polymerization being carried out: in the presence of a catalyst and of an activator; in the presence of a finely divided organic or inorganic filler, the proportion of this filler being less than or equal to 1.5 g per 1000 g of lauryllactam; and in the presence of an amide of formula R1—NH—CO—R2 in which R1 can be replaced by an R3—CO—NH— or R3—O— radical and in which R1, R2 and R3 denote an aryl, alkyl or cycloalkyl radical, the proportion of this compound being between 0.001 mol and 0.030 mol per 1000 g of lauryllactam.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: February 28, 2012
    Assignee: Arkema France
    Inventors: Karine Loyen, Holger Senff, Francois-Xavier Pauly
  • Patent number: 8080630
    Abstract: The invention relates to a process for preparing a melt-processable polylactam by contacting caprolactam monomer with an anionic polymerization catalyst, polymerizing said monomer and contacting the resulting polylactam with a protic compound. The anionic polymerization catalyst is chosen from the group consisting of alkali-earth-metal-lactamates and alkali-earth-metal-lactamate forming compounds and the protic compound has a pKa larger than 14. The resulting polylactam has a good melt-stability and very low cyclic dimer content.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: December 20, 2011
    Assignee: DSM IP Assets B.V.
    Inventors: Albert A Van Geenen, Cornelia E. M. Bronsaer, Yvonne H Frentzen, Stanislaus M. P. Mutsers, Nicolaas J. M. L. Janssen
  • Publication number: 20110213117
    Abstract: Disclosed are new organic semiconducting polymers. The polymers disclosed herein can exhibit high carrier mobility and/or efficient light absorption/emission characteristics, and can possess certain processing advantages such as solution-processability and/or good stability at ambient conditions.
    Type: Application
    Filed: November 6, 2009
    Publication date: September 1, 2011
    Applicants: Polyera Corporation, BASF SE
    Inventor: Antonio Facchetti
  • Publication number: 20110189419
    Abstract: The invention relates to a polyamide comprising at least two units having the following general formula: 4.Y in which: 4 denotes butanediamine, and Y represents a dicarboxylic acid chosen from a linear or branched aliphatic dicarboxylic acid, a cycloaliphatic diacid and an aromatic diacid, the dicarboxylic acid containing from 7 to 11 carbon atoms, the butanediamine contains carbon of renewable origin, except for the fact that when the polyamide is a copolyamide, it cannot contain 100% by mass of organic carbon derived from renewable raw materials relative to the total mass of polyamide carbon. The invention also relates to a composition comprising this polyamide and the use of this polyamide and of such a composition.
    Type: Application
    Filed: July 6, 2009
    Publication date: August 4, 2011
    Applicant: ARKEMA FRANCE
    Inventors: Guillaume Le, Julien Jouanneau, Thierry Briffaud
  • Publication number: 20110172387
    Abstract: The present invention relates to a method for reducing the crystallization temperature an the melting temperature of a polyamide powder resulting from the polymerization of at least one predominant monomer, in which the reduction in the crystallization temperature is greater than the reduction in the melting temperature, said method comprising a step of polymerization of said at least one predominant monomer with at least one different minor comonomer polymerized according to the same polymerization process as said at least one predominant monomer, said at least one minor comonomer being chosen from aminocarboxylic acids, diamine/diacid pairs, lactams and/or lactones, and said at least one minor comonomer representing from 0.1% to 20% by weight of the total blend of said monomers(s) and comonomer(s), preferably from 0.5% to 15% by weight of said total blend, preferably from 1% to 10% by weight of said total blend.
    Type: Application
    Filed: April 29, 2009
    Publication date: July 14, 2011
    Applicant: ARKEMA FRANCE
    Inventors: Gregory Filou, Cyrille Mathieu, Holger Senff
  • Patent number: 7977449
    Abstract: The present invention relates to reinforced articles based on a polyamide matrix of high melt flow index and on long fibers. The articles according to the invention exhibit good mechanical properties, such as good tensile strength, good surface finish and good moldability.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: July 12, 2011
    Assignee: Rhodia Engineering Plastics S.r.l.
    Inventor: Gerard Bradley
  • Patent number: 7884142
    Abstract: The disclosed is a biodegradable copolymer, an amphiphilic diblock copolymer, composed of a hydrophilic segment and a hydrophobic segment. The hydrophilic segment is an endcapped PEG or derivatives thereof. The hydrophilic segment is a random polymer polymerized of lactone or cyclic C3-C6 molecule and lactic acid/glycolic acid. There is no coupling agent between the hydrophilic and hydrophobic segments, and the biodegradable copolymer is formed by one-pot ring-opening polymerization. The biodegradable copolymer can be dissolved in water to form a thermosensitive material having a phase transfer temperature of 25 to 50° C., thereby being applied to biological activity factor delivery, tissue engineering, cell culture and biological glue.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 8, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Ya-Jen Yu, Chin-Fu Chen, Tsai-Yu Lin, Shao-Jen Yeh, Shian-Yih Wang, Po-Liang Lai
  • Publication number: 20100286343
    Abstract: The invention relates to products and processes employing coupling activator compounds represented by the following formula I: S—X-A??(I) wherein S represents a silane coupling moiety capable of bonding with the surface of an inorganic substrate, A represents a ring-opening polymerization activator moiety, or blocked precursor thereof, and X represents a linking moiety. Substrates containing the coupling activator compounds are useful in preparing reinforced resins.
    Type: Application
    Filed: January 8, 2008
    Publication date: November 11, 2010
    Inventors: Thomas Burghardt, Jawed Asrar, Klaus Friedrich Gleich
  • Patent number: 7776996
    Abstract: A continuous process for producing polyamides, their oligomers or mixtures thereof, if appropriate with further reaction products, comprises reaction of aminonitriles or dinitriles and diamines or mixtures thereof, if appropriate together with further polyamide-forming monomers and/or oligomers, with an aqueous medium composed of aqueous monomer and oligomer extracts obtained from polyamide production by extraction of the polymer with water in a reactor which has a vertical longitudinal axis and through which there is a flow substantially in the longitudinal direction wherein water and/or the aqueous medium are introduced into the reactor at two or more different locations along the vertical longitudinal axis, wherein the aqueous medium is introduced at one or more locations.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: August 17, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Jürgen Deininger, Jürgen Demeter, Thilo Hahn, Gad Kory, Oliver Sötje, Peter Zehner
  • Patent number: 7750110
    Abstract: The invention relates to a composition, and structures having a layer made of said composition, in which the composition is, by weight, the total being 100%: 50 to 100% of at least one polyamide A1 of formula X.Y/Z or 6.Y2/Z in which: X denotes the residues of an aliphatic diamine having from 6 to 10 carbon atoms, Y denotes the residues of an aliphatic dicarboxylic acid having from 10 to 14 carbon atoms, Y2 denotes the residues of an aliphatic dicarboxylic acid having from 15 to 20 carbon atoms and Z denotes at least one unit chosen from the residues of a lactam, the residues of an ?,?-aminocarboxylic acid, the unit X1, Y1 in which X1 denotes the residues of an aliphatic diamine and Y1 denotes the residues of an aliphatic dicarboxylic acid, the weight ratios Z/(X+Y+Z) and Z/(6+Y2+Z) being between 0 and 15%; 0 to 40% of a plasticizer; 0 to 50% of an impact modifier; and 0 to 50% of a polyamide A2.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: July 6, 2010
    Assignee: Arkema France
    Inventors: Philippe Blondel, Thibaut Montanari, Annett Linemann, Nicolas Amouroux, Henri Decraemer
  • Publication number: 20100135940
    Abstract: The invention relates to a supramolecular polymer derived from the reaction between (i) an amine bearing a nitrogen-containing heterocyclic group: imidazolidone, trimethyleneurea or triazine, capable of joining together via hydrogen bonds with (ii) at least one fatty acid monomer comprising at least one reactive functional group, a dimer of identical or different fatty acids and/or a trimer of identical or different fatty acids, or a derivative of said fatty acid(s) chosen from a fatty acid ester, and a fatty acid chloride.
    Type: Application
    Filed: September 7, 2007
    Publication date: June 3, 2010
    Applicant: Arkema France
    Inventors: Sandra Grimaldi, Jean-Philippe Gillet, Manuel Hidalgo, Francois-Genes Tournilhac, Philippe Cordier, Ludwik Leibler
  • Patent number: 7666976
    Abstract: Polyamide, whose main chain contains a chemically bound amine selected from the group consisting of 2-methyl-1,5-diaminopentane and 1-amino-2-R-cyclopent-1-ene, where R is a functional group capable of combining with an amino group to form an amide group, and processes for preparing such a polyamide and fibers, films and moldings comprising such a polyamide.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: February 23, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Helmut Winterling, Jürgen Demeter, Jürgen Deininger, Gad Kory, Oliver Sötje, Axel Wilms, Robert Weiβ, Kurt Krempel, Christoph Benisch
  • Patent number: 7635747
    Abstract: Mixtures or adducts of N-heterocyclic carbenes with metal amides or metal alkoxides are effective catalysts for the polymerization of cyclic amides. The catalysts are stable at polymerization temperatures, and the polymerization is rapid, resulting in high monomer conversion, high molecular weight, and a mechanically sound material.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: December 22, 2009
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Wilson Tam, David T. Williamson
  • Publication number: 20090302311
    Abstract: The present invention relates to polymers comprising a repeating unit of the formula (I) and their use as organic semiconductor in organic devices, especially a diode, an organic field effect transistor and/or a solar cell, or a device containing a diode and/or an organic field effect transistor, and/or a solar cell. The polymers according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in semiconductor devices or organic photovoltaic (PV) devices (solar cells).
    Type: Application
    Filed: June 20, 2007
    Publication date: December 10, 2009
    Inventors: Mathieu G.R. Turbiez, René Albert Johan Janssen, Martinus Maria Wienk, Hans Jürg Kirner, Mathias Düggeli, Bernd Tieke, Yu Zhu
  • Publication number: 20090247666
    Abstract: The disclosed is a biodegradable copolymer, an amphiphilic diblock copolymer, composed of a hydrophilic segment and a hydrophobic segment. The hydrophilic segment is an endcapped PEG or derivatives thereof. The hydrophilic segment is a random polymer polymerized of lactone or cyclic C3-C6 molecule and lactic acid/glycolic acid. There is no coupling agent between the hydrophilic and hydrophobic segments, and the biodegradable copolymer is formed by one-pot ring-opening polymerization. The biodegradable copolymer can be dissolved in water to form a thermosensitive material having a phase transfer temperature of 25 to 50° C., thereby being applied to biological activity factor delivery, tissue engineering, cell culture and biological glue.
    Type: Application
    Filed: February 27, 2009
    Publication date: October 1, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ya-Jen Yu, Chin Fu Chen, Tsai-Yu Lin, Shao-Jen Yeh, Shian-Yih Wang, Po-Liang Lai
  • Patent number: 7537782
    Abstract: Resorbable polymer barrier membranes and methods of their applications are disclosed. In a broad embodiment, methods of governing bone growth, or preventing bone growth into a certain spatial area, includes the step of forming a spatial barrier with the present resorbable barrier membrane. The barrier membrane separates a bone-growth area and a non-bone-growth area, and prevents bone from growing into the non-growth area.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: May 26, 2009
    Assignee: Kensey Nash Corporation
    Inventors: Christopher J. Calhoun, G. Bryan Cornwall
  • Publication number: 20080187505
    Abstract: The invention relates to the use of fluorescent polymers for the treatment of human hair, especially for the improvement of hair gloss or the brilliance of human hair or for hair diagnosis as well as corresponding hair treatment agents. The invention also relates to new fluorescent polymers as well as radically polymerizable fluorescent dyes for their preparation, especially those based on vinyl-substituted naphthalene bislactams and vinyl-substituted perylene hexacarboxylic acid trisimides.
    Type: Application
    Filed: December 13, 2005
    Publication date: August 7, 2008
    Inventors: Markus Speckbacher, Jan Baumeister, Thomas Krause
  • Patent number: 7388048
    Abstract: The present invention relates to a flexible semiaromatic polyamide composition with a low moisture uptake comprising, by weight, the total being 100: 60 to 99.5% (preferably 70 to 93%) of at least one copolyamide of formula X/Y,Ar in which: Y denotes the residues of an aliphatic diamine having from 8 to 20 carbon atoms, Ar denotes the residues of an aromatic dicarboxylic acid, X denotes either the residues of aminoundecanoic acid NH2—(CH2)10—COOH, of lactam-12 or of the corresponding amino acid, or X denotes the unit Y,x, residue from the condensation of the diamine with an aliphatic diacid (x) having between 8 and 20 carbon atoms, or X denotes the unit Y,I, residue from the condensation of the diamine with isophthalic acid, ?0.5 to 40% (preferably 7 to 30%) of at least one product chosen from plasticizers, nanofillers, polyolefins, crosslinked polyolefins and additives.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: June 17, 2008
    Assignee: Arkema France
    Inventors: Philippe Blondel, Thierry Briffaud, Annett Linemann, Helene Egret, Pierre Nogues
  • Patent number: 7105628
    Abstract: Golf balls comprising thermoplastic, thermoset, castable, or millable elastomer compositions are presently disclosed. These elastomer compositions comprise reaction products of polyisocyanates and telechelic polymers having isocyanate-reactive end-groups such as hydroxyl groups and/or amine groups. These elastomer compositions can be used in any one or more portions of the golf balls, such as inner center, core, inner core layer, intermediate core layer, outer core layer, intermediate layer, cover, inner cover layer, intermediate cover layer, and/or outer cover layer.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: September 12, 2006
    Assignee: Acushnet Company
    Inventors: Manjari Kuntimaddi, Shenshen Wu
  • Patent number: 6881819
    Abstract: The invention relates to a liquid initiator for carrying out anionic lactam polymerization. The liquid initiator contains a conversion product of isocyanate (1) with a protic compound (P) and a base (B) in an aprotic solvation agent (S).
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: April 19, 2005
    Assignee: EMS-Chemie AG
    Inventors: Eduard Schmid, Ivano Laudonia
  • Patent number: 6875838
    Abstract: Disclosed is a process for reducing low molecular weight impurities, namely caprolactam and its oligomers, from Nylon-6 pre-polymer during the preparation of Nylon-6 polymer.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: April 5, 2005
    Assignee: Invista North Americal S.a.r.l.
    Inventors: Albert W. Alsop, Carl E. Camp, John M. Iwasyk, Dilip Rajagopalan
  • Patent number: 6809173
    Abstract: The invention relates to a polyamide with low viscosity degradation after remelting which can be produced by anionic polymerization of lactam in the presence of alkaline catalysts and if necessary activators and the method for production of the polyamide. The invention relates furthermore to a method for reprocessing anionically produced polyamide.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: October 26, 2004
    Assignee: EMS-Chemie AG
    Inventors: Eduard Schmid, Ivano Laudonia, Hansjörg Ernst, Werner Kägi
  • Patent number: 6672031
    Abstract: Environment protective liner plank structure having several legs and a panel. Each leg is composed of multiple layers of rice grasses (or wheat stems) which evenly overlap each other in the same direction. A layer of adhesive is sprayed between each two layers of rice grasses (or wheat stems). When each layer of rice grasses (or wheat stems) is evenly overlaid on a lower layer of rice grasses (or wheat stems), a male mold is used to compress the rice grasses (or wheat stems) into a compact state. The lowermost layer of rice grasses (or wheat stems) of the panel is evenly overlaid on the adhesive on the uppermost layer of rice grasses (or wheat stems) of the leg. A plane board mold is used to compress the rice grasses (or wheat stems) into a compact state. A layer of adhesive is sprayed over the lowermost layer of rice grasses (or wheat stems) of the panel and then an upper layer of rice grasses (or wheat stems) are overlaid on the lowermost layer of rice grasses (or wheat stems).
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: January 6, 2004
    Inventor: Tse-Wei Huang
  • Patent number: 6649711
    Abstract: A polymerisation process for the preparation of vinylic polymers from the corresponding vinylic monomers which process comprises the step of reacting a vinylic monomer in the presence of a catalyst system comprising a) a metal complex of general formula (I) where A is selected from the group consisting of nickel, iron, cobalt, chromium, manganese, titanium, zirconium, vanadium and the rare earth metals; L1, L2, L3 and L4 are ligands and b) a Lewis acid of general formula (II) wherein at least one of W, Y or Z is capable of forming a co-ordination bond with A and the others of W, Y and Z are bulky groups; D is selected from the group consisting of aluminium, magnesium, zinc and boron.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: November 18, 2003
    Assignee: Imperial Chemical Industries PLC
    Inventors: Paul Alexander Cameron, Vernon Charles Gibson, Derek John Irvine
  • Patent number: 6632897
    Abstract: Described is the use of nanoscale metal oxide particles as catalysts for the thermal and/or photochemical polymerization of species having at least one polymerizable carbon-carbon multiple bond and/or at least one carbon containing ring capable of undergoing a ring opening polymerization.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: October 14, 2003
    Assignee: Institut Für Neue Materialien gemeinnützige
    Inventors: Elisabeth Geiter, Helmut Schmidt
  • Patent number: 6605687
    Abstract: In one aspect, the invention provides ene-thiol elastomers comprising the reaction product of a polythiol free of hydrophilic groups and having at least two thiol groups and an aromatic, heterocyclic, aliphatic, or cycloaliphatic polyene having at least two reactive unsaturated carbon to carbon bonds. In another aspect, the invention provides ene-thiol elastomer comprising the reaction product of (a) a thiol terminated oligomer comprising the reaction product of a polythiol having two thiol groups and a first polyene or mixture of polyenes having two reactive unsaturated carbon to carbon bonds; and (b) a second polyene or a mixture of polyenes having at least 5 percent functional equivalents of unsaturated carbon to carbon bonds from polyenes having at least three unsaturated carbon to carbon bonds. The ene-thiol elastomers of the invention have a weight increase of not more than 4 weight percent in 15 days at a temperature of 22° C.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: August 12, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Kathleen B. Gross, William J. Schultz