Phosphorus- Or Sulfur-containing Reactant Patents (Class 528/337)
  • Patent number: 7713449
    Abstract: A polymer electrolytic material has excellent proton conductivity and excellent fuel shutting property, and accordingly provide a polymer electrolytic fuel cell with a high efficiency. This polymer electrolytic material has an unfreezable water ratio Rw1 defined by the following expression (S1) in a range of 20 to 100% by weight in hydrated state: Rw1=[Wnf/Wfc+Wnf)]×100??(S1) in which Wnf represents the unfreezable water content per 1 g of the polymer electrolytic material in dry state and Wfc represents the low freezing point water content per 1 g of the polymer electrolytic material in dry state.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: May 11, 2010
    Assignee: Toray Industries, Inc.
    Inventors: Shinya Adachi, Daisuke Izuhara, Masataka Nakamura, Nobuaki Ito
  • Publication number: 20090247666
    Abstract: The disclosed is a biodegradable copolymer, an amphiphilic diblock copolymer, composed of a hydrophilic segment and a hydrophobic segment. The hydrophilic segment is an endcapped PEG or derivatives thereof. The hydrophilic segment is a random polymer polymerized of lactone or cyclic C3-C6 molecule and lactic acid/glycolic acid. There is no coupling agent between the hydrophilic and hydrophobic segments, and the biodegradable copolymer is formed by one-pot ring-opening polymerization. The biodegradable copolymer can be dissolved in water to form a thermosensitive material having a phase transfer temperature of 25 to 50° C., thereby being applied to biological activity factor delivery, tissue engineering, cell culture and biological glue.
    Type: Application
    Filed: February 27, 2009
    Publication date: October 1, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ya-Jen Yu, Chin Fu Chen, Tsai-Yu Lin, Shao-Jen Yeh, Shian-Yih Wang, Po-Liang Lai
  • Patent number: 7588699
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400–800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: September 15, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Kent A. Watson, Zoubeida Ounaies, John W. Connell, Joseph G. Smith, Joycelyn S. Harrison
  • Publication number: 20090075103
    Abstract: A resin composition comprises a polyimide resin composition or precursor thereof obtained from an acid dianhydride component containing a compound represented by the following Formula (1) and a diamine component containing a diamine compound represented by the following Formula (2), and a bismaleimide compound represented by the following Formula (3), wherein the diamine component contains a diamine compound (a) in which m in the Formula (2) represents an integer of 0 or 1 and a diamine component (b) in which m in the Formula (2) represents an integer of 2 to 6 in a molar ratio (a:b) of from 100:0 to 50:50, wherein, in the Formula (2), when m is 2 or more, each X may be independently the same or different, and represents O, SO2, S, CO, CH2, C(CH3)2, C(CF3)2 or a direct bond, wherein, in the Formula (3), n represents an integer of 0 to 6.
    Type: Application
    Filed: March 17, 2006
    Publication date: March 19, 2009
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Masao Kawaguchi, Kiyomi Imagawa, Shuji Tahara, Eiji Ohtsubo
  • Publication number: 20090061196
    Abstract: The invention concerns a fiber obtainable by spinning a copolymer from the polymerization solution, derived from a plurality of amine monomers, the plurality including 3,3?diaminodiphenyl sulfone amine monomer and at least one amine monomer having an aromatic group that is a para-oriented benzene ring, and at least one acid monomer; and yarns, fabrics and garments comprising this fiber, and methods of making the same. This fiber has use in heat-resistant protective apparel fabrics and garments.
    Type: Application
    Filed: August 22, 2008
    Publication date: March 5, 2009
    Inventor: Vlodek Gabara
  • Publication number: 20090053501
    Abstract: The invention concerns a fiber, obtainable by spinning a copolymer from the polymerization solution, derived from a plurality of amine monomers, including 4,4?diaminodiphenyl sulfone amine monomer, and at least one acid monomer; and yarns, fabrics and garments comprising this fiber, and methods of making the same. This fiber has use in heat-resistant protective apparel fabrics and garments.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 26, 2009
    Inventor: Vlodek Gabara
  • Publication number: 20080182964
    Abstract: A method for the production of a functionalized polytriazole polymer, particularly a poly(1,2,4-triazole)-polymer, includes the steps of (a) mixing a hydrazine salt, particularly hydrazine sulfate, with at least an aromatic and/or heteroaromatic dicarboxylic acid and/or at least a dicarboxylic acid derivate in polyphosphoric acid and if necessary further components for obtaining a solution; (b) heating the solution in a protective gas atmosphere for obtaining polyhydrazides and adding aromatic and/or heteroaromatic primary amines to the solution; and (c) precipitating a polymer. If necessary, neutralization in a basic solution may be carried out.
    Type: Application
    Filed: January 30, 2008
    Publication date: July 31, 2008
    Applicant: GKSS-FORSCHUNGSZENTRUM GEESTHACHT GMBH
    Inventors: Mariela Leticia Ponce, Dominique De Figueiredo Gome, Suzana Nunes, Volker Abetz
  • Patent number: 7288603
    Abstract: An object of the present invention is to obtain a novel polymeric material capable of forming a solid polymer electrolyte excellent not only in processability, solvent resistance and durability/stability but also in ion conductivity by introducing sulfonic acid group or phosphonic acid group into a polybenzazole compound having excellent properties in view of heat resistance, solvent resistance, mechanical characteristics and the like. Means attaining the object of the present invention is a polybenzazole compound including an aromatic dicarboxylic acid bond unit having sulfonic acid group and/or phosphonic acid group and satisfying either a condition that inherent viscosity measured in concentrated sulfuric acid is in the range of 0.25 to 10 dl/g or a condition that inherent viscosity measured in a methanesulfonic acid solution is in the range of 0.1 to 50 dl/g.
    Type: Grant
    Filed: November 12, 2001
    Date of Patent: October 30, 2007
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Yoshimitsu Sakaguchi, Kota Kitamura, Hiroaki Taguchi, Junko Nakao, Shiro Hamamoto, Hiroshi Tachimori, Satoshi Takase
  • Patent number: 7205366
    Abstract: The present invention is generally directed to a hole transport polymer comprising a polymeric backbone having linked thereto a plurality of substituents comprising fused aromatic ring groups, with the proviso that the polymer does not contain groups selected from triarylamines and carbazole groups. It further relates to devices that are made with the polymer.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: April 17, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Gary Delmar Jaycox, Mookkan Periyasamy, Gang Yu
  • Patent number: 7153925
    Abstract: The present invention relates to novel condensation polymers where N,N*-disubstituted disulfonamides are copolymerized with an organic acid dihalide such as dicarboxylic acid dichlorides, disulfonic acid dichlorides, bis chloroformates, diphosphoryl acid dichlorides, diphosphonyl acid dichlorides, or phosgene or with diisocyanates. The polymers obtained are thermoplastic and useful in molding and extrusion application.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: December 26, 2006
    Inventor: R. Garth Pews
  • Patent number: 7109287
    Abstract: Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (Tg) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: September 19, 2006
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother, Kent A. Watson, Craig M. Thompson
  • Patent number: 7074851
    Abstract: The invention relates to a process for preparing stabilized compositions based on polyamide. The stabilizer is a phosphorus stabilizer selected from phosphorous acid and hypophosphorous acid. It is introduced before or during the polymerization of the polyamide. The use of these stabilizers prevents foaming phenomena.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 11, 2006
    Assignee: Nylstar S.A.
    Inventors: Thierry Charbonneaux, Jean-François Thierry
  • Patent number: 7060782
    Abstract: A process for the production of high molecular weight polybenzimidazole by one: providing a first reaction vessel; charging the reaction vessel with at least one aromatic hydrocarbon tetraamine, and a heterocylic ring making up the dicarboxylic component; heating the reactants under agitation in a substantially oxygen-free atmosphere with agitation until the agitator torque is about 1.5 times the torque before a rise in viscosity begins; terminating the agitation while continuing to heat the reaction mixture to about 230° C. while allowing the reaction mass to foam; cooling the reaction mass to a friable foamed mass; crushing the friable foamed mass to obtain a ground prepolymer; and two: providing a second reaction vessel, the second reaction vessel being a high intensity reaction vessel; transferring the ground prepolymer to the second reaction vessel; heating the ground prepolymer under agitation to over 315° C. at atmospheric pressure for a time of about 90 minutes.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: June 13, 2006
    Assignee: PBI Performance Products, Inc.
    Inventors: Bobby G. Dawkins, J. Dean Baker, Rita H. Joiner
  • Patent number: 7053172
    Abstract: The fuel-barrier polyamide resin of the present invention is a product of the polycondensation of a diamine component comprising 70 mol % or higher of m-xylylenediamine and a dicarboxylic acid component comprising 70 mol % or higher of a mixed dicarboxylic acid which comprises a C4 to C20 ?,?-linear aliphatic dicarboxylic acid and at least one dicarboxylic acid selected from the group consisting of isophthalic acid and naphthalenedicarboxylic acid in a molar ratio of 30:70 to 95:5. The polyamide resin is excellent in not only fuel-barrier property and heat resistance, but also moldability and recyclability, and therefore suitably used as a barrier material of fuel containers.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: May 30, 2006
    Assignee: Mitsubishi Gas Chemical Co., Inc.
    Inventors: Kazunobu Sato, Kazunobu Maruo, Jun Mitadera, Masashi Kurokawa
  • Patent number: 7045241
    Abstract: A monomer to produce polybenzimidazole is dissolved in polyphosphoric acid. For example, polysulfated phenylene sulfonic acid (acidic group-possessing polymer) is further dissolved in this solution. In this procedure, the acidic group-possessing polymer and the monomer are adsorbed to one another in accordance with the acid-base interaction. When the monomer is polymerized, for example, by means of dehydration polymerization in this state, then polybenzimidazole is synthesized, and the polybenzimidazole and the acidic group-possessing polymer are compatibilized with each other to produce a compatibilized polymer. When the compatibilized polymer is deposited as a solid, and the solid is separated from polyphosphoric acid, then the compatibilized polymer is obtained. A proton conductive solid polymer electrolyte as a final product is manufactured by forming the compatibilized polymer to have a predetermined shape.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: May 16, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Akita, Teruaki Komiya
  • Patent number: 7038007
    Abstract: A process for a single-stage melt polymerization for the production of a high molecular weight polybenzimidazole which comprises the steps of: providing a reaction vessel having a means for agitation and a means for vacuum; charging the reaction vessel with reactants selected from: (A) a tetraaminiobiphenyl (TAB), and (B) a diphenyl isophthalate (DPIP); reacting the reactants under constant agitation and under a vacuum with an inert gas sweep; maintaining a reactant temperature which does not exceed 290° C. under constant agitation allowing pressure in the vessel to increase, with an inert gas sweep until a phase change is achieved, when the temperature reaches 250° C. pressure is increased to a slight positive pressure; and increase the reactant temperature and pressure within said reaction vessel while maintaining constant agitation and inert gas sweep, while maintaining a slight positive pressure. Preferably the vessel used in the instant invention is a high intensity reaction vessel.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: May 2, 2006
    Assignee: PBI Performance Products, Inc.
    Inventors: Bobby G. Dawkins, J. Dean Baker, Rita H. Joiner
  • Patent number: 6987163
    Abstract: The invention relates to a modified polybenzimidazole (PBI), membranes that are fabricated from these polymers, and their use in electrochemical applications. These membranes have high ionic conductivity and are suitable for solid polymer electrolytes in electrochemical applications, especially for high temperature polymer electrolyte membrane (PEM) fuel cells.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: January 17, 2006
    Assignee: Research Foundation of the State University of New York
    Inventors: Israel Cabasso, Youxin Yuan, Frederick E. Johnson
  • Patent number: 6979719
    Abstract: The invention pertains to a coating composition comprising a compound comprising at least one bicyclo-orthoester group and at least one other functional group. The invention also comprises a process for curing the present coating composition. Further, a process for making a bicyclo-orthoester-functional compound from the corresponding oxetane compound is described.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: December 27, 2005
    Assignee: Akzo Nobel N.V.
    Inventors: Klaus Hobel, Huig Klinkenberg, Arie Noomen
  • Patent number: 6946421
    Abstract: This invention provides a latent catalyst having a structure of phosphonium borate consisting of a monovalent cation portion in which four specific groups are bonded to the phosphorus atom and a monovalent anion portion in which four specific groups are bonded to the boron atom, and a latent catalyst having a structure wherein the above phosphonium borate is the recurring unit and at least two of said recurring unit are connected through at least one of the four specific groups bonded to the boron atom. This invention also provides a thermo-setting resin composition comprising such a latent catalyst and an epoxy resin molding material comprising such a latent catalyst and further provides a semiconductor device in which a semiconductor is encapsulated with said epoxy resin molding material.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 20, 2005
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Sumiya Miyake, Akiko Okubo, Hiromi Honda, Yoshiyuki Go, Hiroshi Nagata, Minoru Kobayashi
  • Patent number: 6881812
    Abstract: This invention provides a latent catalyst having a structure of phosphonium borate consisting of a monovalent cation portion in which four specific groups are bonded to the phosphorus atom and a monovalent anion portion in which four specific groups are bonded to the boron atom, and a latent catalyst having a structure wherein the above phosphonium borate is the recurring unit and at least two of said recurring unit are connected through at least one of the four specific groups bonded to the boron atom. This invention also provides a thermosetting resin composition comprising such a latent catalyst and an epoxy resin molding material comprising such a latent catalyst and further provides a semiconductor device in which a semiconductor is encapsulated with said epoxy resin molding material.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: April 19, 2005
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Sumiya Miyake, Akiko Okubo, Hiromi Honda, Yoshiyuki Go, Hiroshi Nagata, Minoru Kobayashi
  • Patent number: 6855757
    Abstract: The invention relates to a process of preparing glycol carboxyethylmethylphosphinate, which comprises a) reacting elemental yellow phosphorus with methyl chloride in the presence of an alkali or alkaline earth metal hydroxide to form a mixture which includes the alkali and/or alkaline earth metal salts of methylphosphonous, phosphorous and hypophosphorous acids as main constituents, b) esterifying the methylphosphonous acid from the mixture obtained by a), c) removing the methylphosphonous ester from the mixture, d) adding the thus obtained methylphosphonous ester to an acrylic ester, e) hydrolyzing the diester thus obtained, f) esterifying the resulting carboxyethylmethylphosphinic acid with ethylene glycol directly to the glycol carboxyethylmethylphosphinate. The invention also relates to the use of the glycol carboxyethylmethylphosphinates prepared according to the invention as reactive flame retardants for polymers.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: February 15, 2005
    Assignee: Clariant GmbH
    Inventors: Sebastian Hörold, Heinz-Peter Breuer, Elisabeth Jung
  • Patent number: 6841652
    Abstract: Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (Tg) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: January 11, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother, Kent A. Watson, Craig M. Thompson
  • Patent number: 6841651
    Abstract: The polyamide resin of the present invention is produced by polycondensation of a diamine component comprising 70 mol % or more of m-xylylenediamine and a dicarboxylic acid component comprising 70 mol % or more of a C4-C20 ?, ?-straight-chain aliphatic dicarboxylic acid in the presence of at least one phosphorus compound selected from the group consisting of phosphinic acid compounds and phosphonous acid compounds and in the presence of an alkali metal compound of a weak acid. The weak acid has a dissociation constant lower than a first dissociation constant of a dicarboxylic acid mainly constituting the polyamide resin. The polyamide resin satisfies the following requirements (A), (B) and (C): 14000?a?40000??(A) b?1.000??(B) 0.9930?b?1.1a2×10?11+3.2a×10?7?0.9980??(C) wherein a and b are as defined in the disclosure.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: January 11, 2005
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazunobu Maruo, Tomomichi Kanda, Koji Yamamoto
  • Patent number: 6812325
    Abstract: A polyamine having the formula: H2N—A[NR—B]aNH2 or salt thereof, wherein A and B, which may be the same or different, are selected from aliphatic or aromatic substituents provided that at least four carbon atoms separate any two nitrogen groups, R is an aliphatic or aromatic group, and a is 2 to 5. In addition, a polymer having the formula: or salt thereof, wherein A, B and Q, which may be the same or different, are selected from aliphatic or aromatic substituents provided that at least four carbon atoms separate any two nitrogen groups, R is an aliphatic or aromatic group, a is greater than 1 to about 5, and n is 3 to about 1,000. The polymers are useful for improving acid-dyeability of polymer compositions, fibers, fabrics, films and other articles.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: November 2, 2004
    Assignee: Invista North America S.AR.L.
    Inventor: David P. Higley
  • Patent number: 6812324
    Abstract: A method for preparing nylon 6 copolymer containing 5-sulfoisophthalate salts comonomer. The method includes the steps of reacting 5-sulfoisophthalate salts ester with aliphatic diamine in a molar ratio of 2˜20 at 160˜200° C., followed by completely removing the unreacted aliphatic diamine, to obtain the intermediate compound with terminal amine, 5-sulfobenzenediamide compound (formula III). Next, caprolactam and aliphatic diacid (formula IV) are reacted at 200˜260° C. to form an oligomer with a low molecular weight. 5-Sulfobenzenediamide (formula III) and catalyst are then added into the oligomer obtained in previous step to cause a polymerization reaction at 200˜280° C. to obtain nylon 6 copolymer containing 5-sulfoisophthalate salt comonomer. The molar ratio of E/C is 0.005˜0.150 and the molar ratio of D/E is 1.05-1.00. Compounds present in the water extract are greatly reduced.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 2, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Tun-Fun Way, Cheng Yeh, Lien-Tai Chen, Chia-Hung Chen
  • Patent number: 6774205
    Abstract: A process for the preparation of novel polyamides, the use of such polyamides for the production of fibers, sheets and moldings, and fibers, sheets and moldings obtainable from such polyamides, are provided.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: August 10, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Paul-Michael Bever, Ulrike Breiner, Bernd-Steffen von Bernstorff, Gerhard Conzelmann
  • Patent number: 6693163
    Abstract: In the method for solid-phase drying or solid-phase polymerizing a polyamide of the present invention, the polyamide that is stored for 20 days or longer after the production thereof until subjected to the solid-phase drying or the solid-phase polymerization under the specific conditions is used as the starting material. By storing the polyamide under the specific conditions of the present invention, the resultant solid-phase dried or solid-phase polymerized polyamide with a low yellowness is obtained even if 20 days or more time has lapsed after the starting polyamide is produced until it is subjected to the solid-phase drying or solid-phase polymerization.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 17, 2004
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazumi Tanaka, Hideyuki Kurose
  • Patent number: 6680364
    Abstract: The invention describes polyamides having both strongly hydrophilic groups and unsaturated groups, the polyamides consequently being water-dispersible and curable. The hydrophilic groups are distributed along the chain, whereas the unsaturated groups are located at the ends. The polyamides of the invention are useful in many applications, especially in the preparation of intimate blends of polyamides with vinyl, acrylic and/or styrene polymers.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: January 20, 2004
    Assignee: Atofina
    Inventor: Reinhard Linemann
  • Publication number: 20030208031
    Abstract: A polyamine having the formula:
    Type: Application
    Filed: June 6, 2003
    Publication date: November 6, 2003
    Applicant: E.I. Du Pont de Nemours and Company
    Inventor: David P. Higley
  • Patent number: 6610816
    Abstract: In the production of polyamide by the melt-polymerization of the present invention, the polymerization conditions are rapidly and accurately controlled by a near-infrared spectroscopy to enable the efficient production of a desired polyamide with a good stability in its quality.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: August 26, 2003
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hideyuki Kurose, Kazumi Tanaka
  • Patent number: 6559274
    Abstract: The present invention relates to a composition comprising monoaspartic acid esters and polyaspartic acid esters as well as an addition product prepared from an unsaturated dicarboxilic acid compound and a thiol, a process for their production, and their use as reactive component for polyisocyanates in two-component polyurethane systems.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: May 6, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Rolf Gertzmann, Lutz Schmalstieg, Stefan Groth
  • Patent number: 6541600
    Abstract: Highly branched polyamides prepared in a single step procedure of condensation polymerization of multifunctional monomer reactants comprising amine and carboxylic acid functional groups. Polymerization proceeds by reaction of an amine group of a first monomer unit with an acid group of a second monomer unit to form a reaction product having an amide linkage between the first and second monomer units and repetition of such amidation reaction between additional amine groups and acid groups of the multi-functional monomers and reaction products of the multi-functional monomers. In the present invention, in order to obtain a water soluble or dispersible hyperbranched polyamide, at least one of the multifunctional monomer unit reactants contains an amine, phosphine, arsenine or sulfide group, such that the highly branched polyamide contains in the backbone thereof an N, P, As or S atom capable of forming an onium ion.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: April 1, 2003
    Assignee: Eastman Kodak Company
    Inventors: Jin-Shan Wang, Huijuan D. Chen
  • Patent number: 6524989
    Abstract: This invention provides a latent catalyst having a structure of phosphonium borate consisting of a monovalent cation portion in which four specific groups are bonded to the phosphorus atom and a monovalent anion portion in which four specific groups are bonded to the boron atom, and a latent catalyst having a structure wherein the above phosphonium borate is the recurring unit and at least two of said recurring unit are connected through at least one of the four specific groups bonded to the boron atom. This invention also provides a thermosetting resin composition comprising such a latent catalyst and an epoxy resin molding material comprising such a latent catalyst and further provides a semiconductor device in which a semiconductor is encapsulated with said epoxy resin molding material.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: February 25, 2003
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Sumiya Miyake, Akiko Okubo, Hiromi Honda, Yoshiyuki Go, Hiroshi Nagata, Minoru Kobayashi
  • Publication number: 20030036625
    Abstract: The instant invention provides an aromatic polyamide composition for molding which is of superior rigidity, strength, toughness, dimensional stability, resistance to chemicals, external surface appearance and sliding characteristics in high-humidity, high-temperature environments, which has a low coefficient of linear expansion and which is of low warpage.
    Type: Application
    Filed: June 27, 2002
    Publication date: February 20, 2003
    Inventors: Masahiro Nozaki, Reiko Koshida, Takeo Tasaka, Tadao Ushida
  • Patent number: 6444776
    Abstract: The present invention relates to novel crosslinkable amphiphilic block copolymers of formula wherein the variables are as defined in the claims, a process for their preparation and their use for the manufacture of mouldings. The block copolymers of the invention are especially useful for the manufacture of ophthalmic mouldings such as in particular contact lenses.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: September 3, 2002
    Assignee: Novartis AG
    Inventors: Troy Vernon Holland, Thomas Hirt, Jacalyn Mary Schremmer, Richard Carlton Baron, Wilson Leonard Terry, Jr., Aaldert Rens Molenberg
  • Patent number: 6423815
    Abstract: The present invention provides a layer insulating film for multilayer interconnection of semiconductors which is excellent in resistance to heat, resistance to moisture absorption as well as in electric characteristic properties, and a process for producing the film. That is, a layer insulating film for multilayer interconnection of semiconductors which comprises a fluorine-containing polybenzoxazole resin having the structure represented by the formula (6) and obtained by a process which comprises subjecting to heat-dehydrating ring closure a fluorine-containing polyhydroxyamide resin obtained by reacting a dicarboxylic acid diester obtained from one kind of compound selected from the group of compounds represented by the formulas (2) and 2,2′-bis(tri-fluoromethyl)-4,4′-biphenyldicarboxylic acid, with 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, (in the formula (6), m is an integer of 10-500).
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: July 23, 2002
    Assignee: Sumitomo Bakelite Company, Limited
    Inventors: Michio Nakajima, Maki Tokuhiro, Hidenori Saito, Saiko Yoshihashi
  • Patent number: 6392009
    Abstract: Benzobisazole polymers having repeating units of the formula wherein Z is wherein X is —S—, —O— or —NH—.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: May 21, 2002
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Fred E. Arnold, Thuy D. Dang, Narayanan Venkatasubramanian
  • Patent number: 6306792
    Abstract: The moisture resistance reliability of a latent catalyst is evaluated for a phosphonium borate wherein at least one group pendant on the boron atom is a group formed when a proton donor having at least one proton capable of being liberated out of the molecule has liberated one or at least two protons, the evaluation comprising (1) mixing one gram of the proton donor wherefrom the latent catalyst is derived with 50 grams of purified water to obtain an aqueous mixture, (3) subjecting the aqueous mixture to pressure cooker treatment at a temperature of 125° C. for 20 hours in a pressure cooker vessel to obtain an extraction mixture, and (4) measuring the electrical conductivity of the extraction mixture wherein the acceptable electrical conductivity of the extraction mixture is no greater than 1,000 &mgr;S/cm.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: October 23, 2001
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Sumiya Miyake, Akiko Okubo, Hiromi Honda, Yoshiyuki Go, Hiroshi Nagata, Minoru Kobayashi
  • Publication number: 20010031853
    Abstract: The present invention provides PMR-type polyimides that exhibit lower melt viscosities than PMR-type polyimides of the prior art. These PMR-type polyimides are created by incorporating flexible linkages, such as kinked structures and twisted or non-coplanar moietes into the backbone structure of the PMR. Specifically, the present invention provides for the production of PMR-type polyimides having 2,2′-disubstituted biaryls in the polymer backbone.
    Type: Application
    Filed: March 2, 2001
    Publication date: October 18, 2001
    Inventors: Ronald K. Eby, Michael Meador, Christopher A. Gariepy
  • Publication number: 20010019787
    Abstract: The invention relates to sulphonated polymides, notably of formula (I) 1
    Type: Application
    Filed: April 20, 2001
    Publication date: September 6, 2001
    Inventors: Sylvain Faure, Michel Pineri, Pierre Aldebert, Regis Mercier, Bernard Sillion
  • Publication number: 20010020082
    Abstract: The invention relates to sulphonated polyimides, notably of formula (I) 1
    Type: Application
    Filed: April 20, 2001
    Publication date: September 6, 2001
    Inventors: Sylvain Faure, Michel Pineri, Pierre Aldebert, Regis Mercier, Bernard Sillion
  • Patent number: 6280843
    Abstract: Aromatic polyamide fibers which have a crystalline structure having (1) crystal size (A) in a (110) plane of 7.5 nm, (2) crystal size (B) in a (200) plane of 8.2 nm and (3) a product A×B of 61.50 to 630.00, and exhibit a thermal linear expansion coefficient of −1.0×10−6/° C. to −7.5×10−6/° C. and thus a high dimensional stability even upon moisture-absorbing and desorbing, are useful for forming a resin-reinforcing fiber sheet, a pre-preg containing the fiber sheet, and a laminate for, for example, an electric insulating material or electric circuit board, having an excellent cutting, shaving, perforating or laser processability and capable of forming a smooth cut, shaved or perforated face.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 28, 2001
    Assignee: Teijin Limited
    Inventors: Sadamitsu Murayama, Masanori Wada, Michikage Matsui
  • Patent number: 6277948
    Abstract: Disclosed in the present invention is a process for modifying a polyamide polymer comprising contacting a reactive modifier with diamine/diacid salt and/or an amino-acid of a hydrolyzed lactam or lactam to form a modified polyamide. A second embodiment of the present invention is a process for modifying a polyamide polymer comprising contacting a reactive modifier with diamine then contacting the resulting modified diamine with diacid and/or lactam to form a modified polyamide.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: August 21, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: George Elias Zahr
  • Patent number: 6268465
    Abstract: An aliphatic polyester amide which is hydrolysis-resistant includes a ternary polycondensation product of monomeric constituents composed of a monomeric constituent A which is at least one diol having a general formula: HO—R1—OH, where R1 is an aliphatic residue having 2-16 carbon atoms; a monomeric constituent B which is at least one dicarboxylic acid having a general formula: HOOC—R2—COOH, where R2 is an aliphatic residue having 1-14 carbon atoms; and a monomeric constituent C which is at least one diamine having a general formula: H2N—R3—NH2, where R3 is an aliphatic residue having 2-16 carbon atoms and is present in an amount of up to about 5% by weight based on total weight of the monomeric constituents, wherein polycondensation proceeds in the presence of a catalyst comprised of constituent D, which is a metal-containing catalyst, in combination with constituent E, which is at least one of an organic phosphorus compound and an inorganic phosphorus compound, and wherei
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: July 31, 2001
    Assignee: BK Giulini Chemie GmbH Co OHG
    Inventors: Gudrun Chomiakow, Hasan Ulubay, Emil Wilding
  • Patent number: 6258928
    Abstract: A process for improving characteristics such as, whiteness retention, degradation, and dyeability of a polyamide by contacting the polyamide with thiocyanate. A polyamide produced by the process has improved dyed color depth, dyed color uniformity, hue, elimination of light dyeing ends, protection of dye sites from degradation, protection from UV degradation, reduced yellowing or oxidation, and/or resistance to loss of dyeability.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: July 10, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Bennett Ray Baird, David Malcolm Lewis, Kamleshkumar Chunilal Patel
  • Patent number: 6248861
    Abstract: A multi-stage process for the manufacture of branched aliphatic polyamides is provided. The process comprises the steps, in sequence, of feeding to a reactor a slurry of at least one aliphatic dinitrile, and at least one aliphatic diamine, at least one of which is branched, in the presence of 0.05 to 2% by weight of a phosphorous-containing compound, with the incremental addition of water, heating the slurry to a temperature of at least 270° C. while maintaining a pressure of at least 1.2 Mpa, venting water, ammonia and other volatile matter from the reactor while maintaining the temperature and pressure, maintaining the temperature for a further period of time while reducing the pressure to at least atmospheric pressure and then discharging the polyamide so formed. Polyamides made by this process are substantially the same as corresponding polyamides made by the conventional salt-strike process, and can be used in molding, coating and film applications.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: June 19, 2001
    Assignee: DuPont Canada Inc.
    Inventor: Howard Ng
  • Patent number: 6248480
    Abstract: An electrolyte is provided having a backbone that includes a plurality of aromatic constituents coupled together by at least one atom having a &pgr;-cloud, and in which a halogen atom and an ion exchange group are covalently bound directly to the backbone. Furthermore, the electrolyte is high temperature resistant and may comprise perhalogenated polymers, including perhalogenated polyphenylenes, perhalogenated polyamides, perhalogenated aromatic polyesters, perhalogenated polyimide, etc. Still further, the electrolyte may have acidic groups as ion exchange groups, including sulfonic acid groups, or phosphoric acid groups.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: June 19, 2001
    Assignee: SRI International
    Inventors: Subhash Narang, Susanna Ventura
  • Patent number: 6197920
    Abstract: The present invention relates to the synthesis of new type of diamine monomer, 1,3-bis(4-amonophenoxy)naphthalene, and with such a compound to produce a series of aromatic polymers, including polyamide, polyimide, copoly(amide-imide)s, etc., such polymers having excellent resistance to heat and mechanical properties.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: March 6, 2001
    Assignee: China Textile Institute
    Inventors: Kun Lin Cheng, Wen-Tung Chen
  • Patent number: 6191251
    Abstract: Incorporation of certain phosphorus compounds in conjunction with certain bases into a polyamide melt or a polyamide manufacturing polymerization process results in a polyamide having improved color properties.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: February 20, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Rolando Umali Pagilagan
  • Patent number: 6172167
    Abstract: The invention provide biodegradable copolymers of the copoly(ester-amide) or copoly(ester-urethane) type, which copolymers consist of building blocks with the general structure (I): [CB-VB] wherein CB and VB of different building blocks may be the same or different, and CB represents a block with a constant length and VB represents a block with a variable length.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: January 9, 2001
    Assignee: Universiteit Twente
    Inventors: Hendrik Roelof Stapert, Pieter Jan Dijkstra, Jan Feijen