From At Least Two Organic Polyamines Patents (Class 528/340)
  • Patent number: 11872788
    Abstract: Provided are a multilayered article and a multilayered container excelling in oxygen barrier properties, delamination resistance, and transparency. The multilayered article has a polyester resin layer and a barrier layer. The polyamide resin contained in the barrier layer includes (A) a polyamide resin derived from xylylenediamine and adipic acid, (B) a polyamide resin derived from xylylenediamine, a linear aliphatic dicarboxylic acid, and isophthalic acid, and as necessary, (C) a polyamide resin derived from hexamethylenediamine, isophthalic acid, and terephthalic acid, and (D) an aliphatic polyamide resin. In the barrier layer, a ratio of the mass of the polyamide resin (A) to the total mass of the polyamide resin (B) and the polyamide resin (C) is from 98:2 to 15:85, the total content of the polyamide resin (A) and the polyamide resin (B) is 60 mass % or more, the content of the polyamide resin (B) is from 1 to 65 mass %, and the content of the aliphatic polyamide resin (D) is from 3 to 40 mass %.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: January 16, 2024
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Takanori Miyabe
  • Patent number: 11753504
    Abstract: A copolyamide composition comprising a statistical copolyamide containing 70-99 wt % of diamine and dicarboxylic acid repeat units and 1-30 wt % of lactam or AA-BB repeat units, whereby incorporation of the comonomer lactam or AA-BB unit reduces the crystallization rate (longer crystallization times) while maintaining (1) high melting point, (2) low potential plate out, (3) low oxygen permeation, (4) high tensile strength and (5) puncture/tear resistance.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: September 12, 2023
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Jacob G. Ray, Tiffany Hristopoulos, Steven C. Manning, Tariq S. Oweimreen, Scott E. Powers, Askim Senyurt
  • Patent number: 11732316
    Abstract: A leather tanning method using chrome-free and formaldehyde-free adhesive pertains to the technical field of leather tanning, in which the quaternary ammonium salt cationic resin adhesive is used for leather pretanning and retanning. After drying, the leather has excellent performance, which is comparable to traditional chrome and formaldehyde tanned leather. The method solves the drawbacks of using chromium and formaldehyde tanning agents in the leather tanning industry, which pollutes the environment and raises health concerns. The present disclosure has obvious advantages in environmental protection, huge industrial application value, and has broad application prospects.
    Type: Grant
    Filed: January 9, 2022
    Date of Patent: August 22, 2023
    Assignee: FUJIAN AGRICULTURE AND FORESTRY UNIVERSITY
    Inventors: Nairong Chen, Yijing Tu
  • Patent number: 11728530
    Abstract: The present invention provides a lithium secondary battery and a lithium secondary battery sub module including the same. The lithium secondary battery includes: an electrode assembly; a plastic case which houses the electrode assembly and includes a gas barrier layer; and a pouch film cover which seals the plastic case having the electrode assembly housed therein, such that it is possible to achieve a battery having a significantly increased thickness so as to increase the capacity thereof without structural limitation, secure durability of the battery due to having excellent resistance to permeability, and improve productivity due to a decrease in an occurrence of poor insulation. Thereby, the lithium secondary battery sub module including the lithium secondary battery may have a high energy density and may be formed in a compact shape with reduced manufacturing costs.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: August 15, 2023
    Assignee: SK ON CO., LTD.
    Inventor: Hee-Gyoung Kang
  • Patent number: 11008437
    Abstract: Provided is a material set for forming a three-dimensional object, the material set including: a first liquid material for forming a three-dimensional object; and a second liquid material for forming a three-dimensional object, wherein the first liquid material contains a solvent, an organic compound A, and inorganic particles, and wherein the second liquid material contains an organic compound B having reactivity with the organic compound A.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: May 18, 2021
    Assignee: Ricoh Company, Ltd.
    Inventors: Masaki Watanabe, Takuya Saito, Yoichi Sakurai, Tatsuya Niimi
  • Patent number: 10858481
    Abstract: Disclosed is a process for making a polyetheramine containing polyamide without excessive foaming in successive batches by providing a controlled heat input rate step for those batch runs that incorporate polyetheramine containing polyamide heel from previous runs.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: December 8, 2020
    Assignee: INVISTA North America S.a.r.l.
    Inventor: Charles Richard Langrick
  • Patent number: 10793673
    Abstract: The present invention relates to a polymer comprising a repeating group having the structure of formula (I) wherein R, R1, R2, R3, R4, X, and s are as described herein and salt thereof. Also disclosed is a process of synthesizing such polymers.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: October 6, 2020
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Nacu Hernandez, Mengguo Yan, Eric W. Cochran, John Edward Matthiesen, Jean-Philippe Tessonnier
  • Patent number: 9732190
    Abstract: There is provided a production method of a crystalline polyamide resin by thermal polycondensation of a mixture including at least a diamine component, a dicarboxylic acid component and water as a starting material, wherein the diamine component includes (A) pentamethylene diamine at a ratio that is equal to or greater than 10 mol % and less than 80 mol % relative to a gross amount of the diamine component; and the dicarboxylic acid component includes (B) at least one selected from the group consisting of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid and dialkyl ester derivatives thereof at a ratio that is equal to or greater than 76 mol % and equal to or less than 100 mol % relative to a gross amount of the dicarboxylic acid component.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: August 15, 2017
    Assignee: TORAY INDUSTRIES INC.
    Inventors: Koya Kato, Atsushi Masunaga, Eri Hatano, Hideo Matsuoka
  • Patent number: 9359477
    Abstract: The present invention is directed to a process for producing a polyamide, which process includes directly melt-polymerizing a diamine component including 70 mol % or more of p-xylylenediamine and a dicarboxylic acid component including 70 mol % or more of a C6 to C18 aliphatic dicarboxylic acid, in the absence of solvent in a batch-type reactor equipped with a stirring blade, the process including: (1) reacting the diamine component with the dicarboxylic acid component under a pressure condition of 0.2 to 0.5 MPa (Abs); (2) maintaining a vapor phase section of a reaction tank of the reactor at 200° C. or higher during reaction; (3) stirring the contents of the reaction tank, from the start of adding the diamine component until after completion of the addition and before the start of pressure falling, such that the stirring-related Froude number represented by a specific formula is adjusted to 0.0002 to 0.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: June 7, 2016
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Tatsuya Tochihara, Katsumi Shinohara
  • Patent number: 9284665
    Abstract: The present invention concerns methods for removing sulfur from a fiber made from a polymer comprising imidazole groups, said method comprising: a) contacting never-dried sulfate anion containing polymeric-fiber with an aqueous salt solution comprising halide anions to displace at least a portion of the sulfate anions with halide anions; and b) rinsing the fiber to remove displaced sulfate anions.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 15, 2016
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Christopher William Newton, David J. Rodini, Joseph Lenning Lowery, Steven R. Allen, Vlodek Gabara
  • Patent number: 9109115
    Abstract: The invention relates to a polyamide moulding compound made of a polyamide (PA MACM12) made of bis(3-methyl-4-aminocyclohexyl)methane (MACM) and dodecanedioic acid, a polyamide (PA PACM12) made of bis(4-aminocyclohexyl)methane (PACM) and dodecanedioic acid, a polyamide (PA MACM10) made of bis(3-methyl-4-aminocyclohexyl)methane and decanedioic acid, a polyamide (PA PACM10) made of bis(4-aminocyclohexyl)methane and decanedioic acid, a polyamide (PA MACM14) made of bis(3-methyl-4-aminocyclohexyl)methane and tetradecanedioic acid, a polyamide (PA PACM14) made of (bis(4-aminocyclohexyl)methane and tetradecanedioic acid and also mixtures and copolyamides thereof. Furthermore, the moulding compound comprises as impact modifier a functionalised styrene-ethylene/butylene-styrene block copolymer and also possibly further additives. Likewise, the invention relates to moulded articles produced from this polyamide moulding compound.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: August 18, 2015
    Assignee: EMS-Patent AG
    Inventor: Friedrich Severin Bühler
  • Patent number: 9099415
    Abstract: An organic light-emitting display device including a thin film transistor (TFT) on a substrate; an organic light emitting diode (OLED) electrically connected to the TFT, the OLED including a pixel electrode, an organic layer, and an opposite electrode; a pixel defining layer (PDL) on the pixel electrode, the PDL including an opening that exposes at least one portion of the pixel electrode; and a light scattering layer between the pixel electrode and the organic layer.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 4, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventor: Yong-Woo Park
  • Patent number: 9080261
    Abstract: The present invention concerns methods for removing sulfur from a fiber made from a polymer comprising imidazole groups, said method comprising: a) contacting never-dried sulfate anion containing polymeric-fiber with aqueous salt having monovalent anions to displace at least a portion of the sulfate anions; and b) rinsing the fiber to remove displaced sulfate anions.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 14, 2015
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Steven R. Allen, Vlodek Gabara, Joseph Lenning Lowery, Christopher William Newton, David J. Rodini
  • Publication number: 20150148518
    Abstract: The invention relates to a branched polyamide prepolymer obtained or obtainable by polymerization of a polyamide forming monomer mixture, comprising AA-BB repeat units and branching units derived from diamines (monomer A) dicarboxylic acids (monomer B), and/or a salt of A and B, and a higher functional monomer (monomer C) present in a molar amounts defined by formula I and formula II: MC=(Q/FC)*(MA+MB) (Formula I) and R=((MA*2)+(MC*FCA))/((MB*2)+(MC*FCB)) (Formula II) wherein—MA, MB and MC represent the molar amounts of repeat units derived from the monomers A, B and C, respectively;—FC represent the functionality of monomer C, and is equal to FC-A+FC-B;—FC-A is the number of the amino functional groups comprised by monomer C;—FC-B is the number of carboxyl functional groups or precursor groups thereof comprised by monomer C;—Q is a number in the range of 0.06-1.00; and—R is a number in the range of 0.7-1.
    Type: Application
    Filed: June 26, 2012
    Publication date: May 28, 2015
    Applicant: DSM IP ASSETS B.V.
    Inventors: Nileshkumar Prakash Kukalyekar, Zhujuan Wang, Rudy Rulkens, Godefridus Bernardus Wilhelmus Leonardus Ligthart
  • Publication number: 20150141613
    Abstract: The invention relates to a polyamide comprising units derived from: A. a diamine comprising in its structure at least one cyclohexane fragment according to Structure I, in which the substituents are in the 1,4-trans-position (Structure I), with n a positive integer of at least 1, and the proviso that when n is 2 or higher the cyclohexane rings are connected to each other through the 1,4-trans position, B. an aliphatic dicarboxylic acid with at least 13 carbon atoms and optionally comprising units derived from: C. one or more aliphatic dicarboxylic acids other than B, D. one or more diamines other than A, E. one or more monofunctional carboxylic acids or monofunctional amines, F. one or more polyfunctional monomers comprising carboxylic acid and/or amine groups, G. one or more lactams or corresponding amino acids. The invention further relates to a composition comprising such a polyamide and its uses.
    Type: Application
    Filed: May 24, 2013
    Publication date: May 21, 2015
    Inventors: Rudy Rulkens, Atze Jan Nijenhuis
  • Publication number: 20150130098
    Abstract: Disclosed is a method of fabricating a graphite sheet, including: polymerizing diamines and a dianhydride to form a polyamic acid. The polyamic acid is solvent casted on a substrate and hot baked to form a polyamic acid film or gel film. The polyamic acid film or gel film is biaxially stretched at a high temperature imidization or chemical imidization to form the polyimide film. The polyimide film is then carbonized and graphitized to form a graphite sheet. The diamines include a diamine of Formula 1 and a diamine of Formula 2, and the dianhydride includes a dianhydride of Formulae 3, Formula 4, Formula 5, Formula 6, Formula 7, Formula 8, Formula 9, or combinations thereof.
    Type: Application
    Filed: February 4, 2014
    Publication date: May 14, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shou-Jui HSIANG, Si-Yi CHIN, Wei-Ta YANG
  • Patent number: 9012026
    Abstract: The invention relates to a copolyamide comprising at least two different units corresponding to the following general formulation: A/X.T A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (Ca diamine).(Cb diacid), with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36, advantageously between 9 and 18, X.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: April 21, 2015
    Assignee: Arkema France
    Inventors: Thierry Briffaud, Philippe Blondel
  • Publication number: 20150087801
    Abstract: The invention concerns processes for forming polymer crumb comprising residues of 2-(4-amino phenyl)-5 (6) amino benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride (TCl), comprising the steps of: i) forming a slurry of b mole percent DAPBI in a solvent system comprising organic solvent and c weight percent of an inorganic salt, wherein the inorganic salt is present in an amount of at least 5 weight present of the organic solvent; ii) contacting the slurry with a less than stoichiometric amount of terephthaloyl chloride to form an prepolymer solution; and iii) contacting the prepolymer solution with y mole percent of PPD and additional TCL to form a polymer solution; wherein the total amount of TCL added in steps ii) and iii) is a stoichiometric amount based on the total amount of DAPBI and PPD added in steps i) and iii); the DAPBI and PPD are added in an amount sufficient for providing a polymer solution having a weight percent solids of 12 percent or greater on a polymer basis;
    Type: Application
    Filed: November 20, 2014
    Publication date: March 26, 2015
    Inventor: FREDERICK K. MALLON
  • Publication number: 20150087800
    Abstract: Provided is a para-type wholly aromatic copolyamide drawn fiber having a tensile elastic modulus of 630 cN/dtex or more. The fiber is obtained by subjecting a para-type wholly aromatic copolyamide raw material fiber to high-tension hot drawing under a tension and at a temperature within specific ranges.
    Type: Application
    Filed: June 6, 2013
    Publication date: March 26, 2015
    Applicant: TEIJIN LIMITED
    Inventors: Toru Kurino, Naoya Komiya
  • Publication number: 20150080548
    Abstract: The invention concerns processes for forming polymer crumb comprising residues of 2-(4-amino phenyl)-5 (6) amino benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride, comprising the steps of: (a) forming a slurry of b mole percent DAPBI and y mole percent PPD in a solvent system comprising organic solvent and c weight percent of an inorganic salt, wherein the inorganic salt is present in an amount of at least 5 weight percent of the organic solvent, DAPBI and PPD being present in an amount sufficient for providing a polymer solution having a weight percent solids of 12 percent or greater on a polymer basis; and (b) contacting the slurry of step a) with a stoichiometric amount of terephthaloyl dichloride to form a product comprising the polymer; wherein the sum of y+b is 100 and the product of b×c is 225 or greater.
    Type: Application
    Filed: November 21, 2014
    Publication date: March 19, 2015
    Inventor: FREDERICK K MALLON
  • Publication number: 20150073119
    Abstract: The present invention concerns methods for removing sulfur from a fiber made from a polymer comprising imidazole groups, said method comprising: a) contacting never-dried sulfate anion containing polymeric-fiber with aqueous salt having monovalent anions to displace at least a portion of the sulfate anions; and b) rinsing the fiber to remove displaced sulfate anions.
    Type: Application
    Filed: January 11, 2012
    Publication date: March 12, 2015
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Steven R. Allen, Vlodek Gabara, Joseph Lenning Lowery, Christopher William Newton, David J. Rodini
  • Publication number: 20150073118
    Abstract: The present invention concerns methods for removing sulfur from a fiber made from a polymer comprising imidazole groups, said method comprising: a) contacting never-dried sulfate anion containing polymeric-fiber with an aqueous salt solution comprising halide anions to displace at least a portion of the sulfate anions with halide anions; and b) rinsing the fiber to remove displaced sulfate anions.
    Type: Application
    Filed: January 11, 2012
    Publication date: March 12, 2015
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Christopher William Newton, David J. Rodini, Joseph Lenning Lowery, Steven R. Allen, Vlodek Gabara
  • Patent number: 8975364
    Abstract: This is to provide a polyamide resin which can sufficiently ensure all of a relative viscosity ?r (high degree of polymerization), moldable temperature range estimated from a temperature difference (Td?Tm), heat resistance estimated from a melting point Tm, melt moldability estimated from a temperature difference (Tm?Tc), and low water absorbability as compared with the conventional polyoxamide resin. This is a polyamide resin comprising a dicarboxylic acid-derived unit and a diamine-derived unit being bonded, wherein the above-mentioned dicarboxylic acid contains oxalic acid (Compound A), and the above-mentioned diamine contains 1,6-hexanediamine (Compound B) and 2-methyl-1,5-pentanediamine (Compound C).
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: March 10, 2015
    Assignee: Ube Industries, Ltd.
    Inventors: Shuichi Maeda, Tomoyuki Nakagawa
  • Publication number: 20150057427
    Abstract: A poly(imide-amide) copolymer, which is a product of a reaction between a diamine and a dianhydride, wherein the diamine comprises a diamine represented by Chemical Formula 1 and the dianhydride comprises a dianhydride represented by Chemical Formula 5: wherein, the variables in Chemical Formulae 1 and 5 are described in the specification.
    Type: Application
    Filed: November 25, 2013
    Publication date: February 26, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chung Kun CHO, Dmitry ANDROSOV, Fedosya KALININA, Mikhail KOVALEV
  • Publication number: 20150057426
    Abstract: A composition including a plurality of oligomers including at least one selected from a repeating unit represented by Chemical Formula 1, a repeating unit represented by Chemical Formula 2, and a combination thereof; and at least one selected from a repeating unit represented by Chemical Formula 3, a repeating unit represented by Chemical Formula 3A, and a combination thereof; wherein at least a part of the plurality of oligomers includes at least one terminal end having an amino group, and wherein at least a part of the plurality of oligomers including at least one terminal end having an amino group is a diamine having a pKa value of equal to or less than 3 at 25° C.: wherein the variables in Chemical Formulae 1, 2, 3, and 3A are described in the specification.
    Type: Application
    Filed: November 25, 2013
    Publication date: February 26, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Chung Kun CHO, Fedosya KALININA, Dmitry KRAVCHUK, Dmitry ANDROSOV, Mikhail KOVALEV
  • Publication number: 20150025200
    Abstract: A composition including a diamine compound and a dianhydride compound, wherein the diamine compound includes a first diamine compound represented by Chemical Formula 1, wherein, in Chemical Formula 1, T1 to T8 and L1 to L8 are the same as defined in the detailed description.
    Type: Application
    Filed: March 5, 2014
    Publication date: January 22, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byung Hee SOHN, Yoon Seok KO
  • Publication number: 20140356611
    Abstract: The present invention concerns fiber made from a polymer comprising imidazole groups, the polymer further having: i) halide anions being present in an amount in the range of 0.05 to 20.1 weight percent, based on weight of fiber; ii) sulfur, wherein the sulfur is present in the fiber in an amount in the range of 0.05 to 3 weight percent, based on weight of fiber; and iii) alkali metal ion, wherein the alkali metal ion is present in the fiber in an amount in the range of 0.05 to 2 weight percent, based on weight of fiber.
    Type: Application
    Filed: January 11, 2012
    Publication date: December 4, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Steven R. Allen, Vlodek Gabara, Joseph Lenning Lowery, Christopher William Newton, David J. Rodini, Andrew J. Sitter
  • Patent number: 8901274
    Abstract: Polyimide oligomers of the general formula: M-(Z—Y—X—Y—Z)n-M wherein n is an integer of 1 to 20; X comprises an aromatic diamine containing 2-4 aryl moieties, each of which contains 0-4 substituents; Z is independently the same as X or is a different aromatic diamine containing 1-4 aryl moieties, each of which contains 0-4 substituents; Y comprises an aromatic dianhydride containing 1-4 aryl moieties, each of which contains 0-4 substituents; and M is independently the same as Y or is a substituted or unsubstituted anhydride, a substituted or unsubstituted dianhydride, a substituted or unsubstituted bisimide, or a substituted or unsubstituted monomeric or oligomeric phthalonitrile.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: December 2, 2014
    Assignee: Lonza Group, Ltd.
    Inventors: Sajal Das, Vilas M. Chopdekar, Megan B. Casey
  • Patent number: 8895677
    Abstract: A polyamide block copolymer that includes a first segment including a repeating unit represented by Chemical Formula 1, a repeating unit represented by Chemical Formula 2, or a combination thereof; and a second segment including a repeating unit represented by Chemical Formula 3. The variables R1 to R15, and n1 to n8 are defined herein.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: November 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chung Kun Cho, Kalinina Fedosya, Kovalev Mikhail, Sang Mock Lee
  • Patent number: 8895690
    Abstract: A copolyamide resin for molding including a diamine component which includes two or more diamines and a dicarboxylic acid component. The diamine component includes 70 mol % or more of a xylylenediamine which includes 20 mol % or more of p-xylylenediamine and the dicarboxylic acid component includes 70 mol % or more of a straight-chain aliphatic dicarboxylic acid having 6 to 18 carbon atoms. The copolyamide resin contains particles having a major diameter of 50 ?m or more in an amount of 1000 particles/g or less, the particles being made of a polyamide having a melting point higher than that of the copolyamide resin by 20° C. or more when measured by a differential scanning calorimetry. The copolyamide resin has very uniform and stable properties and is excellent in any of mechanical properties, heat resistance, chemical and physical properties, and molding properties. An efficient production method of the copolyamide resin, its resin composition, and its molded article are also described.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: November 25, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Tomomichi Kanda, Minoru Kikuchi, Katsumi Shinohara, Hideyuki Kurose
  • Patent number: 8883956
    Abstract: Disclosed is a polyimide polymerized by x molar parts of a first diamine, y molar parts of a second diamine, and 100 molar parts of a first dianhydride, wherein the first diamine has a formula of the second diamine has a formula of the first dianhydride has a formula of a+b=100, 50?x?80, and 20?y?50.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: November 11, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Hsueh-Yi Liao, Chyi-Ming Leu, Tzong-Ming Lee
  • Publication number: 20140329984
    Abstract: Disclosed are salt compositions of lysinol and dicarboxylic acids; and lysinol derived polymers including polyamide, polyimide, polyurea, cross-linked polyurea comprising urethane linkages, polyurea foams, cross-linked polyurea foams, and lysinol-epoxy thermoset.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 6, 2014
    Inventors: DAVID NEIL MARKS, KENNETH GENE MOLOY, MARK A. SCIALDONE
  • Patent number: 8871862
    Abstract: A molding compound, containing at least 30% by weight of a copolyamide, which is derived from the following monomers: a) 50 to 95 mole percent of the combination of a diamine, selected from the group consisting of 1,9-nonane diamine, 1,10-decane diamine, 1,11-undecane diamine and 1,12-dodecane diamine, and terephthalic acid, and b) 5 to 50 mole percent of the combination of a diamine, selected from the group consisting of 2,2,4-trimethylhexamethylene diamine, 2,4,4-trimethylhexamethylene diamine, and mixtures thereof, and terephthalic acid. The copolyamide is crystalline and has low water absorption.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 28, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Andreas Pawlik, Martin Roos, Franz-Erich Baumann, Harald Haeger
  • Publication number: 20140316062
    Abstract: A process for the production of a polyamide containing monomeric units of 1,4-butylene diamine, an aliphatic dicarboxylic acid having 6-12 carbon atoms and a fatty acid based dicarboxylic acid and/or diamine derived there from, which process comprises the steps of: a) making an aquous salt mixture containing 1,4-butylene diamine, the aliphatic dicarboxylic acid having 6-12 carbon atoms and the fatty acid based dicarboxylic acid and/or diamine derived there from, the mixture containing less than 50 wt % water and distilling the mixture to less than 15 wt % of water at a pressure of less than 16 barg, while keeping the mixture at a temperature high enough to keep it liquid, b) starting the polymerization of the mixture obtained in step a) by increasing the temperature until to at least 180° C.
    Type: Application
    Filed: February 10, 2012
    Publication date: October 23, 2014
    Applicant: DSM IP ASSETS B.V.
    Inventors: Pim Gerard Anton Janssen, Rudy Rulkens, Godefridus Bernardus Wilhelmus Leonardus Ligthart
  • Patent number: 8841407
    Abstract: Provided is a polyamide resin having high heat resistance, excellent moldability and excellent mechanical properties. The polyamide resin comprises a diamine unit containing 70 mol % or more of a xylylenediamine unit and a dicarboxylic acid unit containing 70 mol % or more of a straight chain aliphatic dicarboxylic acid unit, wherein the xylylenediamine unit is composed of 50 to 95 mol % of p-xylylenediamine and 50 to 5 mol % of m-xylylenediamine; the straight chain aliphatic dicarboxylic acid unit is composed of 50 to 100 mol % of adipic acid and 0 to less than 50 mol % of sebacic acid or other straight chain aliphatic dicarboxylic acids; the molar ratio of reacted diamine units to reacted dicarboxylic acid units (the number of moles of reacted diamine units/the number of moles of reacted dicarboxylic acid units) is less than 0.994; and the polyamide resin has a number average molecular weight of 10,000 to 25,000 and a melting point of 285° C. or more.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: September 23, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hatsuki Oguro, Jun Mitadera, Hisayuki Kuwahara
  • Publication number: 20140275311
    Abstract: Disclosed are salt compositions of lysinol and dicarboxylic acids; and lysinol derived polymers including polyamide, polyimide, polyurea, cross-linked polyurea comprising urethane linkages, polyurea foams, cross-linked polyurea foams, and lysinol-epoxy thermoset.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: DAVID N. MARKS, KENNETH GENE MOLOY, MARK A. SCIALDONE, MANXUE WANG
  • Patent number: 8791227
    Abstract: A crosslinked aromatic polyimide having shape memory properties and methods of making the same. The crosslinked aromatic polyimide comprises at least one aromatic diamine, at least one dianhydride monomer, and a tri(oxybenzene-amine) crosslinker. The crosslinked aromatic polyimide polymers and films possess superior shape memory properties at temperatures above 225° C.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: July 29, 2014
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Loon-Seng Tan, David Huabin Wang, Hilmar Koerner, Richard A. Vaia
  • Publication number: 20140194569
    Abstract: Provided is a thin-wall article formed from a polyamide resin which can be stably produced with little variation in mechanical properties such as flexural strength, flexural modulus and impact resistance. A thin-wall article formed by molding a polyamide resin (C) obtained by polycondensing a diamine (A) and a dicarboxylic acid (B) or a polyamide resin composition containing the polyamide resin, wherein 70 mol % or more of a diamine structural unit is derived from xylylenediamine and the polyamide resin has a melt viscosity (i) of 50 to 200 Pa·s as measured at a temperature of the melting point plus 10° C. for a holding time of 6 minutes at a shear rate of 122 sec?1.
    Type: Application
    Filed: August 7, 2012
    Publication date: July 10, 2014
    Applicant: Mitsubishi Gas Chemical Compamy, Inc.
    Inventors: Jun Mitadera, Takahiro Takano
  • Publication number: 20140194570
    Abstract: There is provided a production method of a crystalline polyamide resin by thermal polycondensation of a mixture including at least a diamine component, a dicarboxylic acid component and water as a starting material, wherein the diamine component includes (A) pentamethylene diamine at a ratio that is equal to or greater than 10 mol % and less than 80 mol % relative to a gross amount of the diamine component; and the dicarboxylic acid component includes (B) at least one selected from the group consisting of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid and dialkyl ester derivatives thereof at a ratio that is equal to or greater than 76 mol % and equal to or less than 100 mol % relative to a gross amount of the dicarboxylic acid component, the production method comprising: a first step that heats the above mixture, which has a water content equal to or less than 30% by weight, at a temperature equal to or higher than 200° C. under a pressure of 1.8 to 3.
    Type: Application
    Filed: August 13, 2012
    Publication date: July 10, 2014
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Koya Kato, Atsushi Masunaga, Eri Hatano, Hideo Matsuoka
  • Patent number: 8772438
    Abstract: A process for making a polyamide polymer, said process comprising heating, in one or more ionic liquid(s), one or more polyamide precursor(s) selected from: (i) one or more free dicarboxylic acid(s) or ester(s) thereof, with one or more diamine(s); or (ii) one or more salt(s) of a dicarboxylic acid with a diamine; or (iii) one or more lactam(s); or (iv) mixtures of any of the foregoing precursors (i) to (iii).
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 8, 2014
    Assignee: Invista North America S.är.l.
    Inventors: Keith Whiston, Charles Richard Langrick, Kenneth Richard Seddon, Alberto V. Puga
  • Patent number: 8748004
    Abstract: The invention relates to a copolyamide comprising at least two different units corresponding to the following general formulation: A/X.T A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (Ca diamine).(Cb diacid), with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36, advantageously between 9 and 18, X.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: June 10, 2014
    Assignee: Arkema France
    Inventors: Thierry Briffaud, Philippe Blondel
  • Patent number: 8742030
    Abstract: Compositions of and processes for preparing a polyamine-polyamidoamine-epihalohydrin resin generally include reacting a first polyamine, a polyamidoamine, and an epihalohydrin to form the polyamine-polyamidoamine-epihalohydrin (PPAE) resin, wherein the polyamidoamine is prepared by reacting a polycarboxylic acid or a polycarboxylic acid derivative with a second polyamine to form the polyamidoamine, wherein a molar ratio of the polyamine to the polycarboxylic acid is 1.05 to 2.0. The PPAE resin can be used in an adhesive formulation for use in creping applications for forming paper products such as tissue products.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 3, 2014
    Assignee: Kemira Oyj
    Inventors: Chen Lu, Vladimir Grigoriev, Danny Nguyen, Scott Rosencrance
  • Publication number: 20140127440
    Abstract: The present invention relates to components of mobile electronic devices made of an amorphous polyamide composition characterized by excellent mechanical properties, low moisture uptake, low distortion and very good aesthetical properties. The amorphous polyamide has recurring units derived from the polycondensation of a mixture of monomers of aromatic dicarboxylic acid(s), cycloaliphatic diamine(s) with 6 to 12 carbon atoms, and a third monomer with 10 to 16 carbon atoms.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 8, 2014
    Applicant: SOLVAY SPECIALTY POLYMERS USA, LLC.
    Inventors: Linda M. Norfolk, Geert J. Verfaillie, Rahul Shingte, Soumyadeb Ghosh, Rajdeep Majumder, Jignesh Markandray Shukla, Gururajan Padmanaban, Joel Flores, Suresh R. Sriram
  • Patent number: 8716434
    Abstract: The invention concerns polymer comprising 2-(4-amino phenyl)-5 (6) amino benzimidazole (DAPBI), PPD, and terephthaloyl dichloride, the polymer having a IPC peak block ratio of 1.52 to 1.56 and an inherent viscosity of greater than 2 dl/g.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 6, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Kiu-Seung Lee
  • Patent number: 8716430
    Abstract: The invention concerns polymer comprising residues of 2-(4-amino phenyl)-5 (6) amino benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride, made by a process comprising the steps of: (a) forming a slurry of b mole percent DAPBI and y mole percent PPD in a solvent system comprising organic solvent and c weight percent of an inorganic salt, wherein the inorganic salt is present in an amount of at least 5 weight percent of the organic solvent, DAPBI and PPD being present in an amount sufficient for providing a polymer solution having a weight percent solids of 12 percent or greater on a polymer basis; and (b) contacting the slurry of step a) with a stoichiometric amount of terephthaloyl dichloride to form a product comprising the polymer; wherein the sum of y+b is 100 and the product of b×c is 225 or greater.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 6, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Frederick K Mallon
  • Patent number: 8716432
    Abstract: The invention concerns processes for forming a polymer comprising residues of 2-(4-amino phenyl)-5(6) amino benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride, comprising the steps of: (a) forming a slurry of DAPBI in a solvent system comprising an organic solvent and an inorganic salt; (b) adding terephthaloyl dichloride to the slurry terephthaloyl dichloride in the amount of up to one-half mole for every mole of DAPBI in the slurry; (c) agitating the slurry to react the DAPBI and terephthaloyl dichloride to form an oligomeric solution; (d) adding PPD to the oligomeric solution and agitating until substantially all of the PPD is dissolved, (e) adding terephthaloyl dichloride in an amount of greater than one mole for every mole of PPD in the solution to form a prepolymer solution; and (e) agitating the prepolymer solution to form a polymer.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 6, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Kiu-Seung Lee
  • Patent number: 8716431
    Abstract: The invention concerns processes for forming a polymer comprising residues of 2-(4-amino phenyl)-5(6)amino benzimidazole (DAPBI), paraphenylene diamine, and terephthaloyl dichloride, comprising the steps of: (a) forming a slurry of DAPBI and paraphenylene diamine in a solvent system comprising an organic solvent and an inorganic salt; and (b) adding a stoichiometric amount of terephthaloyl dichloride to the slurry in a single addition and allowing the formation of the polymer.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 6, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Kiu-Seung Lee
  • Patent number: 8703879
    Abstract: A continuous process for the multistage drying and postcondensation of polyamide pellets in the solid phase comprises 1) carrying out the predrying process in a continuous drying apparatus which is operated in countercurrent mode or in crossflow mode with inert gas or steam, or with a mixture of inert gas and steam, using a pellet temperature in the range from 70 to 200° C., and 2) Carrying out the subsequent continuous postcondensation process in a separate vertical duct with moving bed at a pellet temperature in the range from 120 to 210° C., where the duct is operated in countercurrent mode with inert gas or steam, or with a mixture of inert gas and steam, the inert gas is introduced at least two sites along the duct, and from 15 to 90% of the inert gas is introduced at the base of the vertical duct and from 10 to 85% of the inert gas is introduced in the upper half below the surface of the pellets.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventors: Wolfgang Loth, Faissal-Ali El-Toufaili, Achim Stammer, Gad Kory, Achim Gerstlauer, Jens Becker
  • Publication number: 20140094399
    Abstract: Poly(?-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
    Type: Application
    Filed: September 17, 2013
    Publication date: April 3, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Robert S. Langer, David M. Lynn, David A. Putnam, Mansoor M. Amiji, Daniel Griffith Anderson
  • Patent number: 8642716
    Abstract: The present invention relates to branched polyamides comprising unsaturated ends comprising: at least one unit originating from a multifunctional monomer (A) having more than two functional groups, at least sequences resulting from the condensation, in the presence of at least one unsaturated monoacid, either of at least two different lactams, or of at least one lactam, at least one dicarboxylic acid and at least one diamine, or of a lactam or of an ?,?-aminocarboxylic acid, or of a diamine and of a diacid. The invention also relates to thermofusible adhesives comprising these branched polyamides comprising unsaturated ends, and to the use of these branched polyamides comprising unsaturated ends in sheathing electrical cables.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: February 4, 2014
    Assignee: Arkema France
    Inventors: Annett Linemann, Thierry Briffaud