From Boron-containing Reactant Patents (Class 528/394)
  • Patent number: 8097683
    Abstract: A thermoset and method of making such by crosslinking a mixture of a polyhedral oligomeric silsesquioxane having pendent siloxane groups or unsaturated carbon bonds and a siloxylcarborane compound having unsaturated carbon bonds.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: January 17, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Manoj K. Kolel-Veetil
  • Patent number: 8053536
    Abstract: The present invention relates to process comprising reacting a polyfluorenes comprising at least one structural group of formula I with an iridium (III) compound of formula II wherein R1 and R2 are independently alkyl, substituted alkyl, aryl, substituted aryl or a combination thereof; R5is H or CHO; R3 and R4 are independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl or a combination thereof; R11 and R12 taken together form a substituted or unsubstituted monocyclic or bicyclic heteroaromatic ring; R13 is independently at each occurrence halo, nitro, hydroxy, amino, alkyl, aryl, arylalkyl, alkoxy, substituted alkoxy, substituted alkyl, substituted aryl, or substituted arylalkyl; Ar is aryl, heteroaryl, substituted aryl, substituted heteroaryl, or a combination thereof; X is selected from a direct bond, alky, substituted alkyl, and combinations thereof; Y is CHO or NH2; Z is CHO or NH2 where Z does not equal Y; and p is 0, 1 or 2.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Kelly Scott Chichak, Larry Neil Lewis, James Anthony Cella, Joseph John Shiang
  • Patent number: 8052892
    Abstract: Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: James Anthony Cella, Joseph John Shiang, Elliott West Shanklin, Paul Michael Smigelski, Jr.
  • Patent number: 8048956
    Abstract: The present invention relates to process comprising reacting a polyfluorenes comprising at least one structural group of formula I with an iridium (III) compound of formula II The invention also relates to the polyfluorenes, which are products of the reaction, and the use of the polyfluorenes in optoelectronic devices.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Kelly Scott Chichak, Larry Neil Lewis, James Anthony Cella, Joseph John Shiang
  • Patent number: 8012603
    Abstract: High-molecular compounds comprising repeating units represented by the general formula (1) or (2) and having number-average molecular weights of 103 to 108 in terms of polystyrene: (1) [wherein Ar1 and Ar2 are each independently a trivalent aromatic hydrocarbon group or a trivalent heterocyclic group; and X1 and X2 are each independently O, S, C(?O), S(?O), SO2, C(R1)(R2), Si(R3)(R4), N(R5), B(R6), P(R7), or P(?O)(R8), with the provisos that X1 and X2 must not be the same and that X1 and Ar2 are bonded respectively to the adjacent carbon atoms constituting the aromatic ring of Ar1, and X2 and Ar1 are bonded respectively to the adjacent carbon atoms constituting the aromatic ring of Ar2] (2) [wherein Ar3 and Ar4 are each independently a trivalent aromatic hydrocarbon group or a trivalent heterocyclic group; and X3 and X4 are each independently N, B, P, C(R9), or Si(R10), with the provisos that X3 and X4 must not be the same and that X3 and Ar4 are bonded respectively to the adjacent carbon atoms constituting t
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: September 6, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shuji Doi, Satoshi Kobayashi, Takanobu Noguchi
  • Patent number: 7989030
    Abstract: A silicone resin containing boron, aluminum, and/or titanium, and having silicon-bonded branched alkoxy groups; a silicone composition containing a silicone resin; and a method of preparing a coated substrate comprising applying a silicone composition on a substrate to form a film and pyrolyzing the silicone resin of the film.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: August 2, 2011
    Assignee: Dow Corning Corporation
    Inventors: Ronald Boisvert, Duane Bujalski, Zhongtao Li, Kai Su
  • Patent number: 7973203
    Abstract: The invention relates to a process for the preparation of trans-indenofluorene compounds of the formula (Ia) or cis-indenofluorene compounds of the formula (Ib) in a reaction with at least one compound of the formula (IIa) or (IIb) respectively with at least one compound of the R-Hal in the presence of at least one organic base and at least one organic, polar, aprotic solvent.
    Type: Grant
    Filed: November 18, 2006
    Date of Patent: July 5, 2011
    Assignee: Merck Patent GmbH
    Inventor: Arne Buesing
  • Patent number: 7973126
    Abstract: Polymers including at least one structural unit derived from a compound of formula I or including at least one pendant group of formula II may be used in optoelectronic devices wherein R1, R3, R4 and R6 are independently hydrogen, alkyl, alkoxy, oxaalkyl, alkylaryl, aryl, arylalkyl, heteroaryl, substituted alkyl; substituted alkoxy, substituted oxaalkyl, substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted heteroaryl; R1a is hydrogen or alkyl; R2 is alkylene, substituted alkylene, oxaalkylene, CO, or CO2; R2a is alkylene; R5 is independently at each occurrence hydrogen, alkyl, alkylaryl, aryl, arylalkyl, alkoxy, carboxy, substituted alkyl; substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted alkoxy, X is halo, triflate, —B(OR1a)2, or ?located at the 2, 5- or 2, 7-positions; and L is derived from phenylpyridine, tolylpyridine, benzothienylpyridine, phenylisoquinoline, dibenzoquinozaline, fluorenylpyridine, ketopyrrole, 2-(1-naphthyl)benzo
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: July 5, 2011
    Assignee: General Electric Company
    Inventors: Joseph John Shiang, Kelly Scott Chichak, James Anthony Cella, Larry Neil Lewis, Kevin Henry Janora
  • Patent number: 7968004
    Abstract: Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 28, 2011
    Assignee: General Electric Company
    Inventors: James Anthony Cella, Joseph John Shiang, Elliott West Shanklin, Paul Michael Smigelski, Jr.
  • Patent number: 7951874
    Abstract: A K type of copolyarylborane: wherein hydrogen atoms are bonded to the ends; Arn represents at least one of Ar1, Ar2, and Ar3; each of Ar1 and Ar2 represents an arylene radical; Ar3 represents an heteroaromatic arylene radical; Ar1 has a ? electron density of no less than that of benzene; Ar2 is capable of hole transport; Ar3 has a ? electron density of no greater than that of benzene and less than that of Ar1; x, y, and z respectively represent the molar parts of Ar1, Ar2, and Ar3; each of x, y, and z is in the range of 0-1, and x+y+z=1; and R represents an aryl radical. This K type of copolyarylborane may be of use for organic light-emitting diodes (OLEDs), organic solar cells, organic photodetectors, and organic field-effect transistors.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: May 31, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Kanitz, Wolfgang Rogler, Jasmin Woerle
  • Patent number: 7898163
    Abstract: A polymer for use in an optical device comprising one or more regions, where each region comprises (i) a first structural unit having general formula I: where m=1 or 2 and which contains at least one substituent selected from the group consisting of alkyl, alkoxy, aryl, aryloxy, heteroaryl, and heteroaryloxy groups, each of which may be further substituted; and (ii) a second structural unit Ar selected from the group consisting of heteroaryl, triarylamine and 2,7-fluorenyl; such that where m=1 each region comprises a unit having general formula II: wherein, the substituent has a molecular weight of less than 300.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: March 1, 2011
    Assignee: Cambridge Display Technology Limited
    Inventors: Richard O'Dell, Carl Towns, Mary McKiernan
  • Patent number: 7893192
    Abstract: Provided are pi-conjugated polymer materials that are useful for photoelectric transducer elements having high hole transportability and excellent durability, that are useful for light-emitting elements having superior emitting properties and excellent durability, and that are useful for active layers of thin film transistors. The pi-conjugated polymers comprise a constitutional unit expressed by the General Formula (I) or (II): in which, Ar represents an aromatic hydrocarbon group or a heterocyclic group that may have a substituent; R represents a hydrogen atom, an alkyl group or an aromatic hydrocarbon group that may have a substituent; Ar1 represents a divalent group of an aromatic hydrocarbon or a heterocycle that may have a substituent; in which, Ar represents an aromatic hydrocarbon group or a heterocyclic group that may have a substituent; R represents a hydrogen atom, an alkyl group or an aromatic hydrocarbon group that may have a substituent.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: February 22, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Masaomi Sasaki, Masafumi Torii, Takashi Okada, Toshiya Sagisaka
  • Patent number: 7868131
    Abstract: The present invention is directed to methods of preparing linear polymers such as polyalkylene oxides containing a terminal amine in high purity. One preferred method includes reacting a polyalkylene oxide such as polyethylene glycol containing a terminal azide with a phosphine-based reducing agent such as triphenylphosphine or an alkali metal borohydride reducing agent such as sodium borohydride in a solvent to reflux. The resultant polymer-amines are of sufficient purity so that expensive and time consuming purification steps required for pharmaceutical grade polymers are avoided.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: January 11, 2011
    Assignee: Enzon Pharmaceuticals, Inc.
    Inventors: Hong Zhao, Belen Rubio, Jing Xia
  • Patent number: 7858724
    Abstract: The invention relates to luminescent compounds with semi-conducting properties, as well as their production and their use in organic light-emitting diodes (OLEDs). The compounds are copolymers comprising a metal complex with a central atom from subgroup 8 of the periodic table of elements.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: December 28, 2010
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Andreas Kanitz, Wolfgang Rogler, Wolfgang Roth, Thomas Sonnabend, Jasmin Woerle
  • Patent number: 7847052
    Abstract: A polymer of the following formula wherein Ar is aryl or heteroaryl; X represents CH2, sulfur, oxygen, selenium, NR?, or SiR?2 wherein R? and R? are each a suitable hydrocarbon; m represents the number of X substituents; and n represents the number of the repeating units.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: December 7, 2010
    Assignee: Xerox Corporation
    Inventors: Yuning Li, Beng S. Ong, Yiliang Wu, Ping Liu
  • Publication number: 20100276674
    Abstract: An organic light-emitting device comprising an anode; a hole transport layer; a light-emitting layer; and a cathode, characterised in that the hole transport layer comprises a polymer having a repeat unit comprising a 9,9 biphenyl fluorene unit wherein the 9-phenyl rings are independently and optionally substituted and the fluorene unit is optionally fused.
    Type: Application
    Filed: November 18, 2008
    Publication date: November 4, 2010
    Applicants: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED, SUMATION CO., LIMITED
    Inventors: Natasha M. Conway, Mary J. McKiernan, Brian Tierney
  • Publication number: 20100270507
    Abstract: A method for producing a polymer comprising reacting a fluoride and a monomer having a boronic acid moiety, or a salt thereof, in acidic aqueous solution and/or in an aliphatic alcohol. Polymerization occurs with the addition of an oxidizing agent. The method may further comprise the step of purification of the polymer by centrifugation with 0.5 M HCl and/or dispersion of the polymer in a solvent. The polymer has a morphology tunable by changing the solvent.
    Type: Application
    Filed: January 19, 2007
    Publication date: October 28, 2010
    Inventors: Michael S. Freund, Bhavana A. Deore, Insun Yu
  • Patent number: 7820323
    Abstract: The carboxyl borate represents a novel liquid that upon reaction with lithium halide produces a lithium ion electrochemical device electrolyte upon dissolution in an aprotic solvent mixture.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: October 26, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Shengshui Zhang, Conrad Xu, T. Richard Jow
  • Patent number: 7816562
    Abstract: The invention is amido-borate compounds containing one or more anionic amido-borate moieties comprising an organoborate anion wherein the boron atom is bonded to a nitrogen atom of ammonia or an organic compound containing one or more nitrogen atoms, such as a hydrocarbyl amine, a hydrocarbyl polyamine, or an aromatic heterocycle containing one or more nitrogen atoms, and a cationic counter ion.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: October 19, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Shaoguang Feng, Gary L. Jialanella, Peter Nickias, Toni Ristoski
  • Patent number: 7786239
    Abstract: Methods of making unsaturated modified vegetable oil-based polyols are described. Also described are methods of making oligomeric modified vegetable oil-based polyols. An oligomeric composition having a modified fatty acid triglyceride structure is also described. Also, methods of making a polyol including hydroformylation and hydrogenation of oils in the presence of a catalyst and support are described.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: August 31, 2010
    Assignee: Pittsburg State University
    Inventors: Zoran S. Petrovic, Ivan Javni, Alisa Zlatanic, Andrew Guo
  • Patent number: 7754841
    Abstract: The present invention relates to new semiconductive oligomers and polymers, a process for their manufacture and their use in thin film electronic and optical devices, such as organic light emitting diodes (OLED) and photovoltaic devices, eg. solar cells and photodetectors.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: July 13, 2010
    Assignee: Merck Patent GmbH
    Inventors: Richard O'Dell, Thomas Pounds, Paul Wallace, Carl Towns, Mary Mc Kiernan
  • Patent number: 7741428
    Abstract: A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: June 22, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Patent number: 7737241
    Abstract: The invention is a system for initiating free radical polymerization comprising: a) in one part, one or more amido-borate compounds containing one or more anionic amido-borate moieties comprising an organoborate wherein the boron atom is bonded to a nitrogen atom of ammonia or an organic compound containing one or more nitrogen atoms, such as a hydrocarbyl amine, a hydrocarbyl polyamine, or an aromatic heterocycle containing one or more nitrogen atoms and optionally containing one or more heteroatoms or heteroatom containing functional moieties, and one or more cationic counter ions and b) in a second part, a liberating compound which reacts with the nitrogen atom(s) bound to the boron atom(s) upon contact with the amido-borate to form an organoborane radical.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: June 15, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Shaoguang Feng, Gary L. Jialanella, Peter Nickias, Toni Ristoski
  • Patent number: 7731866
    Abstract: Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 8, 2010
    Assignee: General Electric Company
    Inventors: James Anthony Cella, Joseph John Shiang, Elliott West Shanklin, Paul Michael Smigelski
  • Patent number: 7727642
    Abstract: A compound for organic electroluminescence includes a polymer molecule having molecules shown in Formulae 1 to 5 as constituent units: wherein R is an alkyl group, an aryl group, or an alkylaryl group, wherein R? is hydrogen, an alkyl group, or an alkylaryl group.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: June 1, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Tetsuji Fujita
  • Patent number: 7717363
    Abstract: The present invention provides polymers which substantially degrade in the presence of one or more triggers, preferably light energy or hydrogen peroxide, but does not substantially degrade in the absence of one or more triggers.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: May 18, 2010
    Assignee: California Institute of Technology
    Inventors: Mark E. Davis, Kenneth W. Wright, Ryan K. Zeidan
  • Patent number: 7709597
    Abstract: A novel polymer comprising a reaction product obtained by reacting an organosilane compound with a boron compound. The polymer comprises a reaction product obtained by reacting (a) an aminated silane compound represented by the formula R4-n—Si—(OR?)n (wherein R represents an aminated organic group; R? represents methyl, ethyl, or propyl; and n is an integer of 1-3) with (b) at least one boron compound selected from the group consisting of H3BO3 and B2O3, the amount of the ingredient (b) being 0.02 mol or larger per mol of the ingredient (a).
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: May 4, 2010
    Assignee: Nitto Boseki Co., Ltd.
    Inventor: Shinichi Tamura
  • Patent number: 7705528
    Abstract: A halogenated aromatic monomer-metal complex useful for preparing a polymer for electronic devices such as a light-emitting diode (LED) device is described. The aromatic monomer-metal complex is designed to include a linking group that disrupts conjugation, thereby advantageously reducing or preventing electron delocalization between the aromatic monomer fragment and the metal complex fragment. Disruption of conjugation is often desirable to preserve the phosphorescent emission properties of the metal complex in a polymer formed from the aromatic monomer-metal complex. The resultant conjugated electroluminescent polymer has precisely controlled metal complexation and electronic properties that are substantially or completely independent of those of the polymer backbone.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: April 27, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Wanglin Yu, James J. O'Brien
  • Patent number: 7700710
    Abstract: A method and a ceramic made therefrom by: providing a composition of a compound having the formula below and a metallic component, and pyrolyzing the composition. R is an organic group. The value n is a positive integer. Q is an acetylenic repeat unit having an acetylene group, crosslinked acetylene group, (MLx)y-acetylene complex, and/or crosslinked (MLx)y-acetylene complex. M is a metal. L is a ligand. The values x and y are positive integers. The metallic component is the (MLx)y-acetylene complex in the compound or a metallic compound capable of reacting with the acetylenic repeat unit to form the (MLx)y-acetylene complex. The ceramic comprises metallic nanoparticles.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: April 20, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Manoj K. Kolel-Veetil, Syed B Qadri
  • Patent number: 7701129
    Abstract: A polymeric fluorescent substance exhibiting fluorescence in the solid state, having a polystyrene reduced number-average molecular weight of 1×103 to 1×108, and comprising one or more repeating units of formula (1) and one or more repeating units of formula (8), —Ar1—(CR1?CR2)n—??(1) —Ar2—(CR36?CR37)n—??(8) wherein Ar1 represents a specific arylene or a divalent heterocyclic compound group, and Ar2 represent an arylene or a divalent heterocyclic compound group other than Ar1. By using the polymeric fluorescent substance, a high performance polymer LED can easily be obtained.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: April 20, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shuji Doi, Yoshiaki Tsubata, Takahiro Ueoka, Shigeru Sasaki, Takanobu Noguchi
  • Patent number: 7696303
    Abstract: A polymer for use in an optical device comprising a first, optionally substituted, repeat unit of formula and a second, optionally substituted, repeat unit of formula wherein each Ar and Ar? is the same or different and comprises an optionally substituted aryl or heteroaryl group and optionally a third, optionally substituted, repeat unit in a molar ratio of no greater than 5%, the third repeat unit having a formula —Ar—N(Ar)—Ar— and having a single nitrogen atom in its backbone.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: April 13, 2010
    Assignee: Cambridge Display Technology Limited
    Inventors: Richard O'Dell, Carl Towns, Brian Tierney, Stephen O'Connor, Ilaria Grizzi, Clare L. Foden, Nalinkumar Patel, Mark L. Leadbeater, Lorraine Murtagh
  • Patent number: 7691493
    Abstract: A main chain-type or side chain-type polymeric compound having a structure wherein at least one metal complex segment having a plurality ligands is introduced into a main chain or a side chain is provided. In the case where the polymeric compound is the main chain-type polymeric compound, the metal complex segment has at least one ligand constituting a polymer main chain of the polymeric compound and having a carbon atom and oxygen atom bonded to a metal atom. On the other hand, in the case where the polymeric compound is the side chain-type polymeric compound, a polymer main chain thereof has a conjugated structure, preferably a conjugated double bond. A ligand for the polymeric compound includes a chain or cyclic ligand, of which a bidentate ligand having an organic cyclic structure is preferred, and the ligand has at least one carbon atom or oxygen atom and is bonded to a center metal atom, preferably iridium, via the carbon atom or oxygen atom.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: April 6, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jun Kamatani, Shinjiro Okada, Akira Tsuboyama, Takao Takiguchi, Satoshi Igawa
  • Patent number: 7674530
    Abstract: A soluble luminescent polymer comprising a first repeat unit [Ar1] and a second repeat unit comprising a unit of general formula (I) which is substituted or unsubstituted: wherein X is RC?CR, S, O or NR; Ar1, Ar2 and Ar3 are each independently an aromatic or heteroaromatic group; and each R independently is hydrogen or a substituent group.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: March 9, 2010
    Assignee: Cambridge Display Technology Limited
    Inventors: Carl Towns, Richard O'Dell, Andrea Lux
  • Publication number: 20100004425
    Abstract: A low dielectric constant material having an excellent water resistance obtained by heat-treating a borazine compound of the formula (1-2): or an inorganic or organic compound having a group derived from the borazine compound (1-2) to undergo a condensation reaction, thereby producing an oligomer or polymer, wherein R1 to R6 are independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group, a substituted aryl group, an alkenyl group, an amino group, an alkylamino group, an alkoxyl group, a thioalkoxyl group, a carbonyl group, a silyl group, an alkylsilyl group, a phosphino group, an alkylphosphino group, or a group of the formula: Si(OR7)(OR8)(OR9), and at least one of R1 to R6 is not hydrogen atom.
    Type: Application
    Filed: September 14, 2009
    Publication date: January 7, 2010
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Hideharu Nobutoki, Teruhiko Kumada, Toshiyuki Toyoshima, Naoki Yasuda, Suguru Nagae
  • Publication number: 20090266230
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high CO2 sorption. The poly(ionic liquid)s have enhanced and reproducible CO2 sorption capacities and sorption/desorption rates relative to room-temperature ionic liquids. Furthermore, these materials exhibit selectivity relative to other gases such as nitrogen, methane, and oxygen. They are useful as efficient separation agents, such sorbents and membranes. Novel radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Application
    Filed: August 5, 2005
    Publication date: October 29, 2009
    Inventors: Maciej Radosz, Youqing Shen
  • Patent number: 7601797
    Abstract: Methods of controlled hydrolysis/alcoholysis and regeneration of a borohydride are disclosed. Examples of the present invention show that hydrolysis of sodium borohydride or lithium borohydride with dilute acid provides simultaneous generation of H2 and boric acid for recycling. Other examples of the present invention show methods for regenerating a borohydride by reacting an aluminum hydride to a borate compound to provide a regenerated borohydride.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: October 13, 2009
    Assignee: Purdue Research Foundation
    Inventors: P. Veeraraghavan Ramachandran, Debasis Hazra, Bhimapaka China Raju, Venkatram Reddy Mereddy, Annyt Bhattacharyya
  • Publication number: 20090220752
    Abstract: The invention provides a resin composition for laser engraving, having a binder polymer containing at least one of a structure unit represented by the following Formula (I) or a structure unit represented by the following Formula (II). In the Formulae, Q represents a partial structure which provides an acid group having an acid dissociation constant pKa of 0 to 20 when it is in the form of -Q-H; R1 to R3 each independently represent a hydrogen atom or a monovalent organic group; and A and B each independently represent a bivalent organic connecting group. The invention further provides a relief printing plate precursor having a relief forming layer containing the resin composition, a method for manufacturing a relief printing plate having crosslinking components of the relief forming layer and laser engraving the relief forming layer, and a relief printing plate formed thereby.
    Type: Application
    Filed: February 19, 2009
    Publication date: September 3, 2009
    Applicant: FUJIFILM CORPORATION
    Inventor: Atsushi Sugasaki
  • Patent number: 7579424
    Abstract: A ceramic made by providing a composition and pyrolyzing the composition. The composition has siloxane polymer, metallic polymer, siloxane thermoset, and/or metallic thermoset having a backbone having: an acetylenic repeat unit; and —SiR2—(O—SiR2)n— and/or —SiR2—(O—SiR2)n-[Cb-SiR2—(O—SiR2)n]m—. R is an organic group, Cb is a carborane, and n and m are integers greater than or equal to zero. Any crosslinking is a crosslink between acetylene groups and/or a polycarbosiloxane crosslink. The composition also has free metal atoms, metal clusters, or metal nanoparticles dispersed homogeneously throughout the composition; (MLx)y-acetylene complex in the backbone; and/or a metallic compound for forming a (MLx)y-acetylene complex. M is a metal, L is a ligand, x and y are positive integers.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: August 25, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Manoj K Kolel-veetil, Syed B Qadri
  • Patent number: 7579430
    Abstract: A metallized polymer having a backbone having an acetylenic repeat unit and —SiR2—(O—SiR2)n— and/or —SiR2—(O—SiR2)n-[Cb-SiR2—(O—SiR2)n]m—. At least one of the acetylenic repeat units contains a (MLx)y-acetylene complex. M is a metal, L is a ligand, x and y are positive integers, R is an organic group, Cb is a carborane, and n and m are greater than or equal to zero. A composition containing a siloxane polymer and a metallic compound. The siloxane polymer has a backbone having one or more acetylene groups and —SiR2—(O—SiR2)n— and/or —SiR2—(O—SiR2)n-[Cb-SiR2—(O—SiR2)n]m—. The metallic compound is capable of reacting with the acetylene group to form a (MLx)y-acetylene complex.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: August 25, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Manoj Kolel-Veetil
  • Patent number: 7576168
    Abstract: A metallized thermoset containing a crosslinked metallized polymer having a backbone having an acetylenic repeat unit and —SiR2—(O—SiR2)n— and/or —SiR2—(O—SiR2)n-[Cb-SiR2—(O—SiR2)n]m—. At least one of the acetylenic repeat units contains a (MLx)y-acetylene complex. The metallized thermoset contains a crosslink between acetylene groups and/or a polycarbosiloxane crosslink. M is a metal, L is a ligand, x and y are positive integers, R is an organic group, Cb is a carborane, and n and m are greater than or equal to zero. A method of making a metallized thermoset by providing a metallized polymer and heating the metallized polymer. The metallized polymer contains the above backbone. Heating the metallized polymer forms crosslinks between acetylene groups and/or polycarbosiloxane crosslinks.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: August 18, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Manoj Kolel-Veetil
  • Patent number: 7547757
    Abstract: Aryl-aryl coupled polymers are manufactured using a water-soluble noble metal catalyst. The hydrophilicity of the catalyst facilitates the separation of the catalyst from the polymer product. The method can be generally carried out by preparing a reaction medium comprising an aqueous phase and an organic phase. A water-soluble noble metal catalyst is dispersed in the aqueous phase. A base is also dispersed in the aqueous phase. An aryl-aryl coupled polymer is formed in the reaction medium by (i) adding at least one polymerizable monomer to the reaction mixture; and (ii) mixing the aqueous phase with the organic phase to cause polymerization of the monomer through an aryl-aryl coupling reaction. The polymer has a greater solubility in the organic phase than the aqueous phase. Allowing the organic phase to separate from the aqueous phase separates the water soluble catalyst from the polymer. The reaction can be used to manufacture high molecular weight polymers (e.g.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: June 16, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Changkun Liu, Bing Zhou
  • Patent number: 7534503
    Abstract: A monomer having general Formula (I) which may be substituted or unsubstituted: where E and E are the same or different and are reactive groups capable of undergoing chain extension; X is O, S, NR5, R5C—CR6 or R5?CR6; Y is O, S, NR7, R7C—CR8 or R7C?CR8; R5, R6 R7 and R8 are the same or different and each is independently H or a substituent group; and each Ar is the same or different and is independently a substituted or unsubstituted aryl or heteroaryl group.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: May 19, 2009
    Assignee: Cambridge Display Technology Limited
    Inventors: Jeremy Burroughes, Carl Towns, Thomas Pounds, Jonathan Halls
  • Patent number: 7524923
    Abstract: Methods for synthesizing aryl polymers, and uses for such polymers, are provided.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: April 28, 2009
    Assignee: Dupont Displays, Inc.
    Inventors: Sean Lee, Hailiang Wang
  • Patent number: 7521525
    Abstract: A blue light polymer containing an indenocarbazole unit in its main polyarylene chain and an organoelectroluminescent device using the same are provided. The organoelectroluminescent device exhibits high luminous efficiency and high color purity.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: April 21, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Byung-Hee Sohn, Woon-Jung Paek, Myung-Sup Jung, In-Nam Kang
  • Publication number: 20090082501
    Abstract: A novel polymer comprising a reaction product obtained by reacting an organosilane compound with a boron compound. The polymer comprises a reaction product obtained by reacting (a) an aminated silane compound represented by the formula R4-n—Si—(OR?)n (wherein R represents an aminated organic group; R? represents methyl, ethyl, or propyl; and n is an integer of 1-3) with (b) at least one boron compound selected from the group consisting of H3BO3 and B2O3, the amount of the ingredient (b) being 0.02 mol or larger per mol of the ingredient (a).
    Type: Application
    Filed: May 31, 2006
    Publication date: March 26, 2009
    Inventor: Shinichi Tamura
  • Patent number: 7494720
    Abstract: A polymer formed from optionally substituted first repeat units of formula (I) wherein Ar is selected from (a) aromatic hydrocarbon substituted with at least one electron withdrawing group or electron withdrawing heteroaryl. The polymers have application in electroluminescent devices.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: February 24, 2009
    Assignee: Cambridge Display Technology Limited
    Inventors: Jeremy Burroughes, Richard Friend, Clare Foden
  • Patent number: 7420027
    Abstract: A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: September 2, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Publication number: 20080166563
    Abstract: Thermally conductive films, composite materials including the films, and electrothermal heaters including the films, are disclosed. The films include a polymer and a sufficient concentration of hexagonal boron nitride to provide adequate heat transfer properties, and have high thermal conductivity, peel strength, and shear strength. The films can include thermoset polymers, thermoplastic polymers, or blends thereof, and can also include electrically conductive materials, reinforcing materials such as fiberglass, carbon fiber, metal mesh, and the like, and thermally conductive fillers, such as aluminum oxide, aluminum nitride, and the like. The films can be included in composite materials. The films can be used as part of a layered structure, and used in virtually any application, for example, various locations in aircraft, where heating is desirable, including nacelle skins, airplane wings, heated floor panels, and the like.
    Type: Application
    Filed: December 19, 2007
    Publication date: July 10, 2008
    Applicant: Goodrich Corporation
    Inventors: David Louis Brittingham, Stanley Gerald Prybyla, Daniel Paul Christy
  • Patent number: 7387732
    Abstract: The invention relates to organic/inorganic hybrid polymer blends and hybrid polymer blend membranes that are composed of: one polymer acid halide containing SO2X, POX2 or COX groups (X?, Cl, Br, I); one elemental or metallic oxide or hydroxide, obtained by the hydrolysis and/or the sol/gel reaction of an elemental and/or organometallic compound during the membrane forming process and/or by subsequently treating the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention further relates to hybrid blends and hybrid blend membranes containing polymers that carry SO3H, PO3H2 and/or COOH groups, obtained by aqueous, alkaline or acidic hydrolysis of the polymer acid halides contained in the polymer blend or the polymer blend membrane. The invention also relates to methods for producing the inventive hybrid blends and hybrid blend membranes.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: June 17, 2008
    Inventors: Jochen Kerres, Thomas Häring
  • Publication number: 20080125559
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high absorption of radio frequency electromagnetic radiation, particularly in the microwave and radar bands. These materials are useful for coating objects to make them less reflective of radio frequency radiation and for making objects that absorb radio frequency radiation and are of minimal reflectivity to radio frequency radiation. Free-radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Application
    Filed: November 10, 2005
    Publication date: May 29, 2008
    Inventors: Maciej Radosz, Youqing Shen, Huadong Tang