With Ether Or Thioether Compound Containing At Least Two -c-x-c- Groups Patents (Class 528/76)
  • Patent number: 8575280
    Abstract: Disclosed is a thermosetting resin composition including; (A) a carboxyl group-containing polyurethane prepared by using (a) a polyisocyanate compound (b) polyol compounds (c) a carboxyl group-containing dihydroxy compound as raw materials, (B) a curing agent, wherein the polyol compounds (b) are one or more kinds of polyol compound(s) selected from Group (I) and one or more kinds of polyol compound(s) selected from Group (II); Group I: polycarbonate polyol, polyether polyol, polyester polyol, and polylactone polyol, Group II: polybutadiene polyol, polysilicone having terminal hydroxyl groups, and such a polyol that has 18 to 72 carbon atoms and oxygen atoms present only in hydroxyl groups. The thermosetting resin composition can give a protection film for flexible printed circuits that has excellent long-term reliability of electric insulation, flexibility, and low warpage from curing shrinkage, and particularly low tackiness.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: November 5, 2013
    Assignee: Showa Denko K.K.
    Inventors: Hiroshi Uchida, Ritsuko Azuma
  • Patent number: 8575293
    Abstract: According to the present invention, a resin compound for optical material, comprising (a) an episulfide compound represented by a specific structural formula, (b) a xylylenedithiol compound and (c) a xylylenediisocyanate compound can be provided. In a preferable embodiment of the present invention, a resin compound for optical material having superb optical properties, a high density and a high thermal resistance can be provided. Also according to the present invention, an optical material obtained by curing the above-described resin compound can be provided.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: November 5, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hiroshi Horikoshi, Motoharu Takeuchi
  • Patent number: 8569440
    Abstract: The invention relates to high-reactivity polyurethane compositions containing uretdione groups and intended for use in the plastics sector.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: October 29, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Emmanouil Spyrou, Rainer Lomölder, Dirk Hoppe, Christoph Nacke, Andre Raukamp
  • Publication number: 20130274401
    Abstract: The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 17, 2013
    Applicant: Novomer, Inc.
    Inventors: Scott D. Allen, Vahid Sendijarevic, James O'Connor
  • Patent number: 8557346
    Abstract: A composition capable of radiation activated catalysis is provided. The composition comprises a metal compound, a mercapto compound and an olefinic compound. Radiation curable urethane compositions comprising the disclosed composition are also provided. The radiation curable urethane compositions comprise the disclosed composition, a hydroxyl compound and an isocyanate compound. Activation of the composition by radiation in a urethane formulation provides for an efficient method of curing the urethane composition. Coating and adhesive compositions comprising the radiation curable urethane compositions are also provided. In addition, methods for coating and bonding substrates are disclosed.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 15, 2013
    Assignee: Ashland Licensing and Intellectual Property LLC
    Inventors: Raymond S. Harvey, Thomas M. Moy, Gary M. Carlson
  • Patent number: 8557945
    Abstract: The present invention relates to a kind of biodegradable polyester and its preparation method, which belongs to the field of biodegradable co-polyester product technology. The number-average molecular weight of the biodegradable polyester material under this invention is 6000-135000 g/mol, the molecular weight distribution is 1.2-6.5, and the range of crystallization temperature is 15° C.-105° C., which could overcome the disadvantages of existing technical products and can be processed into membrane materials, sheet materials and foam materials. During processing, the picking property will be dramatically changed with the appearance quality improved; after heat resistance is improved, this new type of polyester material could also be applied to the processing course with long cycles, for example, the injection processing course, and the biodegradable aliphatic/aromatic polyester materials provided by this invention has excellent mechanical properties.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: October 15, 2013
    Assignees: Kingfa Science & Technology Co., Ltd, Shanghai Kingfa Science & Technology Co., Ltd
    Inventors: Yibin Xu, Renxu Yuan, Tongmin Cai, Jian Jiao, Shiyong Xia, Zhimin Yuan
  • Patent number: 8551519
    Abstract: Novel bioabsorbable and/or biocompatible polyurethanes, polyureas, polyamideurethanes and polyureaurethanes with tunable physical, mechanical properties and hydrolytic degradation profiles are provided for use in biomedical applications such as stents, stent coatings, scaffolds, foams, and films. The disclosed polymers may be derived from biocompatible and/or bioabsorbable polyisocyanates. The present invention also relates to new and improved methods for the preparation of the biocompatible and/or bioabsorbable polyisocyanates.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 8, 2013
    Assignee: Bezwada Biomedical, LLC
    Inventor: Rao S Bezwada
  • Patent number: 8536293
    Abstract: The present invention provides a triblock copolymer and a viscoelastic biostable foam comprising the same.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: September 17, 2013
    Assignee: Vysera Biomedical Limited
    Inventors: Niall Behan, Ashutosh Kumar
  • Patent number: 8530600
    Abstract: This invention concerns thermoplastic polyurethane mouldings with improved surface resistance (resistance to writing and scratching) and very good technical processability as well as their use.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 10, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Faisal Shafiq, Christian Wamprecht, David Pucket
  • Patent number: 8530602
    Abstract: A polyether polyol composition comprising: a polyether polyol, a phosphoric acid compound selected from the group consisting of at least one of orthophosphoric acid, polyphosphoric acid, polymetaphosphoric acid, and partial esters thereof in an amount raning from 0.5 to 100 ppm based on the polyether polyol metals derived from a composite metal cyanide complex catalyst in an amount ranging from 1 to 30 ppm based on the polyether polyol; a method for producing this polyether polyol composition; and methods of making polyurethane or isocyanate group-terminated prepolymers.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: September 10, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Chitoshi Suzuki, Hiroki Fukuda, Shigeru Ikai
  • Patent number: 8524839
    Abstract: A transparent laminate having good transparency and good adhesion to transparent substrates, and containing a cured resin layer having excellent tear resistance. A process of producing a transparent laminate by interposing a curable resin composition containing an unsaturated urethane oligomer (A) which is a reaction product of a polyol component (A1) containing a polyol (a1) having from 2 to 3 hydroxy groups, a hydroxy value of 15 to 30 mgKOH/g and an oxyethylene group content of 8 to 50 mass %, a polyisocyanate (A2) and an unsaturated hydroxy compound (A3) or a reaction product of a polyol component (A1) and an unsaturated isocyanate (A4), and a monomer (B) represented by CH2?C(R)C(O)O—R2 (wherein R is a hydrogen atom or a methyl group, and R2 is a C3-4 hydroxyalkyl group having 1 to 2 hydroxy groups), between a pair of transparent substrates, and curing the curable resin composition.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshinobu Kadowaki, Satoshi Niiyama, Naoko Aoki
  • Publication number: 20130211034
    Abstract: A method for making over-indexed thermoplastic polyurethane elastomer precursor. The precursor may be cross-linked.
    Type: Application
    Filed: December 28, 2012
    Publication date: August 15, 2013
    Applicant: NIKE, Inc.
    Inventor: NIKE, Inc.
  • Patent number: 8501831
    Abstract: The present invention pertains to polyisobutylene urethane, urea and urethane/urea copolymers, to methods of making such copolymers and to medical devices that contain such polymers. According to certain aspects of the invention, polyisobutylene urethane, urea and urethane/urea copolymers are provided, which comprise a polyisobutylene segment, an additional polymeric segment that is not a polyisobutylene segment, and a segment comprising a residue of a diisocyanate. According to other aspects of the invention, polyisobutylene urethane, urea and urethane/urea copolymers are provided, which comprise a polyisobutylene segment and end groups that comprise alkyl-, alkenyl- or alkynyl-chain-containing end groups.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 6, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shrojalkumar Desai, Marlene C. Schwarz, Mark Boden, Mohan Krishnan, Michael C. Smith, Frederick H. Strickler, Daniel J. Cooke
  • Patent number: 8487051
    Abstract: Polymeric urethane dispersants with solubilizing polymer chains and with reactive carbon to carbon double bonds are described. The reactive double bonds facilitate molecular weight build-up of the dispersant on dispersed particles (enhancing colloidal stability) or enhance the ability of the dispersants to be crosslinked into a matrix material.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: July 16, 2013
    Assignee: Lubrizol Advanced Materials, Inc.
    Inventors: Stuart N. Richards, Andrew J. Shooter
  • Patent number: 8476362
    Abstract: The invention relates to moisture-curing polyisocyanate mixtures, to a process for their preparation and to their use as binders in lacquers, coatings, adhesives and sealing materials.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: July 2, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Christian Wamprecht, Iker Zuazo Osaca
  • Patent number: 8476396
    Abstract: A composition that includes isocyanate group containing compounds that include on average i) a NCO functionality less than or equal to 3.5; and ii) from 1.5 to 8 percent by weight, based on the isocyanate containing compound, of allophanate groups; and which is substantially free of uretdione groups. The composition can be used in two component elastomeric coating compositions that include a component A the above-described composition and a component B that includes a compound containing one or more functional groups that are reactive with isocyanate groups. The elastomeric coating compositions can be used to coat substrates.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: July 2, 2013
    Assignee: Bayer MaterialScience LLC
    Inventors: David P. Zielinski, Myron Shaffer, Michael K. Jeffries
  • Patent number: 8461285
    Abstract: The present invention relates to a process for the catalytic preparation of polyetherols, wherein the power input by means of at least one stirrer and/or by means of at least one pump, based on the reactor volume, is in the range from 0.001 to 8.2 kW/m3.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 11, 2013
    Assignee: BASF SE
    Inventors: Fatemeh Ahmadnian, Vinit Chilekar, Andreas Brodhagen, Achim Loeffler, Hermann Graf
  • Patent number: 8455609
    Abstract: Golf balls having improved cut and shear resistance that include covers and/or other layers formed from polyurea compositions formed with at least one amine-terminated polytetramethylene ether glycol homopolymer, at least one amine-terminated copolymer of polytetramethylene ether glycol and polyalkylene glycol. The amine-terminated polytetramethylene ether glycol homopolymer or amine-terminated copolymer of polytetramethylene ether glycol and polyalkylene glycol may be used as the isocyanate-reactive in the prepolymer and/or the curing agent.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: June 4, 2013
    Assignee: Acushnet Company
    Inventors: Shawn Ricci, Randy Petrichko, Brian Comeau
  • Patent number: 8455608
    Abstract: The invention relates to a process for preparing a thermoplastic polyisocyanate polyaddition product based on polyisocyanate (i) and compounds which are reactive toward polyisocyanate, with or without the use of chain extenders, a first catalyst (iv) and/or auxiliaries and/or additives (v), wherein a second catalyst is initially vaporized and then applied to the polyisocyanate polyaddition product by condensation, and to the products prepared therefrom.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 4, 2013
    Assignee: BASF SE
    Inventors: Torben Kaminsky, Dirk Kempfert
  • Patent number: 8455679
    Abstract: A prepolymer system has a monomeric isocyanate content of no greater than about 10% by weight based on 100 parts by weight of the prepolymer system. The prepolymer system comprises a diluent component and a prepolymer component different than and separate from the diluent component. The diluent component has an excess of isocyanate (NCO) functional groups, and comprises the reaction product of a monohydric isocyanate-reactive component and an excess of a first isocyanate component. The first isocyanate component comprises monomeric isocyanates reactive with the monohydric isocyanate-reactive component. The prepolymer component also has an excess of NCO functional groups, and comprises the reaction product of a polyol component and an excess of a second isocyanate component. The prepolymer system can be used to prepare foams via reaction with water. The foams have low density and have excellent adhesion and sound dampening properties for use in cavities of automobile bodies.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 4, 2013
    Assignee: BASF SE
    Inventors: Thomas G. Savino, Nikolay Lebedinski, Rajesh Kumar, Calvin T. Peeler
  • Patent number: 8455610
    Abstract: A resin composition excellent in tintability and resin strength, a resin obtained by curing such a resin composition, and an optical component is provided. A polymerizable composition containing an isocyanate compound suitably used for transparent resin materials, at least one polythiol compound which may have one or more (poly) sulfide bonds in a molecule, and at least one polyhydroxy compound having two or more hydroxy groups in a molecule and/or at least one (poly)hydroxy(poly)mercapto compound having one or more hydroxy groups and one or more thiol groups is used.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: June 4, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Akinori Ryu, Mamoru Tanaka, Osamu Kohgo, Kunio Okumura
  • Patent number: 8445584
    Abstract: An aqueous polyurethane resin having a Si atom content of 0.05 to 1.5% by weight in a polyurethane resin is produced by at least reacting an isocyanate group-terminated prepolymer which contains 1 to 15% by weight of a polyoxyethylene group in a side chain branched from the main chain and has two or more isocyanate groups at an end of the main chain, with a chain extender which contains at least a compound having two or more active hydrogen groups reactive with the isocyanate group and an alkoxysilyl group.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: May 21, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventor: Takashi Uchida
  • Patent number: 8431672
    Abstract: The present invention relates to a method for manufacturing an isocyanate group-terminated prepolymer, comprising the following steps (a) to (d): (a) a step of ring-opening polymerizing an alkyleneoxide-containing cyclic compound by using an initiator in the presence of a composite metal cyanide complex catalyst, thereby obtaining a polyol composition containing the catalyst; (b) a step of, without removal of the composite metal cyanide complex catalyst from the polyol composition obtained in the step (a), adding water and performing a heat treatment in a closed system; (c) a step of subjecting the hydrous polyol composition after the step (b) to a dehydration treatment; and (d) a step of adding a polyisocyanate compound to the polyol composition after the step (c) and subjecting to a reaction with the polyol in the polyol composition.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 30, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Chitoshi Suzuki, Takeaki Arai, Yukio Matsumoto
  • Patent number: 8431673
    Abstract: The present invention relates to composition comprising at least one compound obtained from the reaction of at least one compound (i) having a refractive index nD20 of at least 1.50 comprising at least one isocyanate-reactable functional group —XH, wherein each of X is, independently, O or NR, at least one polyisocyanate (ii), and, optionally, at least one compound (iii) comprising at least one isocyanate-reactable functional group —YH and at least one curable functional group Q, wherein each of Y is, independently, O, NR or S, and its use for making high refractive index coatings and films.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: April 30, 2013
    Assignee: Cytec Surface Specialties S.A.
    Inventors: Zhikai Jeffrey Wang, Christopher Wayne Miller, Marcus Lee Hutchins, James C. Matayabas, Jr.
  • Patent number: 8420765
    Abstract: A polyurethaneurea composition comprises a reaction product of at least one diisocyanate compound, a polymeric glycol, a poly(tetramethylene-co-ethyleneether) glycol comprising constituent units derived by copolymerizing tetrahydrofuran and ethylene oxide (EO) wherein the portion of the constituent units derived from ethylene oxide is present in the poly(tetramethylene-co-ethyleneether) glycol from greater than about 37 to about 70 mole percent, at least one diamine chain extender, and at least one chain terminator. The invention further relates to the use of blends of polymeric glycols and poly(tetramethylene-co-ethyleneether) glycols as the soft segment base in spandex compositions. The invention also relates to new polyurethane compositions comprising polymeric glycols and poly(tetramethylene-co-ethyleneether) glycols, and their use in spandex.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: April 16, 2013
    Assignee: Invista North America S.ár.l.
    Inventor: Charles F. Palmer, Jr.
  • Patent number: 8415471
    Abstract: This invention relates to flexible cycloaliphatic diisocyanate trimers and a process for the preparation of these. These flexible products are allophanate-modified, partially trimerized cycloaliphatic diisocyanates and are characterized by a low Tg. More specifically, the Tg of the resultant product ranges from about ?30° C. to about 40° C., after the excess monomer has been removed from the product.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: April 9, 2013
    Assignee: Baver MaterialScience LLC
    Inventors: Myron W. Shaffer, Michael K. Jeffries, David P. Zielinski
  • Patent number: 8415014
    Abstract: Presently is described a free-radically polymerizable composition comprising a mixture of reaction products of i) at least one polyisocyanate; ii) at least one isocyanate reactive perfluoropolyether compound; iii) at least one isocyanate reactive compound comprising greater than 6 repeat units of ethylene oxide; and iv) at least one isocyanate reactive non-fluorinated crosslinker comprising at least two free-radically polymerizable groups.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 9, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Richard J. Pokorny, Joan M. Noyola
  • Publication number: 20130079485
    Abstract: Disclosed are sulfur-containing polyurea compositions and methods of using the compositions as sealants, particularly as low specific-gravity aerospace sealants.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: PRC-DeSoto International, Inc.
    Inventors: Juexiao Cai, Stephen J. Hobbs, Marfi Ito, Scott Moravek, Renhe Lin
  • Publication number: 20130053184
    Abstract: An object of the present invention is to provide a golf ball polyurethane composition excellent in resilience. Another object of the present invention is to provide a golf ball excellent in a shot feeling and resilience. The present invention provides a golf ball polyurethane composition comprising, as a resin component, a polyurethane elastomer including a polyisocyanate with one alicyclic hydrocarbon structure having 3 or more carbon atoms as a constituting component, and having a spin-lattice relaxation time (T1) of 13C nucleus of 8.9 seconds or less measured by a High resolution solid state nuclear magnetic resonance (NMR) method.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: DUNLOP SPORTS CO., LTD.
    Inventors: Kazuyoshi SHIGA, Ryo MURAKAMI, Toshiyuki TARAO, Takahiro SHIGEMITSU
  • Publication number: 20130053174
    Abstract: An object of the present invention is to provide a golf ball polyurethane composition excellent in resilience. Another object of the present invention is to provide a golf ball excellent in a shot feeling and resilience. The present invention provides a golf ball polyurethane composition comprising, as a resin component, a polyurethane elastomer including a polyisocyanate with one alicyclic hydrocarbon structure having 3 or more carbon atoms as a constituting component, and having a storage modulus E? (Pa) and a loss modulus E? (Pa) satisfying a following expression; log(E?/E?2)??6.53 when measured in a tensile mode using a dynamic viscoelasticity measuring apparatus.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: DUNLOP SPORTS CO., LTD.
    Inventors: Kazuyoshi SHIGA, Ryo MURAKAMI, Toshiyuki TARAO, Takahiro SHIGEMITSU
  • Publication number: 20130053175
    Abstract: An object of the present invention is to provide a golf ball polyurethane composition excellent in resilience. Another object of the present invention is to provide a golf ball excellent in a shot feeling and resilience. The present invention provides a golf ball polyurethane composition comprising, as a resin component, a polyurethane elastomer including a polyisocyanate with at least two alicyclic hydrocarbon structures having 3 or more carbon atoms as a constituting component, and having a storage modulus E? (Pa) and a loss modulus E? (Pa) satisfying a following expression; log(E?/E?2)??6.08 when measured in a tensile mode using a dynamic viscoelasticity measuring apparatus.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: DUNLOP SPORTS CO., LTD.
    Inventors: Kazuyoshi SHIGA, Ryo MURAKAMI, Toshiyuki TARAO, Takahiro SHIGEMITSU
  • Publication number: 20130053176
    Abstract: An object of the present invention is to provide a golf ball polyurethane composition excellent in resilience. Another object of the present invention is to provide a golf ball excellent in a shot feeling and resilience. The present invention provides a golf ball polyurethane composition comprising, as a resin component, a polyurethane elastomer including a polyisocyanate with at least two alicyclic hydrocarbon structures having 3 or more carbon atoms as a constituting component, and having a spin-lattice relaxation time (T1) of 13C nucleus of 7.3 seconds or less measured by a High resolution solid state nuclear magnetic resonance (NMR) method.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: DUNLOP SPORTS CO., LTD.
    Inventors: Kazuyoshi SHIGA, Ryo MURAKAMI, Toshiyuki TARAO, Takahiro SHIGEMITSU
  • Patent number: 8383694
    Abstract: Presently is described a free-radically polymerizable composition comprising a mixture of reaction products of i) at least one polyisocyanate; ii) at least one isocyanate reactive perfluoropolyether compound; iii) at least one isocyanate reactive compound comprising greater than 6 repeat units of ethylene oxide; and iv) at least one isocyanate reactive non-fluorinated crosslinker comprising at least two free-radically polymerizable groups.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: February 26, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Richard J. Pokorny, Joan M. Noyola
  • Patent number: 8378052
    Abstract: A composition capable of radiation activated catalysis is provided. The composition comprises a metal compound, a mercapto compound and an olefinic compound. Radiation curable urethane compositions comprising the disclosed composition are also provided. The radiation curable urethane compositions comprise the disclosed composition, a hydroxyl compound and an isocyanate compound. Activation of the composition by radiation in a urethane formulation provides for an efficient method of curing the urethane composition. Coating and adhesive compositions comprising the radiation curable urethane compositions are also provided. In addition, methods for coating and bonding substrates are disclosed.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: February 19, 2013
    Assignee: Ashland Licensing and Intellectual Property LLC
    Inventors: Raymond S. Harvey, Thomas M. Moy, Gary M. Carlson
  • Patent number: 8372940
    Abstract: An object of the present invention is to improve the abrasion resistance of a golf ball that uses a polyurethane as a resin component for a cover. Another object of the present invention is to improve the shot feeling of a golf ball that uses a polyurethane as a resin component for a cover. The present invention provides a golf ball comprising a core; and a cover covering the core, wherein the cover contains a polyurethane elastomer as a resin component, and the polyurethane elastomer contains a polyol component and a polyisocyanate component and does not contain a chain extender.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: February 12, 2013
    Assignees: Sumitomo Rubber Industries Limited, SRI Sports Limited
    Inventors: Mutsuhisa Furukawa, Ryo Mashita, Kazuyoshi Shiga, Takashi Sasaki, Mikio Yamada
  • Patent number: 8372939
    Abstract: The present invention teaches a new process to produce novel, hard, optically clear, impact-resistant polyurethane polymers that are characterized by excellent thermo mechanical properties and chemical resistance, and the polymers made as a result of such a process. The polyurethanes are made by reacting in a one step process 1) a stoichiometric excess of aliphatic polyisocyanate whereby the index is between 95 to 120; 2) a primary amine-terminated polyether with an amine functionality of about 2 and a molecular weight of greater than 400; 3) a polyol having an average hydroxyl functionality greater than or equal to 2 and an average hydroxyl equivalent weight of from about 300 to about 2,000, and 4) an aromatic diamine; wherein component 3 must less be present in a ratio of less than five to one stoichiometric equivalents relative to equivalents of component 2, and 5) optionally, a cross linking agent.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: February 12, 2013
    Assignee: PolyPlexx, LLC
    Inventors: Edmond Derderian, Richard Gerkin
  • Publication number: 20130030074
    Abstract: The present invention relates to a process for the continuous production of polyether alcohols.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 31, 2013
    Applicant: BASF SE
    Inventors: Vinit CHILEKAR, Kerstin Wiss, Achim Löffler, Peter Deglmann, Sirus Zarbakhsh, Christian Buß
  • Publication number: 20130030140
    Abstract: A polyol (PL) for polyurethane preparation is disclosed that includes the polyol (a) and the strength-enhancing agent (b), as follows. Polyol (a): a polyoxyalkylene polyol that is the alkylene oxide adduct of an active hydrogen-containing compound (H), in which at least 40% of a hydroxyl group positioned on the terminal is a primary hydroxyl group-containing group represented by general formula (I). In general formula (I), R1 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, cycloalkyl group, or phenyl group. Strength-enhancing agent (b): a compound that is at least one compound selected from the group comprising an ester compound, a thioester compound, a phosphoric acid ester compound, and an amide compound, and that is derived from an aromatic polyvalent carboxylic acid with a valence of 2 or higher.
    Type: Application
    Filed: April 21, 2011
    Publication date: January 31, 2013
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Tomohisa Hirano, Koji Kabu, Izumi Arai
  • Patent number: 8362098
    Abstract: A process for producing viscoelastic flexible polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups, c) blowing agents, wherein b) comprise b1) from 70 to 10 parts by weight of at least one polyether alcohol having polyoxypropylene units, a nominal functionality of from 3 to 6 and a hydroxyl number of 100 to 300 mg KOH/g, b2) from 10 to 70 parts by weight of at least one polyetherol having polyoxypropylene units, a nominal functionality of 2 and a hydroxyl number of 50 to 350 mg KOH/g, b3) from 10 to 30 parts by weight of at least one polyether alcohol having ethylene oxide units, a nominal functionality of from 2 to 3 and a hydroxyl number of 50 to 550 mg KOH/g, b4) from 0 to 20 parts by weight of at least one graft polyetherol having a nominal functionality of from 2 to 3 and a hydroxyl number of 20 to 40 mg KOH/g.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: January 29, 2013
    Assignee: BASF SE
    Inventors: Stephan Goettke, Heinz-Dieter Lutter, Berend Eling, Steven Edward Wujcik, Jens Mueller
  • Patent number: 8357767
    Abstract: The present invention provides a polyurethane or polyurethane/urea composition which has a tensile strength greater than 10 MPa, a modulus of elasticity greater than 400 MPa and an elongation at break greater than 30% at a temperature of between 0° C. and 60° C. and at a relative humidity of between 0% and 100%. The invention further provides uses of the compositions of the invention in biomedical vascular stents, an orthopedic implant, a drug delivery coating or in tissue engineering.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: January 22, 2013
    Assignee: Polynovo Biomaterials Limited
    Inventors: Timothy Graeme Moore, Pathiraja Arachchillage Gunatillake, Raju Adhikari, Shadi Houshyar
  • Publication number: 20130018126
    Abstract: Addition compound suitable as wetting and dispersing agent, obtainable from the reaction of A) polyepoxides with B) at least one primary polyoxyalkyleneamine C) at least one other aliphatic and/or araliphatic primary amine and D) at least one modified isocyanate.
    Type: Application
    Filed: December 8, 2010
    Publication date: January 17, 2013
    Applicant: BYK-CHEMIE GMBH
    Inventors: Ulrich Orth, Heribert Holtkamp, Jürgen Omeis
  • Patent number: 8338558
    Abstract: Polymeric urethane dispersants with solubilizing polymer chains and with reactive carbon to carbon double bonds are described. The reactive double bonds facilitate molecular weight build-up of the dispersant on dispersed particles (enhancing colloidal stability) or enhance the ability of the dispersants to be crosslinked into a matrix material.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: December 25, 2012
    Assignee: Lubrizol Advanced Materials, Inc.
    Inventors: Stuart N. Richards, Andrew J. Shooter
  • Publication number: 20120322896
    Abstract: New associative thickeners of the HEUR type (Hydrophobically modified Ethylene oxide URethane) whose hydrophobic monomer is based on alkyl cyclohexylols. These are new polyurethanes that allow a broad thickening of a medium shear gradient aqueous formulation while limiting the increase in the low shear gradient viscosity. The invention also concerns the compositions containing them and their uses in different formulations such as aqueous paints.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Applicant: COATEX S.A.S.
    Inventors: Jean-Marc SUAU, Denis Ruhlmann
  • Patent number: 8334357
    Abstract: Disclosed is a thickener based on an aqueous preparation of a nonionic, water-dispersible or water-soluble polyurethane, obtained by reacting: (a) hydrophilic polyols containing at least two OH groups and at least two functional groups selected from ether and ester, of molecular weight at least 300; (b) hydrophobic compounds containing at least one zerewitinoff-active hydrogen atom, of molecular weight about 100 to about 500, with at least one linear or branched, saturated or unsaturated alkyl chain having at least five consecutive carbon atoms not linked to a hetero atom; and (c) at least difunctional isocyanates, where the components are reacted in equivalent ratios OHa):ZHb):NCOc) of 1:(1+x):2(1+y), with the provisos that x is 0.05-1.2, y is (0.2-1.05)x, and more than one equivalent of NCOc) is present versus the sum of OHa) and ZHb).
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: December 18, 2012
    Assignee: Cognis IP Management GmbH
    Inventors: Ludwig Schieferstein, Oliver Pietsch
  • Publication number: 20120316256
    Abstract: The present invention relates to a polyurethane polymer composition comprising polyethyleneglycol dialkyl ether. There is also provided a process for preparing a polyurethane. The invention also relates to a process for preparing a polyurethane xerogel in the form of a molded article, said process comprising the steps of: i. preparing a mixture of a. at least one polyethylene glycol or at least one polyol of formula (I), wherein at least three Of X1, X2, X3, X4 and X5 are each independently an OH-terminated group, and the remainder of X1, X2, X3, X4 and X5 are each independently H or absent, and Z is a central linking unit, a. at least one di- or poly-isocyanate, b. optionally at least one OH-terminated chain extender, and c. at least one polyethyleneglycol dialkyl ether; ii. dispensing the reaction mixture formed in step i) into a mold; iii. allowing the reaction mixture to react and cure; iv. removing the molded article from the mold; and v. hydrating the molded article.
    Type: Application
    Filed: November 2, 2010
    Publication date: December 13, 2012
    Inventors: Abdul Rashid, Roderick William Jonathan Bowers, Wade Tipton, Neil Bonnette Graham
  • Patent number: 8329850
    Abstract: Golf equipment including compositions including castable formulations that have low material hardness and increased shear resistance. The compositions may be used in any layer of a golf ball including cores, intermediate layers, and covers and result in high spin rates.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: December 11, 2012
    Assignee: Acushnet Company
    Inventors: Shawn Ricci, Christopher Cavallaro
  • Patent number: 8324290
    Abstract: The present invention pertains to polyisobutylene urethane, urea and urethane/urea copolymers, to methods of making such copolymers and to medical devices that contain such polymers. According to certain aspects of the invention, polyisobutylene urethane, urea and urethane/urea copolymers are provided, which comprise a polyisobutylene segment, an additional polymeric segment that is not a polyisobutylene segment, and a segment comprising a residue of a diisocyanate. According to other aspects of the invention, polyisobutylene urethane, urea and urethane/urea copolymers are provided, which comprise a polyisobutylene segment and end groups that comprise alkyl-, alkenyl- or alkynyl-chain-containing end groups.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: December 4, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shrojalkumar Desai, Marlene C. Schwarz, Mark Boden, Mohan Krishnan, Michael C. Smith, Frederick H. Strickler, Daniel J. Cooke
  • Patent number: 8296974
    Abstract: The present invention is a transparent thermoplastic polyurethane (TPU) comprising structural units of: a.) a diisocyanate; b.1) a polyester diol and b.2) a specific polyether diol and c.) a chain extender. The TPU has good combinations of light transmission and clarity, tensile strength, low temperature flexibility, and high moisture vapor transition rates compared to other commercial or known TPUs. A preferred example composition is a TPU that is based on MDI as the diisocyanate monomer, polycaprolactone as a polyester diol, an EO capped EO/PO polyether diol containing less than 20% EO, and butanediol as chain extender. These composition have good combinations of clarity, tensile strength, hydrolytic stability and processability compared to TPUs prepared using either polyester or polyether diols alone or the combination with a higher EO polyether diol.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: October 30, 2012
    Assignee: Lubrizol Advanced Materials, Inc.
    Inventors: Mark F. Sonnenschein, J. Mark Cox, Hanno R. Van der Wal, Benjamin L. Wendt
  • Patent number: 8299201
    Abstract: A one-component polyurethane composition includes at least one polyurethane prepolymer having terminal isocyanate groups which is prepared from at least one polyisocyanate and at least one polyol, and to at least one catalyst system which is obtainable from at least one bismuth compound and at least one aromatic nitrogen compound. The polyurethane composition may be used as an adhesive, sealant, coating or lining. Finally, catalysts for polyurethane compositions are disclosed which represent coordination compounds between bismuth and at least one aromatic nitrogen compound.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: October 30, 2012
    Assignee: Sika Technology AG
    Inventors: Urs Burckhardt, Andreas Diener
  • Patent number: 8287788
    Abstract: The present invention relates to a process for the continuous production of thermoplastically processable polyurethane elastomers, by metering a polyisocyanate (A), a proportion of 1-80 equivalent%, based on the isocyanate group content of the polyisocyanate (A), of a compound (B) having an average of at 1.8-3.0 hydrogen atoms having Zerewitinoff activity, with an average molar mass of 450-5000 g/mol, and a proportion of 12-99 equivalent%, based on the isocyanate group content of the polyisocyanate (A), of a chain extender (C), into a self-cleaning twin-screw extruder whose diameter is 32-62 mm, which is operated at shear rates above 6000 s?1 and residence times of 1-20 seconds, and then bringing the mixture from the self-cleaning twin-screw extruder into a second apparatus in order to complete the reaction.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: October 16, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Guenter Scholz, Marian Mours, Sven Lawrenz, Horst Papenfuss, Christoph Bahr, Ruediger Krech