Abstract: A bell-shaped element is placed in a sealed position whereby it rests against the outer wall of the container which is full of solid commodities in order to create a partial vacuum in the inner area of said bell-shaped element and in the gaseous area of the container. A sealing armature subsequently places a sealing cap on top of the opening of the container. When the vacuum is created, a cleanliness element rests against the free edge of the opening of the container in a position which is sealed by means of a liner. The cleanliness element comprises a sieve which retains solid materials inside the container during suction. The cleanliness element subsequently retracts on a plane of its own, wiping the free end of the opening in order to remove debris and solid particles which could prevent the opening from being sealed in a desired manner.
Abstract: The present invention discloses a vacuum bag sealing machine used for vacuumizing and sealing plastic bag containing food or the like therein so as to keep the food or the like fresh. The vacuum bag sealing machine comprises a main body consisted of a top cover and a base connected pivotally with the top cover; a static sealing unit including an upper and a lower sealing strip which are disposed on the front portion of the main body, the lower sealing strip being provided with a predetermined number of through holes; a vacuum generating unit including a vacuum pump and an exhaust tubule mounted on the base, the vacuum pump being communicated with the predetermined number of through holes formed in the lower sealing strip through the exhaust tubule; and a heating and opening-sealing unit. The vacuum bag sealing machine is improved in the static sealing unit and the vacuum generating unit, so that it has an increased sealing reliability and a quickened vacuumizing speed.
Abstract: A row of open top containers travelling on a conveyor is purged of oxygen by passing the containers along a gas distribution manifold disposed parallel to the direction of travel of the containers. The manifold includes at least one region of lower flow resistance disposed parallel to the direction of travel, for supplying a higher velocity inert gas flushing stream continuously and at substantially steady state to the containers. The manifold also includes at least one region of higher flow resistance disposed parallel to the direction of travel, for supplying a lower velocity inert gas region along the containers, continuously and at substantially steady state. As the containers pass along the manifold, the inert flushing gas steadily removes oxygen from the containers, while the lower velocity inert gas region prevents the flushing gas from drawing in air.
Type:
Grant
Filed:
September 16, 1993
Date of Patent:
May 23, 1995
Inventors:
James J. Sanfilippo, John E. Sanfilippo