Lymphokines, E.g., Interferons, Interlukins, Etc. Patents (Class 530/351)
  • Patent number: 10144774
    Abstract: The invention relates to a modified process for the purification of IgG, improving the yield of IgG per liter of starting material without compromising the quality of the product.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: December 4, 2018
    Assignee: CSL BEHRING AG
    Inventors: Ibrahim El Menyawi, Doreen Siegemund
  • Patent number: 9907832
    Abstract: A novel IFN-?/? independent ligand receptor system which upon engagement leads, among other things, to the establishment of an anti-viral state is disclosed. Further disclosed are three closely positioned genes on human chromosome 19 that encode distinct but highly homologous proteins, designated INF-?1, IFN-?2, IFN-?3, based inter alia, in their ability to induce antiviral protection. Expression of these proteins is induced upon viral infection. A receptor complex utilized by all three IFN-? proteins for signaling is also disclosed. The receptor complex is generally composed of two subunits, a novel receptor designated IFN-?R1 or CRF2-12, and a second subunit, IL-10R2 or CRF2-4, which is also a shared receptor component for the IL-10 and IL-22 receptor complexes. The gene encoding IFN-?R1 is generally widely expressed, including many different cell types and tissues. Expression of these proteins is induced by immune events, including, for example, upon viral infection.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: March 6, 2018
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Sergei V. Kotenko, Grant F. Gallagher
  • Patent number: 9815879
    Abstract: The present invention relates to a method for obtaining recombinant granulocyte-colony stimulating factor (G-CSF), comprising at least one cation exchange chromatography and at least one hydrophobic interaction chromatography, wherein said two chromatographic steps are immediately consecutive in optional order. In particular, the present invention relates to a method for purifying G-CSF from a mixture of G-CSF and other proteins, comprising two cation exchange chromatography steps which are conducted before and after a hydrophobic interaction chromatography, respectively.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: November 14, 2017
    Assignee: Sandoz AG
    Inventors: Arndt Dietrich, Bernhard Janowski, Jörg Schäffner, Ulrich Kurt Blaschke
  • Patent number: 9732135
    Abstract: The present invention relates to a fusion protein, comprising a cytokine antagonist and a targeting moiety, preferably an antibody or anti-body like molecule. In a preferred embodiment, the cytokine antagonist is a modified cytokine which binds to the receptor, but doesn't induce the receptor signalling. The invention relates further to a fusion protein according to the invention for use in treatment of cancer and immune- or inflammation-related disorders.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: August 15, 2017
    Assignees: VIB VZW, UNIVERSITEIT GENT, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITÉ MONTPELLIER 2, CENTRE HOSPITALIER REGIONAL UNIVERSITAIRE DE MONTPELLIER
    Inventors: Jan Tavernier, Lennart Zabeau, Gilles Uze, Franciane Paul, Yann Bordat, Genevieve Garcin
  • Patent number: 9731011
    Abstract: Compositions and methods are provided for cancer treatments. The methodology entails, for instance, administering to a cancer patient a first composition comprising a plurality of bacterially derived intact minicells or intact killed bacterial cells, each of which encompasses an anti-neoplastic agent and carries a bispecific ligand on the surface, the ligand having specificity for a mammalian cell component, and a second composition comprising interferon-gamma (IFN-gamma) or an agent that increases the expression of IFN-gamma in the subject. The compositions include the first composition and the second composition as described, optionally with additional anti-neoplastic agents.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: August 15, 2017
    Assignee: EnGeneIC Molecular Delivery Pty Ltd
    Inventors: Himanshu Brahmbhatt, Jennifer MacDiarmid
  • Patent number: 9726666
    Abstract: A method of diagnosing, monitoring progression of, or monitoring treatment of inflammatory bowel disease comprises determining the levels of CD14+HLA-DRhi monocytes or monocytes expressing CCR7 or CCR9 or both CCR7 and CCR9 in a sample obtained from a subject, wherein high levels of CD14+HLA-DRhi monocytes or monocytes expressing CCR7 or CCR9 or both CCR7 and CCR9, or increased levels of CD14+HLA-DRhi monocytes or monocytes expressing CCR7 or CCR9 or both CCR7 and CCR9 compared to control, indicate the presence or progression of inflammatory bowel disease. Similar methods for diagnosing irritable bowel syndrome are also described. Various companion therapeutic methods and useful binding reagents are also described.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: August 8, 2017
    Assignee: TLA Targeted Immunotherapies AB
    Inventors: Ola Winqvist, Graham Cotton
  • Patent number: 9714276
    Abstract: GDF15 polypeptides, constructs comprising GDF15, and mutants thereof are provided. In various embodiments the GDF15 polypeptides, constructs comprising GDF15, and mutants thereof, can be of use in the treatment or ameliorating a metabolic disorder. In various embodiments the metabolic disease or disorder is type 2 diabetes, obesity, dyslipidemia, elevated glucose levels, elevated insulin levels and diabetic nephropathy.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: July 25, 2017
    Assignee: Amgen Inc.
    Inventors: Yumei Xiong, Yi Zhang, Jackie Zeqi Sheng, Agnes Eva Hamburger, Murielle Veniant-Ellison, Grant Shimamoto, Xiaoshan Min, Zhulun Wang, Jie Tang, Gunasekaran Kannan, Kenneth W. Walker, Bryan Lemon
  • Patent number: 9616091
    Abstract: The present invention provides methods for reducing, attenuating, diminishing, preventing or inhibiting pulmonary inflammation in an animal by orally administering a plasma fraction comprising at least 30% by weight IgG and 10% or less by weight IgA to said animal prior to or following exposure or challenge of the animal to an endotoxin.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: April 11, 2017
    Assignee: THE LAURIDSEN GROUP, INC.
    Inventors: Eric Weaver, Joy Campbell, Louis Russell, Miquel Moreto Pedragosa, Anna Perez-Bosque, Francisco Javier Polo Pozo, Joseph Crenshaw
  • Patent number: 9611297
    Abstract: Provided are novel peptides of Formula SEQ ID No. 1: J1CysX1X2X3X4X5X6ProX7ThrCysJ2J3(J4)s(J5)t;?? (SEQ ID No. 1) pharmaceutically acceptable salts thereof, and pharmaceutical compositions thereof, which are effective inhibitors of light chains to uromodulin.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: April 4, 2017
    Assignee: Thrasos Therapeutics Inc.
    Inventors: Roger Leger, Gilles Dube, Marie-Elaine Caruso, Jerome Rossert
  • Patent number: 9534013
    Abstract: The subject invention provides a method for purifying a target protein from a mixture comprising the target protein and contaminating protein, comprising the steps of exposing the mixture to an effective amount of a cationic surfactant such that the contaminating protein is preferentially precipitated and recovering the target protein. Proteins purified according to the method of the invention are also provided.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: January 3, 2017
    Assignee: Horizon Pharma Rheumatology LLC
    Inventors: Meir Fischer, Eliyahu Harosh
  • Patent number: 9415115
    Abstract: Novel compounds of the general formula: in which X represents a polymer, Q represents a linking group; W represents an electron-withdrawing moiety or a moiety preparable by reduction of an electron-withdrawing moiety; each of R1 and R2 independently represents a hydrogen atom or a C1-4alkyl group; and either Z1 represents a protein or a peptide linked to CR2 via a nucleophilic moiety, and Z2 represents a molecule linked to CR2 via a nucleophilic moiety, or Z1 and Z2 together represent a single group derived from a protein or peptide linked to CR2 via two nucleophilic moieties.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: August 16, 2016
    Assignee: POLYTHERICS LIMITED
    Inventors: Antony Robert Godwin, Stephen James Brocchini
  • Patent number: 9359421
    Abstract: The invention relates to suppressors of endogenous human interferon-gamma (INF-?) applicable in treatment of diseases associated with impaired activity of endogenous IFN-?. The suppressors of the invention are useful in treating autoimmune diseases and for prevention of graft arteriosclerosis and rejection of organs in allograft transplanted patients. The invention includes inactive analogues or variants of IFN-? having preserved affinity to the IFN-? receptor, genetically modified in the domain responsible for triggering the signal transduction pathway.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: June 7, 2016
    Assignee: TIGO GmbH
    Inventors: Ivan Ivanov, Genoveva Nacheva, Stefan Petrov, Hans-Guenther Grigoleit
  • Patent number: 9320792
    Abstract: In one aspect, the invention relates to a method suitable for administering protein therapeutic molecules orally, sublingually, topically, intravenously, subcutaneously, nasally, vaginally, rectally or by inhalation so as to avoid inactivation, by using VHH polypeptides derived from Camelidae antibodies. The invention further relates to the said therapeutic molecules. The invention further a method for delivering therapeutic molecules to the interior of cells. The invention further relates to anti-IgE therapeutic molecules. In one aspect, the present invention relates to a method wherein an immunoglobulin single variable domain (such as a Nanobody) and/or construct thereof are absorbed in pulmonary tissue. More particularly, the invention provides systemic delivery of an immunoglobulin single variable domain and/or construct thereof via the pulmonary route.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 26, 2016
    Assignee: Ablynx N.V.
    Inventors: Marie-Paule Lucienne Armanda Bouche, Peter Vanlandschoot, Erwin Sablon, Erik Depla, Stefan De Buck, Xavier Saelens, Bert Schepens, Karen Silence, Mark Vaeck, Paul M. P. Van Bergen En Henegouwen, Hans De Haard
  • Patent number: 9266937
    Abstract: Disclosed herein are novel proteins that have reduced binding to the interleukin-7 receptor, compositions containing such proteins, and methods of using the same.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: February 23, 2016
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Annette Khaled
  • Patent number: 9243042
    Abstract: It is an object to provide a protein having a dockerin, which is suited to production in yeasts and other eukaryotic microorganism in which sugar chain modification is predicted, and which provides excellent cohesin-dockerin binding ability, along with a use thereof. The present invention uses, as a protein for constructing a protein complex using a scaffolding protein having a type I cohesin from Clostridium thermocellum, a protein having a dockerin having at least one dockerin-specific sequence which is a dockerin-specific sequence associated with cohesin binding in type I dockerins from C. thermocellum, and which either has no intrinsic predicted N-type sugar chain modification site or has aspartic acid substituted for the asparagine of an intrinsic predicted N-type sugar chain modification site.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: January 26, 2016
    Assignee: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Hiroaki Suzuki, Takao Imaeda, Katsunori Kohda
  • Patent number: 9234022
    Abstract: This application relates to recombinant human interferon-like proteins. In one embodiment a recombinant protein created by gene shuffling technology is described having enhanced anti-viral and anti-proliferative activities in comparison to naturally occurring human inteferon like alpha 2b(HuIFN-?2b). The invention encompasses a polynucleotide encoding the protein and recombinant vectors and host cells comprising the polynucleotide. Preferably the polynucleotide is selected from the group of polynucleotides each having a sequence at least 93% identical to SEQ ID: No. 1 and the protein is selected from the group of proteins each having an amino acid sequence at least 85% identical to SEQ ID No: 2. The proteins and compositions comprising the proteins can be used for treatment of conditions responsive to interferon therapy, such as viral diseases and cancer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 12, 2016
    Assignee: Novagen Holding Corporation
    Inventors: Haitao Wang, Chunsheng Mao, Jizhi Li, Ling Wang, Yong Du, Longbin Liu, Jing Xu, Rui Zhang
  • Patent number: 9200058
    Abstract: The present invention relates to TNFR2-IL21R fusion protein acting as a double-antagonist to TNF-alpha (?) and IL-21. The composition containing the double antagonist to TNF-? and Il-21 (TNFR2-IL21R fusion protein), known as major causes of autoimmune rheumatoid arthritis, one of autoimmune diseases, can reduce the secretion of inflammatory cytokine, increase the secretion of anti-inflammatory cytokine, and suppress the differentiation of osteoclasts better than single proteins such as TNFR2-Fc and IL21R-Fc. The TNFR2-IL21R fusion protein of the present invention has not only excellent treatment effect on arthritis in CIA mouse model not also excellent treatment effect on autoimmune rheumatoid arthritis by increasing the expression of Treg, the immune suppressive cells. Therefore, the TNFR2-IL21R fusion protein of the present invention can be effectively used as an active ingredient for the composition for the prevention and treatment of autoimmune disease.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: December 1, 2015
    Assignees: Korea Research Institute of Bioscience and Biotechnology, Industry-Academic Cooperation Foundation, the Catholic University of Korea
    Inventors: Young Woo Park, Ki Won Jo, Srok Ho Yoo, Jung Yu, Sun-Ha Yoon, Ji Hyun Park, Eun Jung Song, Jong-Ho Lee, Min Ji Seo, Sun Jung Cho, Mi La Cho, Ho Youn Kim, Mi Kyung Park, Hye Jwa Oh, Jin Sil Park, Yun Ju Woo, Jae Kyeong Byun, Jun Geol Ryu
  • Patent number: 9150849
    Abstract: The invention provides methods and compositions for screening polypeptide libraries that include variants comprising unnatural amino acids. In addition, the invention provides vector packaging systems and methods for packaging a nucleic acid in a vector. Compositions of vectors produced by the methods and systems are also provided.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 6, 2015
    Assignee: The Scripps Research Institute
    Inventors: Chang Liu, Meng-Lin Tsao, Vaughn Smider, Peter G. Schultz
  • Patent number: 9133243
    Abstract: The ?c-family cytokines, Interleukin-2 (IL-2), Interleukin-4 (IL-4), Interleukin-7 (IL-7), Interleukin-9 (IL-9), Interleukin-15 (IL-15), and Interleukin-21 (IL-21), are associated with important human diseases, such as leukemia, autoimmune diseases, collagen diseases, diabetes mellitus, skin diseases, degenerative neuronal diseases and graft-versus-host disease (GvHD). Thus, inhibitors of ?c-cytokine activity are valuable therapeutic and cosmetic agents as well as research tools. Peptide antagonists based on the consensus ?c-subunit binding site to inhibit ?c-cytokine activity are described. In several embodiments, peptide antagonists simultaneously inhibit the activity of multiple ?c-cytokine family members.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: September 15, 2015
    Assignee: BIONIZ, LLC
    Inventors: Yutaka Tagaya, Nazli Azimi
  • Patent number: 9081017
    Abstract: This invention relates to the identification and characterization of specific cellular responses which are associated with tumor necrosis factor receptor 1 (TNFR1) and tumor necrosis factor receptor 1 (TNFR2). Selective modulation of these tumor necrosis factor receptors (TNFRs) Selective modulations of these responses may be useful in the promotion or inhibition of cell growth, for example, in the treatment of disease conditions, including cardiovascular and kidney diseases. Therapeutic methods employed selective TNFR1 and TNFR2 modulators are provided, along with screening methods for the identification of selective TNFR1 and TNFR2 modulators useful in such methods.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: July 14, 2015
    Assignees: Cambridge Enterprise Limited, Yale University
    Inventors: John Bradley, Jordan Pober, Paul Clark, Wang Min, Martin Kluger
  • Patent number: 9067994
    Abstract: The present invention relates to anti-IL13 antibodies that bind specifically and with high affinity to both glycosylated and non-glycosylated human IL13, does not bind mouse IL13, and neutralize human IL13 activity at an approximate molar ratio of 1:2 (MAb:IL13). The invention also relates to the use of these antibodies in the treatment of IL13-mediated diseases, such as allergic disease, including asthma, allergic asthma, non-allergic (intrinsic) asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, eczema, urticaria, food allergies, chronic obstructive pulmonary disease, ulcerative colitis, RSV infection, uveitis, scleroderma, and osteoporosis.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 30, 2015
    Assignee: Genentech, Inc.
    Inventors: Sek Chung Fung, Matthew Moyle, Mason Lu, Changning Yan, Sanjaya Singh, Dan Huang
  • Patent number: 9056896
    Abstract: An object of the present invention is to provide a method for removing even small viruses from a high concentration monoclonal antibody solution using a membrane, and thus for recovering the antibody within a short time at high yield in the form of a filtrate. The present invention provides a method for producing a preparation containing a monoclonal antibody, which comprises a step of removing viruses by filtering viruses in a monoclonal antibody solution using a virus-removing membrane, wherein (1) the monomer content of the monoclonal antibody accounts for 90% or more; (2) the monoclonal antibody concentration in the monoclonal antibody solution ranges from 20 mg/ml to 100 mg/ml; (3) the monoclonal antibody solution contains at least a basic amino acid; and (4) the parvovirus removal rate of the virus-removing membrane satisfies the following conditions: LRV (Log Reduction Value: logarithmic reduction value)?4.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 16, 2015
    Assignee: ASAHI KASEI MEDICAL CO., LTD.
    Inventors: Tomoko Hongo, Masayasu Komuro
  • Patent number: 9051369
    Abstract: The present invention relates generally to novel recombinant polypeptides having avian cytokine properties and to genetic sequences encoding same. More particularly, the present invention is directed to recombinant avian Type III interferon polypeptides, and genetic sequences encoding same, together with cellular expression systems and uses for same. Even more particularly, the present invention is directed to avian interferon-? (IFN-?) and functional derivatives, homologues and fragments thereof and to methods of use thereof. The molecules and cells of the present invention are useful in a wide range of applications including, but not limited to, providing a means for the treatment and prophylaxis of disease conditions, in particular avian disease conditions, or for use as an immune response modulator. Also provided are diagnostic means for screening for immune response and screening means for identifying modulators of IFN-? protein or nucleic acid functionality.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: June 9, 2015
    Assignees: Commonwealth Scientific and Industrial Research Organisation, Australian Poultry CRC
    Inventors: John William Lowenthal, Andrew Gerard D. Bean, Adam Joseph Karpala
  • Publication number: 20150147292
    Abstract: The present invention is based in part on the discovery of brown and white fat cell specific surface markers. It has been found that the small amino acid transporter Slca10/Asc1 is a specific surface marker for white adipocytes and that the ligand-gated ion channel P2X5 and the small amino acid transporter Slc36a2 are specific surface markers for brown adipocytes. Having identified these specific white and brown cell surface markers, the present invention provides compositions and methods suitable for the targeting of any number of agents to a white or brown adipose tissue and the identification and isolation of white or brown adipocytes for any number of uses including therapeutic, screening and diagnostic purposes.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 28, 2015
    Applicant: Joslin Diabetes Center, Inc.
    Inventors: C. Ronald Kahn, Siegfried Ussar
  • Publication number: 20150147294
    Abstract: The present invention provides methods for increasing survival in a subject, and/or preserving bone marrow function, and/or promoting hematopoietic recovery or restoration. The methods include administering a dose of IL-12 to the subject following an acute exposure to non-therapeutic whole body ionizing radiation. Formulations and kits are also provided.
    Type: Application
    Filed: December 19, 2014
    Publication date: May 28, 2015
    Applicant: Neumedicines, Inc.
    Inventor: Lena A. Basile
  • Publication number: 20150139945
    Abstract: The present invention relates to a therapeutic polypeptide and methods for its creation and use for modulating an immune response in a host organism in need thereof. In particular, the invention relates to the administration to an organism in need thereof, of an effective amount of a pre-coupled polypeptide complex comprising a lymphokine polypeptide portion, for example IL-15 (SEQ ID NO: 5, 6), IL-2 (SEQ ID NO: 10, 12) or combinations of both, and an interleukin receptor polypeptide portion, for example IL-15Ra (SEQ ID NO: 7, 8), IL-2Ra (SEQ ID NO: 9, 11) or combinations of both, for augmenting the immune system in, for example, cancer, SCID, AIDS, or vaccination; or inhibiting the immune system in, for example, rheumatoid arthritis, or Lupus. The therapeutic complex of the invention surprisingly demonstrates increased half-life, and efficacy in vivo.
    Type: Application
    Filed: December 11, 2014
    Publication date: May 21, 2015
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Leo Lefrancois, Thomas A. Stoklasek
  • Patent number: 9034310
    Abstract: A method for pharmacological treatment of cancers and other diseases is presented which includes the novel combination of a statin (Hmg-CoA reductase inhibitor, such as lovastatin, simvastatin, atorvastatin, cerivastatin, fluvastatin, pravastatin, or newer agents), with an interferon (such as interferon alfa-2b or others) and also including concurrent administration of selenium and calcium. The method disclosed in this invention is useful because it can prove more effective than previously known therapies for certain diseases and because its use may be more tolerable, less disfiguring, and less expensive than other methods. The method here disclosed can be readily reproduced by any person skilled in the art of treating disease.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: May 19, 2015
    Inventor: Stephen B. Cantrell
  • Publication number: 20150132257
    Abstract: The instant invention provides soluble fusion protein complexes and IL-15 variants that have therapeutic and diagnostic use, and methods for making such proteins. The instant invention additionally provides methods of stimulating or suppressing immune responses in a mammal using the fusion protein complexes and IL-15 variants of the invention.
    Type: Application
    Filed: December 12, 2014
    Publication date: May 14, 2015
    Inventors: Hing C. Wong, Peter Rhode, Xiaoyun Zhu, Kai-ping Han
  • Patent number: 9028808
    Abstract: The present invention relates to a cytokine for use in the treatment and/or control of dependent and/or addictive behavior, in particular addiction and/or dependency to nicotine, food addiction, alcohol addiction and/or sex addiction. The present invention also relates to treatment and/or control of withdrawal and/or symptoms of withdrawal from an addiction, in particular nicotine addiction, food addiction, alcohol addiction and/or sex addiction. The present invention further relates to the induction of loss of interest or aversion to the addictive substance or behavior, such as nicotine, over-indulgence in high-calorie, high-fat foods, and to other behaviors or addictions that are hazardous to the health.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: May 12, 2015
    Assignee: Immunservice GmbH
    Inventor: Edith Huland
  • Publication number: 20150126709
    Abstract: The present invention refers to a fusion protein comprising a TNF-superfamily (TNFSF) cytokine or a receptor binding domain thereof fused to a collectin trimerization domain, to a nucleic acid molecule encoding the fusion protein, and to a cell comprising the nucleic acid molecule. The fusion protein is present as a trimeric complex or as an oligomer thereof. The fusion protein, the nucleic acid, and the cell is suitable as pharmaceutical composition or for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: July 2, 2014
    Publication date: May 7, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann, Marcus Branschädel
  • Publication number: 20150126710
    Abstract: The present invention refers to fusion proteins comprising a neck region and carbohydrate recognition domain of a collectin trimerization domain, a linker element and an effector polypeptide. Further the invention refers to a nucleic acid encoding the said fusion protein. The fusion proteins, the nucleic acid, and the cell are suitable as pharmaceutical composition or for therapeutic, diagnostic and/or research applications as described herein.
    Type: Application
    Filed: July 2, 2014
    Publication date: May 7, 2015
    Inventors: Oliver HILL, Marcus Branschädel, Christian Gieffers, Meinolf Thiemann
  • Publication number: 20150125421
    Abstract: The present invention provides fusion proteins including an autoimmune antigen, an allergen antigen or an alloantigen, and an anti-inflammatory cytokine. Compositions and methods including the fusion proteins are also provided.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventor: Mark D. Mannie
  • Publication number: 20150125419
    Abstract: The present invention refers to single-chain fusion proteins comprising three soluble TNF superfamily (TNFSF) cytokine domains and nucleic acid molecules encoding these fusion proteins. The fusion proteins are substantially non-aggregating and suitable for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: June 30, 2014
    Publication date: May 7, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann
  • Patent number: 9023358
    Abstract: The present invention provides an antibody that binds to the p19 subunit of human IL-23 and is characterized as having high affinity, selective, and neutralizing properties. The antibody is useful in the treatment or prevention of an autoimmune or inflammatory condition selected from the group consisting of consisting of multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, ankylosing spondylitis, graft-versus-host disease, lupus and metabolic syndrome. The antibody is also useful in the treatment of cancer.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: May 5, 2015
    Assignee: Eli Lilly and Company
    Inventors: Catherine Brautigam Beidler, Stuart Willis Bright, Daniel Scott Girard, Kristine Kay Kikly
  • Patent number: 9023337
    Abstract: Methods for enhancing or stimulating hematopoiesis including the step of administering Interleukin-12 (IL-12) to yield hematopoietic recovery in a mammal in need. Preferred methods include the step of administering IL-12 as an adjuvant therapy to alleviate the hematopoietic toxicities associated with one or more treatment regimens used to combat a disease state. Other methods include administering IL-12 to ameliorate various hematopoietic deficiencies. Still other methods are directed to uses of IL-12 for in-vivo proliferation of hematopoietic repopulating cells, hematopoietic progenitor cells and hematopoietic stem cells. Other disclosed methods are directed to uses of IL-12 for bone marrow preservation or recovery.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: May 5, 2015
    Assignee: University of Southern California
    Inventors: Tingchao Chen, Yi Zhao, W. French Anderson
  • Publication number: 20150118185
    Abstract: Compositions containing conjugates of heparosan polymer with at least one drug are disclosed, along with methods of production and use thereof.
    Type: Application
    Filed: November 7, 2014
    Publication date: April 30, 2015
    Inventor: Paul L. DeAngelis
  • Publication number: 20150118153
    Abstract: The present invention provides affinity matured humanized monoclonal antibodies, bi-specific antibodies, antibody conjugates, and fusion proteins that bind to the chemokine receptor CCR4. This antibody is derived from mAb 1567 and recognizes the same epitope. Binding of the antibodies disclosed herein to CCR4 inhibits ligand-mediated activities and is used to treat symptoms of cancer. Moreover, the antibody is used in combination with vaccines to suppress the activity of regulatory T cells.
    Type: Application
    Filed: May 6, 2013
    Publication date: April 30, 2015
    Inventors: Wayne A. Marasco, Jianhua Sui, Quan Zhu, De-Kuan Chang
  • Publication number: 20150111279
    Abstract: The present invention provides compositions and methods of use of humanized, chimeric or human Class I anti-CEA antibodies or fragments thereof, preferably comprising the light chain variable region CDR sequences SASSRVSYIH (SEQ ID NO:1); GTSTLAS (SEQ ID NO:2); and QQWSYNPPT (SEQ ID NO:3); and the heavy chain variable region CDR sequences DYYMS (SEQ ID NO:4); FIANKANGHTTDYSPSVKG (SEQ ID NO:5); and DMGIRWNFDV (SEQ ID NO:6). The Class I anti-CEA antibodies or fragments are useful for treating diseases, such as cancer, wherein the diseased cells express CEACAM5 and/or CEACAM6 antigens. The Class I anti-CEA antibodies or fragments are also of use for interfering with specific processes, such as metastasis, invasiveness and/or adhesion of cancer cells, or for enhancing sensitivity of cancer cells to cytotoxic agents and have favorable effects on the survival of subjects with cancer.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 23, 2015
    Inventors: Hans J. Hansen, Chien-Hsing Chang, David M. Goldenberg
  • Publication number: 20150110740
    Abstract: The present disclosure provides compositions and methods for efficient and effective protein delivery in vitro and in vivo. In some aspects, proteins are reversibly crosslinked to each other and/or modified with functional groups and protected from protease degradation by a polymer-based or silica-based nanoshell.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 23, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Li Tang, Darrell J. Irvine
  • Publication number: 20150110737
    Abstract: The invention is directed to a method of preparing B-cells that produce interleukin-10 (IL-10), or IL-10 per se, which comprises contacting one or more B-cells ex vivo with an isolated interleukin-35 (IL-35) protein, and culturing the one or more B-cells under conditions to provide one or more B-cells that produce IL-10. The invention also is directed to a method of suppressing the proliferation of lymphocytes in vitro or in vivo by contacting lymphocytes with an isolated IL-35 protein. The invention further is directed to a method of suppressing autoimmunity in a mammal by administering to the mammal an IL-35 protein or IL-10-producing B-cells.
    Type: Application
    Filed: April 11, 2013
    Publication date: April 23, 2015
    Inventors: Charles Emeka Egwuagu, Ren-Xi Wang, Cheng-rong Yu
  • Publication number: 20150105537
    Abstract: A codon optimized nucleic acid sequence for Interferon Alpha-2a is provided which can be used for expression of Interferon Alpha-2a in E. Coli.
    Type: Application
    Filed: March 28, 2013
    Publication date: April 16, 2015
    Applicant: BIOGENOMICS LIMITED
    Inventors: Archana Rajesh Krishnan, Sanjay Madhukar Sonar, Damodar Krishnabahadur Thappa
  • Patent number: 9005598
    Abstract: Novel compounds of the general formula (I): in which X represents a polymer; Q represents a linking group; W represents an electron-withdrawing moiety or a moiety preparable by reduction of an electron-withdrawing moiety; each of R1 and R2 independently represents a hydrogen atom or a C1-4alkyl group; and either Z1 represents a protein or a peptide linked to CR2 via a nucleophilic moiety, and Z2 represents a molecule linked to CR2 via a nucleophilic moiety, or Z1 and Z2 together represent a single group derived from a protein or peptide linked to CR via two nucleophilic moieties.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: April 14, 2015
    Assignee: Polytherics Limited
    Inventors: Antony Robert Godwin, Stephen James Brocchini
  • Patent number: 9005600
    Abstract: A compound comprising, in combination: a cell surface binding ligand or internalizing factor, such as an IL-13R?2 binding ligand; at least one effector molecule (e.g., one, two, three or more effector molecules); optionally but preferably, a cytosol localization element covalently coupled between said binding ligand and said at least one effector molecule; and a subcellular compartment localization signal element covalently coupled between said binding ligand and said at least one effector molecule (and preferably with said cytosol localization element between said binding ligand and said subcellular compartment localization signal element). Methods of using such compounds and formulations containing the same are also described.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 14, 2015
    Assignee: Wake Forest University Health Sciences
    Inventors: Waldemar Debinski, Hetal Pandya, Denise Gibo
  • Patent number: 8999670
    Abstract: A polypeptide and polynucleotides encoding same comprising one carboxy-terminal peptide (CTP) of chorionic gonadotrophin attached to an amino terminus of a cytokine and two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a carboxy terminus of a cytokine are disclosed. Pharmaceutical compositions comprising the polypeptide and polynucleotides of the invention and methods of using same are also disclosed.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: April 7, 2015
    Assignee: OPKO Biologics Ltd.
    Inventors: Fuad Fares, Udi Eyal Fima
  • Publication number: 20150093358
    Abstract: A polypeptide and polynucleotides comprising at least two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a non-human peptide-of-interest are disclosed. Pharmaceutical compositions comprising the non-human polypeptides and polynucleotides of the invention and methods of using both human and non-human polypeptides and polynucleotides are also discarded.
    Type: Application
    Filed: November 26, 2014
    Publication date: April 2, 2015
    Inventors: FUAD FARES, UDI EYAL FIMA
  • Publication number: 20150094451
    Abstract: The invention provides heterodimer bispecific antigen-binding molecules that include a first polypeptide that does not include an IgG CH1 domain and a second polypeptide having an immunoglobulin constant region where there is at least one mutation in the IgG CH3 domain that abolishes the ability of the second polypeptide to bind CH3-specific affinity media such that the first and second polypeptides have different affinities with respect to CH1 and CH3 specific affinity reagents that allows rapid isolation by differential binding of the first and second polypeptides to these affinity reagents. The invention also provides bispecific antibodies that have IgG CH1 and CH3 regions with different affinities with respect to affinity reagents that allows rapid isolation by differential binding of the IgG regions to these affinity reagents. The invention also concerns bispecific antibodies which are heterodimers of heavy chains, i.e.
    Type: Application
    Filed: September 3, 2014
    Publication date: April 2, 2015
    Inventors: Nicolas Fischer, Giovanni Magistrelli, Francois Rousseau, Krzysztof Masternak, Pauline Malinge
  • Publication number: 20150093800
    Abstract: The present invention provides methods for cleaning or regenerating a chromatography materiel for reuse. The methods of the invention can be used for cleaning or regenerating chromatography columns for reuse in the large-scale manufacture of multiple polypeptide products.
    Type: Application
    Filed: September 5, 2014
    Publication date: April 2, 2015
    Inventors: Ekta MAHAJAN, Kapil KOTHARY, Joanna SO, Jay WERBER
  • Publication number: 20150093357
    Abstract: The present invention relates to a therapeutic polypeptide and methods for its creation and use for modulating an immune response in a host organism in need thereof. In particular, the invention relates to the administration to an organism in need thereof, of an effective amount of a pre-coupled polypeptide complex comprising a lymphokine polypeptide portion, for example IL-15 (SEQ ID NO: 5, 6), IL-2 (SEQ ID NO: 10, 12) or combinations of both, and an interleukin receptor polypeptide portion, for example IL-15Ra (SEQ ID NO: 7, 8), IL-2Ra (SEQ ID NO: 9, 11) or combinations of both, for augmenting the immune system in, for example, cancer, SCID, AIDS, or vaccination; or inhibiting the immune system in, for example, rheumatoid arthritis, or Lupus. The therapeutic complex of the invention surprisingly demonstrates increased half-life, and efficacy in vivo.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Leo Lefrancois, Thomas A. Stoklasek
  • Patent number: 8993519
    Abstract: Described herein are compositions and methods for treating, preventing and ameliorating diseases and conditions characterized by a lower than normal white blood cell count, such as leukopenia and neutropenia. The compositions and methods include recombinant human albumin-human granulocyte colony stimulating factor. Pharmaceutical formulations including the recombinant fusion protein, and methods of making such formulations are also described.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 31, 2015
    Assignee: Teva Pharmaceutical Industries Ltd.
    Inventors: Jason Benjamin Bock, Xia Luo
  • Patent number: 8993724
    Abstract: The present invention relates to a process for the production of interferon beta, and to an interferon beta composition having a unique glycosylation pattern.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: March 31, 2015
    Assignee: Ares Trading S.A.
    Inventors: Dina Fischer, Alain Bernard, Paul Ducommun, Mara Rossi