Binds Receptor (e.g., Transferrin Receptor, Fc Receptor, Dihydropyridine Receptor, Il-2 Receptor, Etc.) Patents (Class 530/388.22)
  • Patent number: 10660936
    Abstract: The present invention relates to, inter alia, compositions and methods, including chimeric proteins that find use in the treatment of disease, such as immunotherapies for cancer and autoimmunity. In part, the invention provides, in various embodiments, fusions of extracellular domains of transmembrane proteins that can have stimulatory or inhibitory effects.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: May 26, 2020
    Assignee: Heat Biologics, Inc.
    Inventors: Taylor Schreiber, George Fromm, Suresh De Silva, Neal Schilling
  • Patent number: 10653748
    Abstract: The present invention relates to, inter alia, compositions and methods, including chimeric proteins that find use in the treatment of disease, such as immunotherapies for cancer and autoimmunity. In part, the invention provides, in various embodiments, fusions of extracellular domains of transmembrane proteins that can have stimulatory or inhibitory effects.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 19, 2020
    Assignee: Heat Biologics, Inc.
    Inventors: Taylor Schreiber, George Fromm, Suresh De Silva, Neal Schilling
  • Patent number: 10633673
    Abstract: The present invention provides methods of reducing the levels of a titratable selectable pressure required, the number of amplification cycles, and the time taken to generate protein expressing cell lines by altering the codons of the desired open-reading-frames. Through the use of codon adaptation for this purpose the methods of the invention consistently provide sufficient yields in faster time frames saving many weeks in cell line development activities. Furthermore the methods of the invention also generate cell lines with lower concentrations of selection and amplification agent than previously achievable. Accordingly lower levels of selection and amplification marker in the final cells lines are observed.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 28, 2020
    Assignee: GLAXO GROUP LIMITED
    Inventors: Mark Uden, Ekaterini Kotsopoulou
  • Patent number: 10449233
    Abstract: The present invention relates to, inter alia, compositions and methods, including chimeric proteins that find use in the treatment of disease, such as immunotherapies for cancer and autoimmunity. In part, the invention provides, in various embodiments, fusions of extracellular domains of transmembrane proteins that can have stimulatory or inhibitory effects.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 22, 2019
    Assignee: Heat Biologics, Inc.
    Inventors: Taylor Schreiber, George Fromm, Suresh De Silva, Neal Schilling
  • Patent number: 10449229
    Abstract: Provided are methods and compositions for cartilage repair. The method involves performing a surgical procedure at the site of a cartilage defect and administering a composition comprising a receptor for hyaluronan mediated motility (RHAMM)-mimetic peptide, and a high molecular weight hyaluronan.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: October 22, 2019
    Assignees: New York University, London Health Sciences Centre Research Inc.
    Inventors: Mary K. Cowman, Thorsten Kirsch, Eric J. Strauss, Eva Ann Turley, Cornelia Toelg, Leonard G. Luyt
  • Patent number: 10214588
    Abstract: The present invention relates to methods and techniques for providing improved amino acid sequences that can be used as single antigen-binding domains. In particular, the invention relates to methods and techniques for providing improved amino acid sequences that can be used as single antigen-binding domains that comprise or essentially consist of at least one immunoglobulin sequence. More in particular, the amino acid sequences provided herein may comprise or essentially consist of at least one variable domain sequence or a suitable fragment thereof such as at least one light chain variable domain sequence (e.g. a VL-sequence) or a suitable fragment thereof or at least one heavy chain variable domain sequence (e.g. a VH-sequence or VHH sequence) or a suitable fragment thereof.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: February 26, 2019
    Assignee: Ablynx N.V.
    Inventor: Joost Alexander Kolkman
  • Patent number: 10078085
    Abstract: There are provided a method named Tat-associated protein engineering (TAPE), of screening a target protein having higher solubility and excellent thermostability, in particular, an immunoglobulin variable domain (VH or VL) derived from human germ cells, by preparing a gene construct where the target protein and an antibiotic-resistant protein are linked to a Tat signal sequence, and then expressing this within E. coli, and human or engineered VH and VL domain antibodies and human or engineered VH and VL domain antibody scaffolds having solubility and excellent thermostability, which are screened by the TAPE method. There are also provided a library including random CDR sequences in the human or engineered VH or VL domain antibody scaffold screened by the TAPE method, and a preparing method thereof. There are also provided a VH or VL domain antibody having binding ability to the target protein screened by using the library, and a pharmaceutical composition including the domain antibody.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: September 18, 2018
    Assignee: Mogam Biothechnology Institute
    Inventors: Hyung-Kwon Lim, Sung Geun Kim, Young Seoub Park, Hyo Jung Nam, Dong-Sik Kim, Jae Chan Park, Yeup Yoon
  • Patent number: 9901650
    Abstract: Methods are provided for measuring glio-vascular pathway (“glymphatic system”) function in the brain of a mammal which include performing imaging of the brain and measuring cerebrospinal fluid-interstitial fluid (CSF-ISF) exchange in the brain. The methods can be used to track the exchange between CSF and ISF compartments. An imaging agent is optionally administered intrathecally. The imaging agent can be a negative or positive (paramagnetic) contrast agent and dynamic or contrast-enhanced magnetic resonance imaging (MRI) of the brain can be performed. The imaging agent can be a positron-emitting radionuclide tracer and positron emission tomography (PET) can be performed. Methods for treating diseases or disorders of the mammalian brain are also provided, in which the methods increase or decrease glymphatic clearance.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: February 27, 2018
    Assignees: University of Rochester, The Research Foundation for The State University of New York
    Inventors: Maiken Nedergaard, Jeffrey J. Iliff, Helene Benveniste, Rashid Deane
  • Patent number: 9862931
    Abstract: The invention relates to recombinant adenovirus displaying one or more heterologous epitope(s) on their fiber protein. These recombinant adenovirus are useful as vaccines for generating an immune response against said epitope(s) in individuals having a pre-existing anti-Ad immunity.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: January 9, 2018
    Assignee: Institut Gustave Roussy
    Inventors: Karim Benihoud, Anastasia Lanzi, Michel Perricaudet
  • Patent number: 9650445
    Abstract: The invention provides molecule comprising: (i) a targeting moiety capable of directly or indirectly targeting to unwanted cells, and (ii) a further moiety that has a masked immune cell binding region so as to prevent binding of the further moiety to an immune cell, wherein the masked immune cell binding region is capable of being selectively unmasked when the molecule is in the vicinity of the unwanted cells so as to allow binding of the further moiety to an immune cell.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: May 16, 2017
    Assignee: The University of Birmingham
    Inventors: Mark Cobbold, David Millar
  • Patent number: 9522955
    Abstract: The invention provides chimeric antigen receptors (CARs) comprising an antigen binding domain of a KDR-1121 or DC101 antibody, an extracellular hinge domain, a T cell receptor transmembrane domain, and an intracellular domain T cell receptor signaling domain. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of cancer in a host and methods of treating or preventing cancer in a host are also disclosed.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: December 20, 2016
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Steven A. Rosenberg, Dhanalakshmi Chinnasamy
  • Patent number: 9416187
    Abstract: The present invention provides monoclonal antibodies and antigen-binding fragments thereof that specifically bind to CD20, as well as pharmaceutical compositions comprising the same. The invention further provides methods of using the monoclonal antibodies, antigen-binding fragments, and pharmaceutical compositions, for example, in methods of depleting B cells or in treating B cell disorders. Also provided are cells, nucleic acids and methods for producing the monoclonal antibodies.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: August 16, 2016
    Assignee: Duke University
    Inventors: Thomas F. Tedder, Yasuhito Hamaguchi, Jonathan C. Poe
  • Patent number: 9352034
    Abstract: The present invention relates generally to a method for the treatment and prophylaxis of pain. In accordance with the present invention, it is proposed that antagonists of GM-CSF are effective in the treatment of pain. Antagonists of GM-CSF include, but are not limited to, antibodies which are specific for GM-CSF or the GM-CSF receptor. The present invention further provides transgenic animals, such as a GM-CSF knock-out mouse, useful for testing antagonists in certain disease models.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 31, 2016
    Assignee: The University of Melbourne
    Inventors: John Allan Hamilton, Andrew David Cook
  • Patent number: 9334317
    Abstract: There is provided at least one isolated TCR-like antibody or fragment thereof, wherein the antibody or fragment thereof is capable of specifically binding to at least one HBV derived peptide.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 10, 2016
    Assignee: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Antonio Bertoletti, Sastry Konduru Seetharama, Paul Anthony Macary, Soh Ha Chan, Chien Tei Too
  • Patent number: 9329189
    Abstract: This invention relates to antibodies, including specified portions or variants, specific for at least the human Amyloid-beta 11 N-terminal site, i.e. A?11-x peptides. It further provides methods of making and using said antibodies, including therapeutic formulations, administration and devices.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: May 3, 2016
    Assignee: Janssen Pharmaceutica NV
    Inventors: Marc Hubert Mercken, Marc Maria Pierre Vandermeeren
  • Patent number: 9321823
    Abstract: The emergence of mutations in tyrosine kinases following treatment of cancer patients with molecular-targeted therapy represents a major mechanism of acquired drug resistance. Here, we describe a mutation in the serpentine receptor, Smoothened (SMO), which results in resistance to a Hedgehog (Hh) pathway inhibitor in medulloblastoma. A single amino acid substitution in a conserved aspartic acid residue of SMO maintains Hh signaling, but results in the inability of the Hh pathway inhibitor, GDC-0449, to bind SMO and suppress the pathway. This mutation was not only acquired in a GDC-0449-resistant mouse model of medulloblastoma, but was identified in a Medulloblastoma patient following relapse on GDC-0449. The invention provides screening methods to detect SMO mutations and methods to screen for drugs that specifically modulate mutant SMO exhibiting drug resistance.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 26, 2016
    Assignees: Genentech, Inc., Curis, Inc.
    Inventors: Frederic J. de Sauvage, Gerrit J.P. Dijkgraaf, Thomas Januario, Robert L. Yauch
  • Patent number: 9320735
    Abstract: Myeloid derived suppressor cell (MDSC) inhibitory agents and vaccine and/or adjuvant enhancers are provided. Improved vaccine treatment regimens employing these agents are also provided. Cancer vaccines and methods for inhibiting tumor growth and cancer metastases are also presented. The myeloid derived suppressor cell (MDSC) inhibiting agents are described as bisphosphonates (such as liposomal clodronate) and CCR2 inhibitors and/or CCR2 antagonists. Methods for enhancing antibody titer levels in response to an antigen of interest are also provided.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 26, 2016
    Assignee: Colorado State University Research Foundation
    Inventors: Steven W. Dow, Angela J Henderson, Leah Mitchell
  • Patent number: 9315579
    Abstract: There is disclosed compositions and methods relating to or derived from anti-CCR2 antibodies. More specifically, there is disclosed fully human antibodies that bind CCR2, CCR2-binding fragments and derivatives of such antibodies, and CCR2-binding polypeptides comprising such fragments. Further still, there is disclosed nucleic acids encoding such antibodies, antibody fragments and derivatives and polypeptides, cells comprising such polynucleotides, methods of making such antibodies, antibody fragments and derivatives and polypeptides, and methods of using such antibodies, antibody fragments and derivatives and polypeptides, including methods of treating or diagnosing subjects having CCR2 related disorders or conditions.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: April 19, 2016
    Assignee: Sorrento Therapeutics, Inc.
    Inventors: Dingqiu Huang, Barbara A. Swanson, John Dixon Gray, Heyue Zhou, Guodi Lu
  • Patent number: 9249221
    Abstract: Provided is a humanized and affinity-matured anti-c-Met antibody, a pharmaceutical composition including the antibody, and a method of preventing and/or treating c-Met-related disease using the antibody.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: February 2, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seung Hyun Lee, Kyung Ah Kim, Kwang Ho Cheong, Ho Yeong Song
  • Patent number: 9233155
    Abstract: Provided is a method of combination therapy for prevention or treatment of a cancer including or consisting essentially of co-administering sorafenib and an anti-c-Met antibody or an antigen-binding fragment thereof to a subject. The method of combination therapy can achieve an excellent synergistic effect and lower the effective dose of the anti-c-Met antibody, thereby enabling a more effective cancer treatment.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: January 12, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Bo Gyou Kim, Ji Min Lee, Kyung Ah Kim, Yun Ju Jeong
  • Patent number: 9221906
    Abstract: Described herein are antibodies against GPR49 and uses of such antibodies. Various aspects relate to monoclonal, humanized, or fully human antibodies against GPR49, hybridomas or other cell lines expressing such antibodies, nucleic acids and vectors comprising nucleic acids encoding for such antibodies, and methods of treating cancer with such antibodies.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 29, 2015
    Assignee: Bionomics Inc.
    Inventors: Christopher L. Reyes, Peter Chu, Xiangyang Tan, Christilyn Graff, Weixing Yang
  • Patent number: 9220774
    Abstract: Described herein are antibodies against GPR49 and uses of such antibodies. Various aspects relate to monoclonal, humanized, or fully human antibodies against GPR49, hybridomas or other cell lines expressing such antibodies, nucleic acids and vectors comprising nucleic acids encoding for such antibodies.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 29, 2015
    Assignee: Bionomics Inc.
    Inventors: Christopher L. Reyes, Peter Chu, Xiangyang Tan, Weixing Yang, Christilyn Graff
  • Patent number: 9221907
    Abstract: Described herein are to antibodies against GPR49 and uses of such antibodies. Various aspects relate to monoclonal, humanized, or fully human antibodies against GPR49, hybridomas or other cell lines expressing such antibodies, nucleic acids and vectors comprising nucleic acids encoding for such antibodies.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 29, 2015
    Assignee: Bionomics Inc.
    Inventors: Christopher L. Reyes, Peter Chu, Xiangyang Tan, Weixing Yang, Christilyn Graff
  • Patent number: 9192666
    Abstract: Provided is a method for prevention or treatment of a cancer, comprising co-administering (a) an FGFR inhibitor and (b) an anti-c-Met antibody or antigen-binding fragment thereof to a subject in need thereof, wherein the anti-c-Met antibody or the antigen-binding fragment thereof specifically binds to an epitope comprising 5 or more contiguous amino acids within the SEMA domain of c-Met protein.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: November 24, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Bo Gyou Kim, Ji Min Lee, Kyung Ah Kim, Yun Ju Jeong
  • Patent number: 9194871
    Abstract: The present invention concerns a monoclonal antibody and corresponding hybridoma cells and antigens suitable for isolating fetal cells from maternal blood. The inventive monoclonal antibody reacts with a surface antigen present on fetal red blood cells including their nucleated precursor cells, but not with surface antigens on adult erythroid cell.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: November 24, 2015
    Assignee: KellBenx Inc.
    Inventors: Christiane Hollmann, Silke Zimmermann, Stefan Stachelhaus, Winfried Albert
  • Patent number: 9175092
    Abstract: The invention provides antibodies which bind to the ADP-ribosyl cyclase 2. Nucleic acid molecules encoding the antibodies, expression vectors, host cells and methods for expressing the antibodies are also provided. The antibodies may be used for the treatment of human cancers, including acute myeloid leukemia (AML), B-cell chronic lymphocytic leukemia, breast cancer, colorectal cancer, kidney cancer, head and neck cancer, lung cancer, ovarian cancer and pancreatic cancer and human inflammatory diseases, including asthma, gout, crohns, lupus, multiple sclerosis, rheumatoid arthritis, psoriasis, diabetes and atherosclerotic.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 3, 2015
    Assignee: OXFORD BIOTHERAPEUTICS LTD
    Inventors: Christian Rohlff, Jonathan Alexander Terrett
  • Patent number: 9163249
    Abstract: The present invention provides methods of reducing the levels of a titratable selectable pressure required, the number of amplification cycles, and the time taken to generate protein expressing cell lines by altering the codons of the desired open-reading-frames. Through the use of codon adaptation for this purpose the methods of the invention consistently provide sufficient yields in faster time frames saving many weeks in cell line development activities. Furthermore the methods of the invention also generate cell lines with lower concentrations of selection and amplification agent than previously achievable. Accordingly lower levels of selection and amplification marker in the final cells lines are observed.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 20, 2015
    Assignee: Glaxo Group Limited
    Inventors: Mark Uden, Ekaterini Kotsopoulou
  • Patent number: 9127053
    Abstract: This invention relates generally to the generation of antibodies, e.g., monoclonal antibodies including fully human monoclonal antibodies, that recognize Jagged 1 and/or Jagged 2, to antibodies, e.g., monoclonal antibodies including fully human antibodies that recognize Jagged 1 and/or Jagged 2, and nucleic acid molecules that encode antibodies, e.g., nucleic acid molecules that encode monoclonal antibodies including fully human cross-reactive antibodies that recognize both Jagged 1 and Jagged 2, and to methods of making the anti-Jagged antibodies and methods of using the anti-Jagged antibodies as therapeutics, prophylactics, and diagnostics. The invention also relates generally to activatable antibodies that include a masking moiety (MM), a cleavable moiety (CM), and an antibody (AB) that specifically bind to Jagged 1 and Jagged 2, and to methods of making and using these activatable anti-Jagged antibodies in a variety of therapeutic, diagnostic and prophylactic indications.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: September 8, 2015
    Assignee: CYTOMX THERAPEUTICS, INC.
    Inventors: James William West, Jason Gary Sagert, Paul H. Bessette, Henry Bernard Lowman, Nancy E. Stagliano, Olga Vasiljeva, Elizabeth-Edna Mary Menendez
  • Patent number: 9095533
    Abstract: A composition-of-matter comprising an antibody or antibody fragment including an antigen-binding region capable of specifically binding an antigen-presenting portion of a complex composed of a human antigen-presenting molecule and an antigen derived from a pathogen is disclosed.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: August 4, 2015
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Yoram Reiter, Cyril Cohen
  • Publication number: 20150147278
    Abstract: The present invention provides a prophylactic or therapeutic agent for various malignant tumors, including currently intractable solid tumors, which contains a novel antibody having the ability to bind to human LAT1/CD98 and inducing antibody-dependent cellular cytotoxicity specifically against cancer cells as an active ingredient.
    Type: Application
    Filed: December 5, 2014
    Publication date: May 28, 2015
    Applicants: Kinki University, Link Genomics, Inc.
    Inventors: Takashi Masuko, Shinichiro Niwa, Hidemi Hayashi, Dai Ogura, Takayuki Shindou
  • Patent number: 9040670
    Abstract: Monoclonal antibodies (mAbs) having thyroid stimulating activity (TSAb), especially full or considerably agonistic activity, or thyroid blocking activity (TBAb), which are obtainable by genetic immunization of mice, or fragments (F(ab?)2, Fab or Fv) or humanized forms of such monoclonal antibodies or single chain forms (SCA; scFv) of such fragments, which antibodies, or their fragments, compete with bovine TSH for epitopes of the human TSHr, compete with autoantibodies from sera from Graves' patients as well as with autoantibodies from sera from patients harboring blocking autoantibodies for epitopes of the human TSHr, bind to conformational epitopes of the human TSHr located in the first 281 amino acids of the human TSHr, and usually also bind to TSFR receptors (TSHr) from different animals. Various uses of such antibodies, or of peptides corresponding to variable regions of such antibodies, are also described and claimed.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: May 26, 2015
    Assignee: B.R.A.H.M.S GMBH
    Inventors: Andreas Bergmann, Nils G. Morgenthaler, Gilbert Vassart, Sabine Costagliola
  • Patent number: 9035026
    Abstract: The present invention relates to binding molecules that specifically bind to the human Fc gamma receptor expressed on the surface of natural killer (NK) cells and macrophages (i.e. Fc?RIIIA), and in particular binding molecules that specifically bind the A form Fc?RIII but do not bind to the B form of Fc?RIII, as well as to the use of such binding molecules in the diagnosis and treatment of disease. The invention further extends to polynucleotides encoding such binding molecules, host cells comprising such polynucleotides and methods of producing binding molecules of the invention using such host cells.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: May 19, 2015
    Assignee: Affimed GMBH
    Inventors: Karin Hoffmann, Sergey Kipriyanov, Stefan Knackmuss, Fabrice Le Gall, Melvyn Little, Uwe Reusch
  • Patent number: 9029513
    Abstract: A cell growth inhibitor that includes, as an antibody component, an artificially produced anti-EGFR antibody having specific binding capacity to EGFR which is characterized in that an epitope therefor is in a cysteine-rich subdomain 2 (C2 domain) and/or in a ligand-binding domain 1 (L1 domain) among four subdomains contained in the extracellular domain of EGFR.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 12, 2015
    Assignees: Toagosei Co. Ltd., Keio University
    Inventors: Nobuyoshi Shimizu, Atsushi Takayanagi, Tetsuhiko Yoshida
  • Patent number: 9028826
    Abstract: Improved anti-CD154 antibodies are provided herein which have ablated FcR binding and/or complement binding/activation. The use of these antibodies for inducing tolerance and treating immune diseases including autoimmunity, inflammation and allergic disorders is disclosed herein.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 12, 2015
    Assignee: The Trustees of Dartmouth College
    Inventor: Randolph J. Noelle
  • Patent number: 9028824
    Abstract: The present disclosure provides isolated binding molecules that bind to the human OX40R, nucleic acid molecules encoding an amino acid sequence of the binding molecules, vectors comprising the nucleic acid molecules, host cells containing the vectors, methods of making the binding molecules, pharmaceutical compositions containing the binding molecules, and methods of using the binding molecules or compositions.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: May 12, 2015
    Assignees: Pfizer Inc., Bristol-Myers Squibb Company
    Inventors: Jing Min, Yanli Wu, Rory F. Finn, Barrett R. Thiele, Wei Liao, Ronald P. Gladue, Arvind Rajpal, Timothy J. Paradis, Peter Brams, Brigitte Devaux, Yi Wu, Kristopher Toy, Heidi N. LeBlanc, Haichun Huang
  • Patent number: 9028821
    Abstract: The present inventors obtained, from a phage library of human antibodies, an anti-mouse NR 10 neutralizing antibody-expressing BM095 clone that shows a strong proliferation-suppressing activity in an IL-31-dependent Ba/F3 cell proliferation assay system. When this anti-mouse NR 10 neutralizing antibody was administered to NC/Nga mice, a model of atopic dermatitis which is a mouse model of chronic dermatitis that arises as a result of repeated applications of picryl chloride, a mouse model of rheumatoid arthritis, and a mouse model of osteoarthritis, a significant effect of symptom suppression was observed. This revealed that the anti-NR 10 neutralizing antibody is indeed effective as a therapeutic agent for inflammatory diseases. In addition, the present inventors successfully obtained an anti-human NR 10 neutralizing antibody, providing extremely useful therapeutic agents with practical clinical applications.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: May 12, 2015
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Masakazu Hasegawa, Hidetomo Kitamura, Hideki Adachi, Keiko Kasutani
  • Patent number: 9023996
    Abstract: The present invention relates to anti-FLT3 antibodies with a modified Fc region comprising the amino acid substitutions 239D and 332E to enhance antibody-dependent cell cytotoxicity (ADCC) of these antibodies. The invention further relates to pharmaceutical compositions containing these antibodies, nucleic acids encoding these antibodies as well as methods of using such antibodies.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: May 5, 2015
    Assignee: Synimmune GmbH
    Inventors: Ludger Grosse-Hovest, Hans-Joerg Buehring, Martin Hofmann, Steffen Aulwurm, Grundram Jung
  • Patent number: 9023999
    Abstract: The present invention provides a monoclonal antibody which specifically recognizes CD27 containing an O-linked sugar chain to which galactose is not bound and binds to its extracellular region, or a method for using the same. The present invention can provide a monoclonal antibody or an antibody fragment thereof, which specifically recognizes a polypeptide encoded by CD27 gene containing an O-linked sugar chain to which galactose is not bound, and binds to its extracellular region; a hybridoma which produces the antibody; a DNA which encodes the antibody; a vector which comprises the DNA; a transformant obtainable by transforming the vector; a process for producing an antibody or an antibody fragment thereof using the hybridoma or the transformant; and a diagnostic agent or a therapeutic agent comprising the antibody or the antibody fragment thereof as an active ingredient.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: May 5, 2015
    Assignee: Kyowa Hakko Kirin Co., Ltd
    Inventors: Katsuhiro Mori, Naoko Hiura, Tsuguo Kubota, Akiko Furuya, Yutaka Kanda, Mitsuo Satoh
  • Patent number: 9018360
    Abstract: The present invention provides a modified biotin-binding protein comprising an amino acid sequence represented by SEQ ID NO: 2 or its modified sequence and having a biotin-binding activity and replacement selected from the group consisting of: 1) replacement of the 36th serine residue of SEQ ID NO: 2 with an amino acid residue that does not form a hydrogen bond; 2) replacement of the 80th tryptophan residue of SEQ ID NO: 2 with a hydrophilic amino acid residue; 3) replacement of the 116th aspartic acid residue of SEQ ID NO: 2 with an amino acid residue that does not form a hydrogen bond; 4) replacement of the 46th proline residue of SEQ ID NO: 2 with a threonine, serine, or tyrosine residue and replacement of the 78th threonine residue of SEQ ID NO: 2 with an amino acid residue that does not form a hydrogen bond; 5) replacement of the 46th proline residue of SEQ ID NO: 2 with a threonine, serine, or tyrosine residue and replacement of the 116th aspartic acid residue of SEQ ID NO: 2 with an amino acid that
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: April 28, 2015
    Assignee: Japan Tobacco Inc.
    Inventors: Yoshimitsu Takakura, Masako Tsunashima, Kozue Sofuku
  • Patent number: 9017670
    Abstract: The present invention provides antibodies that bind to Tie2 and methods of using same. According to certain embodiments of the invention, the antibodies are fully human antibodies that bind to human Tie2 and block the interaction between Tie2 and one or more Tie2 ligands such as angiopoietin 1 (Ang1), angiopoietin 2 (Ang2), angiopoietin 3 (Ang3) and/or angiopoietin 4 (Ang4). The antibodies of the invention are useful, inter alia, for the treatment of diseases and disorders associated with one or more Tie2 biological activities including angiogenesis.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: April 28, 2015
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventor: Gavin Thurston
  • Patent number: 9017669
    Abstract: The present invention relates to anti-CDH3 antibodies, which can be labeled with a radioisotope. Moreover, the present invention provides methods and pharmaceutical compositions that comprise an anti-CDH3 antibody as an active ingredient. Since CDH3 is strongly expressed in pancreatic, lung, colon, prostate, breast, gastric or liver cancer cells, the present invention is useful in pancreatic, lung, colon, prostate, breast, gastric or liver cancer therapies.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: April 28, 2015
    Assignee: OncoTherapy Science, Inc.
    Inventors: Yasuhiro Shiba, Hiroki Yoshioka, Shinji Yamamoto, Aiko Kudo, Ryuji Ohsawa, Pohsing Ng, Yusuke Nakamura, Keigo Endo
  • Patent number: 9017677
    Abstract: A preventive or therapeutic agent for sensitized T cell-mediated diseases comprising an interleukin-6 (IL-6) antagonist, for example an antibody directed against IL-6 receptor, an antibody directed against IL-6, an antibody directed against gp130, and the like.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: April 28, 2015
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventor: Masahiko Mihara
  • Publication number: 20150110714
    Abstract: The present invention relates to methods of using the expression of ILTL3 ligand or ILT3 on certain types of cancer cells as a diagnostic tool. Methods are provided for treating ILT3-ligand expressing cancers, such as T-cell acute lymphoblastic leukemia (T-cell acute lymphoblastic leukemia), for example by administering ILT3, the extracellular domain of ILT3 or ILT3Fc conjugated to a cytotoxic agent to kill the targeted cancer cell. Other methods are provided for treating cancers that express ILT3 on their surface, such as monocytic forms of AML, for example by administering anti-ILT3 antibodies conjugated to a cytotoxic agent.
    Type: Application
    Filed: September 4, 2012
    Publication date: April 23, 2015
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Nicole Suciu-Foca, George Vlad, Chih-Chao Chang, Zhuoru Liu, Adriana Ioana Colovai
  • Publication number: 20150104461
    Abstract: The invention provides anti-Notch antibodies, and in particular, antibodies that bind Notch2 NRR, and methods of using the same.
    Type: Application
    Filed: June 6, 2014
    Publication date: April 16, 2015
    Inventors: Siebel W. Christian, Yan Wu
  • Patent number: 9005574
    Abstract: The invention relates to (glyco-) proteins, in particular monoclonal antibodies, which have an immunoreactivity of >81%, preferably >90%. The inventive monoclonal antibodies are produced using a fluidized bed reactor in conjunction with a conventional protein-chemical purification method or preferably with a purification method involving less column chromatography. The monoclonal antibodies thus produced are suitable, in gamma-irradiated form, e.g. Tc-99m labeled, for the in vivo diagnosis of inflammatory diseases and bone marrow metastases. In alpha- or beta-irradiated form, e.g. astatine or Re-188 or Y-90 labeled form, the inventive monoclonal antibodies can be used, for example, in the treatment of leukemia.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: April 14, 2015
    Assignee: Scintec Diagnostics
    Inventors: Ivan Benes, Silke Thomsen-Bosslet
  • Patent number: 9006398
    Abstract: EphB3-specific antibodies are provided, along with pharmaceutical compositions containing such antibody, kits containing a pharmaceutical composition, and methods of preventing and treating cancer.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: April 14, 2015
    Assignees: Novartis AG, Xoma Technology Ltd.
    Inventors: Jeff Hsu, Linda Masat, Judy Abraham, Masahisa Handa, Siew Schleyer
  • Publication number: 20150098900
    Abstract: The invention provides anti-FcRH5 antibodies and immunoconjugates and methods of using the same.
    Type: Application
    Filed: June 24, 2014
    Publication date: April 9, 2015
    Inventors: Allen J. Ebens, Meredith C. Hazen, Jo-Anne Hongo, Jennifer W. Johnston, Teemu T. Junttila, Ji Li, Andrew G. Polson
  • Patent number: 9000133
    Abstract: This application provides methods and compositions for modulating and/or depleting CD200 positive cells.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: April 7, 2015
    Assignee: Alexion Pharmaceuticals, Inc.
    Inventors: Katherine S. Bowdish, Anke Kretz-Rommel, Susan Faas McKnight, Jeremy P. Springhorn, Dayang Wu
  • Patent number: 9000127
    Abstract: The invention relates to antibodies that are capable of specifically binding TREM-1 and preventing the activation of TREM-1, a protein expressed on monocytes, macrophages and neutrophils. Such antibodies find utility in the treatment of individuals with an inflammatory disease, such as rheumatoid arthritis and inflammatory bowel disease.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: April 7, 2015
    Assignee: Novo Nordisk A/S
    Inventors: Vibeke Westphal Stennicke, Christine Brender Read, Susanne Nedergaard Grell, Charlotte Wiberg, Rune Salbo, Anette Henriksen, Soeren Padkjaer
  • Patent number: 8992910
    Abstract: The present invention provides antibodies that bind to the IL-3 receptor alpha subunit alpha (Il3R?) chain, and compositions comprising such antibodies. The present invention provides methods for inhibiting or reducing an IL3R?-expressing cell population, the methods comprising contacting a population of IL3R?-expressing cells (e.g., cancer cells and/or cancer stem cells) with an antibody that binds to IL3R?. The present invention also provides antibody conjugates comprising an antibody that binds to an IL3R? chain linked to a cytotoxic agent or anticellular agent and compositions comprising such conjugates. The present invention also provides methods for preventing, treating and/or managing a disorder associated with IL3R?-expressing cells (e.g., a hematological cancer), the methods comprising administering to a subject in need thereof an antibody that binds to IL3R?.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: March 31, 2015
    Assignee: Steamline Therapeutics, Inc.
    Inventor: Ivan Bergstein