Abstract: It is an object of the present invention to provide antimicrobial metallodrugs comprising an antimicrobial peptide (“AMP”) and/or an antibiotic covalently bound to a metal binding moiety. These metallodrugs combine a metal binding domain which typically catalyzes oxido-reductase chemistry or acts as a Lewis-Acid catalyst, with a member of a diverse class of antimicrobial agents currently validated in preclinical and clinical settings for the treatment of a broad spectrum of pathogenic organisms.
Abstract: An artificial tris-catecolate siderophore with a tripodal backbone and its conjugates with ampicillin and amoxicillin were synthesized. Both conjugates exhibited significantly enhanced in vitro antibacterial activities against Gram-negative species compared to the parent drugs, especially against P. aeruginosa. The conjugates appear to be assimilated by an induced bacterial iron transport process as their activities were inversely related to iron concentration. The easily synthesized tris-catecolate siderophores can be used with a variety of drugs as conjugates to target antibiotic-resistant Gram-negative bacteria.
Type:
Application
Filed:
April 18, 2013
Publication date:
October 24, 2013
Applicant:
University of Notre Dame Du Lac
Inventors:
Marvin J. MILLER, Cheng JI, Patricia A. MILLER
Abstract: It is an object of the present invention to provide antimicrobial metallodrugs comprising an antimicrobial peptide (“AMP”) and/or an antibiotic covalently bound to a metal binding moiety. These metallodrugs combine a metal binding domain which typically catalyzes oxido-reductase chemistry or acts as a Lewis-Acid catalyst, with a member of a diverse class of antimicrobial agents currently validated in preclinical and clinical settings for the treatment of a broad spectrum of pathogenic organisms.
Abstract: The invention provides compositions of novel high penetration compositions (HPC) or high penetration prodrugs (HPP) of antimicrobials and antimicrobial-related compounds, which are capable of crossing biological barriers with high penetration efficiency. The HPCs/HPPs are capable of being converted to parent active drugs or drug metabolites after crossing the biological barrier and thus can render treatments for the conditions that the parent drugs or metabolites can. Additionally, the HPPs are capable of reaching areas that parent drugs may not be able to access or to render a sufficient concentration at the target areas and therefore render novel treatments. The HPCs/HPPs can be administered to a subject through various administration routes, e.g., locally delivered to an action site of a condition with a high concentration or systematically administered to a biological subject and enter the general circulation with a faster rate.
Abstract: An antibacterial lyophilized preparation which comprises as an active ingredient aspoxicillin and a basic salt of aspoxicillin in a molar ratio of 1 : about 0.7 to 7 and optionally an alkali metal halide as a stabilizer, and a method for preparing the same, said antibacterial lyophilized preparation being able to be rapidly dissolved in distilled water to give a stable solution which can be injected to patients for the treatment of various bacterial infectious diseases.